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Abstract 

 21st century computer science allows to reach a 
new complexity level of computational analysis 
which is still rapidly growing beyond our 
imagination, constantly increasing the limits of 
human possibilities. But despite the technological 
advancement the limit is set by the human mind 
which is not capable of grasping such huge amounts 
of information. The problem of modern 
bioinformatics doesn’t always concern the 
tremendous calculations time but the amount of 
experiment results  that we produce which 
sometimes require complex processing to be 
acquired by a human. This work presents the 
possibilities of modern genomics available thanks to 
the data and analysis methods, gathered trough the 
last quarter of a century and problems which arise 
when one aims to test hundreds of independent 
hypothesis in order to reveal the secrets of the DNA. 

1. Introduction 

Today’s technology allows to generate hundreds 
of gigabytes of DNA and RNA sequencing data in 
just few days for an incredibly low coast comparing 
to just a decade ago. The enormous rate of data 
generation by the low-cost, high-throughput  

 
technologies in genomics makes in most of the cases 
data processing a much harder and more time 
consuming task than the data gathering itself.  

Such large-scale and high-dimensional data sets 
are impossible to be interpret without the use of 
appropriate bioinformatic methods and modern 
computer technology, but despite our incredibly fast 
growing advancement in this field there is still a big 
doubt if we are able to properly interpret the 
information hidden in the data sets, or did the data 
gathering methods outrace our data mining 
algorithms. This is proven by our continuously 
increasing understanding of the data provided by the 
Human Genome Project which ended over 7 years 
ago leaving us with 99% of human DNA sequence 
about which our knowledge is still sparse 

DNA stores an enormous amount of information 
used in the development and functioning of an entire 
organism. It works as a database of schematics 
needed to create proteins and ways of regulating 
their concentration in living cells. The size of such 
database ranges from hundreds of thousands 
nucleotides in bacteria to even hundreds of billions 
in vertebrates [1] making the analysis process a 
incredibly difficult and complex task. 

 

Fig.1. Functional elements of the DNA the lengths of specific sequence parts are based on average statistics 

made for human genome 
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Human DNA is organized into 23 chromosomes 
which consist of sequence fragments called isochores 
of over 300 kbp (kilo base pairs) long that 
significantly differ in G and C nucleotide content 
(GC%). CpG islands are much smaller genomic 
regions, on average 760 bp that contain a high 
frequency of CG dinucleotides believed to have a 
significant role in regulation of gene expression. 
Genes are DNA fragments (on average 56k bp) that 
are used in a process called transcription to form 
mRNA particle (transcript). Transcripts are much 
shorter than their respective genes (2,6kbp on 
average) since in a process called splicing large parts 
of the sequence (over 5kbp on average) called 
introns which separate exons (fragments of sequence 
coding proteins) are removed leaving only two 
uncoding fragments – 5’-UTR and 3’-UTR (on 
average 0,2kbp and 1kbp long) on both sides of the 
entire sequence coding protein structure - CDS. 

Thanks to the huge amounts of currently 
available genomic data, available in public 
repositories the important role of structural and 
compositional features of various nucleotide 
sequence regions was recognized to play a very 
important role in gene regulation and expression – 
Figure 1. 

One of the key players is the 3'-UTR containing 
many different regulatory elements like miRNA or 
protein binding domains which are responsible for 
mRNA turnover. In most of the vertebrates 3'-UTRs 
are significantly longer than their 5' counterparts, 
indicating their significant potential for regulation. In 
addition, the average length of 3'-UTR sequences has 
increased during the evolution, suggesting that their 
length might be related to organism complexity [2]. 

Another important fragment is the promoter 
region located upstream from the transcription 
initiation site which contains binding sites for 
proteins called transcription factors. These proteins 
are critical for making sure that genes are expressed 
in the right place, at the right time and in the right 
amount depending on the changing requirements of 
the organism. [3, 4] 

Regulatory elements involved in many biological 
processes can be found in various genome parts - 
across the entire gene sequence and it’s 
neighborhood. Their analysis involves hundreds of 
different applications and statistical methods for the 
identification of significant signal changes induced 
by their presence. The amount of different methods 
and applications used for DNA and RNA sequence 
analysis grows very rapidly. Most commonly used 
applications focus on the sequence similarity search 
between selected motifs and the target sequence 
leading to discoveries of transposons [5], promoter 
regions [6], miRNAs [7] and protein binding 
domains [8] or even gene similarities across various 
species [9]. The complexity level of the methods 
ranges from very low which check for the 
occurrence of specific sequence fragments to very 
high looking for closely related motifs, which in 
many cases share the same role, using position-
weight-matrix models [10] or sequence alignment 
[11]. 

2. Aim of the research 

The goal of the introduced experiment is to test 
the following hypothesis: “There is a correlation 
between the structural and functional features of the 
genes”. 

 
Tab.1. 

Nucleotide sequence features tested in the experiment, numbers represent the amount of different values of 

selected feature tested for each sequence 

Gene structure Genome structure 

Feature name values description Feature name values description 

Sequence length 4 
separately for: gene, 5’UTR, CDS, 

3’UTR 
Isochores 1 GC% of isochore with each gene 

GC percentage 7 
separately for: gene, 5’UTR, CDS, 
3’UTR, prom1k/2k/5k upstream 

Transposons 5x7 
5 different families, separately for: 

Gene, 5’UTR, CDS, 3’UTR, 
prom1k/2k/5k upstream 

Number of introns 1 for each gene sequence Simple repeats 20x7 
20 types, , separately for: gene, 

5’UTR, CDS, 3’UTR, prom1k/2k/5k 
upstream 

Intron/exon length 1 for each gene sequence CpG islands 2 
Separately for gene and prom 5k 

upstream 

Polyadenylation sites 1 for each gene sequence 
SNP (Single Nucleotide 
Polymorphism) 

7 
separately for: gene, 5’UTR, CDS, 
3’UTR, prom1k/2k/5k upstream 

Regulatory elements Gene function 

TFBS (Transcription 
Factor Binding Sites) 

75x7 
75 different types, separately for: 

Gene, 5’UTR, CDS, 3’UTR, 
prom1k/2k/5k upstream  

KEGG pathway 371 371 different functional pathways 

RBP (RNA Binding 
Proteins) interaction 
sites  

58x4 
58 different types, separately for: 

gene, 5’UTR, CDS, 3’UTR 
custom microarray 
expression profile study 

6 
changes of gene expression level 

0,12 and 24 hours after irradiation of 
Me45 and K562 cells  

microRNA binding sites 1101x3 
1100 different types + sum of all, 

separately for: 5’UTR, CDS, 
3’UTR 

ArrayExpress: gene 
expression profile study 

3651 3700 different threading factors 
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The hypothesis is very unspecific since it doesn’t 
point out which out of known features should be 
included in the analysis making a perfect opportunity 
to test as much various factors as possible with hope 
of revealing unknown correlations. 

Gene features can be derived by the use of our 
custom made software NucleoSeq and many other 
which are publicly available like miRanda [7] 
IsoFinder [12] or PatSearch [13] based on human 
genome data available on the University of 
California, Santa Cruz website: genome.ucsc.edu 

Features assigned to individual transcripts, that 
will be taken into consideration can be divided into 4 
separate classes according to Table 1. Most of the 
features are tested independently for various 
sequence regions including: entire gene sequence, 5'-
UTR, CDS, 3'-UTR and promoter region 
1000/2000/5000 bp upstream from the transcription 
initiation site. 

When it comes to gene expression data the 
currently biggest database is the ArrayExpress, with 
13685 submitted microarray experiments in nearly 
7,3 TB of data as of May 2010. In this work only 

human genes are taken into account only the 
information about significant changes of their 
expression level due to 3651 submitted testing 
factors limiting the amount of data to 1,2GB. 

3. Analysis workflow 

Step 1: Gathering of gene sequence feature data 
based on public databases and available sequence 
analysis applications. 

Sequence features described in Tab.1 are used to 
construct a table where rows represent individual 
Reference Sequence transcripts and columns their 
specific features – Tab.2. This is the most time 
consuming part of the experiment since there are 
many problems concerning sequence analysis. First 
of all there are no standard analysis workflows and 
the amount of available methods each with multiple 
sensitivity and specificity parameters is enormous. 
This requires many study hours in order to chose the 
most appropriate methods according to past 
researches described in the literature, and sometimes 
the need of testing the same features using different 
approaches choosing the best one afterwards.

Tab.2. 

Part of the transcript feature table 

RefSeq 
transcript ID 

Gene: exon 
count 

Gene: GC Gene: ARE 
Gene: CpG 

count 
Isochore: GC 

3’-UTR: 
miRNA 

binding sites  
Me45 0h/C K562 0h/C 

ArrayExpress: rnai: 
p53 knockdown 

NM_000014 36 37.7 0 0 38.95 6 -1 -1 0.0 
NM_000015 2 36.1 6 0 39.19 11 0 -1 -1.0 
NM_000017 10 52.7 0 2 49.27 4 -1 0 -1.0 
NM_000018 20 55.1 0 1 54.41 18 -1 0 -1.0 
NM_000019 12 51.9 3 1 40.10 27 0 0 0.0 
NM_000021 12 50.2 0 1 42.25 57 1 0 -1.0 
NM_000022 12 58.5 0 1 53.63 11 0 0 -1.0 
NM_000023 10 57.7 0 0 55.92 14 0 0 -1.0 
NM_000025 2 53.1 4 1 47.57 29 0 0 -1.0 

 

 When working with various data types originating 
from different sources there is a big risk that most of 
them might be unsynchronized with each other due 
to different time of preparation. For example 
information about location of regulatory sites 
downloaded from one website might be based on 
older sequences than those used in other parts of the 
research due to fact that they are updated every day. 
To prevent this all parts of the analysis should be 
performed based on the data from the same or very 
close release, which is sometimes impossible. 
Because of that one has to be aware the fact that a 
small fraction of the gene features might be 
unsynchronized with each other and that the results 
might become very quickly outdated. 

What also causes many problems is the fact that 
some genes might have multiple values assigned for 
a single feature like when the same gene is located in 
more than one part of the genome or when there are 
multiple alternative transcript structures available, 
called the splicing variants. Therefore a god choose 
is to work on individual transcripts which are 
products of respective genes. This can also be 

problematic since in many cases the differences 
between alternative splicing variants only concern 
some small parts of them therefore many of the 
feature values become duplicated. Additionally many 
of the features cannot be analyzed for all genes of 
interest like those involving location of coding 
sequence, which is unavailable for many genes due to 
the fact that some play a role different from coding a 
protein structure.  

The best choice would seem to gather as many 
features as possible to increase the probability of 
finding significant correlations. In this case the 
amount of data becomes a problem and not only a 
possibility since the size of the table containing all 
features of interest reaching over 8,200 rows and 
46,000 columns.  

To limit the amount of data and to unify the 
testing data size on the next step of the research, 
rows representing genes, that did not contain values 
for all chosen features were removed and features 
that will be impossible to interpret without additional 
data, like expression profile of individual patients.  
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Step 2: Testing statistical relationships between 
available gene features 

To further limit the amount of data, and to extract 
only the information about relationships between the 
tested features, for each unique par a correlation 
measure has to be calculated. Due to the variability 
of tested features appropriate statistical methods 
need to be chosen when analyzing correlations. The 
feature values change in different intervals they are 
represented with different units and most 
importantly they form various distributions. To 
bypass this problem all features were binarized 
changing their value to 1 or 0 based on the following 
criteria: 

• specific motif or feature exists in the analyzed 
sequence (when they are very rare) 

• given statistic is higher or lower than mean 
value, like the GC percentage, sequence length 
or motifs occurring very frequently  

• gene takes a part in the described process or is 
over/under expressed 

The binarized feature values were then compared 
using the Chi-square test, but since Chi-square says 
only that there is a significant relationship between 
variables, and it does not say just how significant and 
important this is, additionally the Phi correlation 
measure was calculated. It’s value ranges in an 
interval of -1 to 1 where 1 is the strongest positive 
correlation -1 negative and 0 means that the data are 
not correlated with each other. 

When testing so many hypothesis in one 
experiment there is a big risk of committing the type  
I error  depending on the chosen p-value cutoff 
level, therefore appropriate corrections for multiple 
testing must be applied. For this purpose the 
calculation of q-value used for determination of 
statistical significance instead of p-value was chosen 
according to [14]. 

Step 3: Removing insignificant and obvious 
correlations  

In the next step only the significant correlations 
are taken into account based on calculated q-value 
and 0.05 significance level cutoff. The results of 
correlation study should be analyzed very carefully 
since some of them might turn out to be very 
obvious or well known, for example we might expect 
a very strong correlations between the occurrence of 
GC rich sequence motifs or CpG islands and GC 
rich parts of the sequence. 

More complicated relations exist between the 
amount of transposons and the analyzed sequence 
length since because transposons are sometimes very 
long themselves their occurrence significantly 
increases the transcript length. Additionally long 
sequences tend to have much more functional 
elements which result from increased probability of 
occurrence by chance therefore the quantities of 
motifs should be presented in units independent 
from the sequence length, like occurrence per 1000 
bases.  

Some correlations might also occur due to specific 
experiment assumptions which is the most 
dangerous case. One of the examples is the 
correlation of CpG island amount between promoter 
region and the gene itself. Due to fact that CpG 
islands can be very long and since they were counted 
when they at least overlapped the analyzed region, in 
many cases the same CpG island could overlap both 
the promoter and gene region resulting in a high 
correlation score between those two sequence 
fragments. For this reason expected and insignificant 
correlations were removed reducing the amount of 
data to about 1000 rows representing only the 
correlations of two specific features. Some examples 
of them are gathered in Tab.3. 

 

 
Tab.3. 

Chosen correlations of transcript sequence features 

Feature 1 Feature 2 
Phi 

correlation  
q-value 

Gene: GC% Isochore: GC% 0,714 

<10^-9 

Gene: GC% CDS: GC% 0,773 
Gene: GC% 3’-UTR: miRNA binding sites -0,448 
3’-UTR: ARE count 3’-UTR: miRNA binding sites 0,526 
CDS: Length Gene: exon count 0,591 
Promotor: RELA TFBS Promotor: NF-kappaB TFBS 0,486 
Irradiated Me45 0h 3’-UTR: miRNA binding sites 0,446 
Irradiated Me45 0h Gene: GC -0,645 
Irradiated Me45 0h CDS: GC -0,598 
Irradiated Me45 0h 3’-UTR: GC -0,609 
Irradiated Me45 0h Gene: iso_gc -0,562 
Irradiated K562 0h Promotor: CpG 0,391 
diseasestate: breast 
carcinoma 

diseasestate: muscle invasive carcinoma 0,741 

diseasestate:  brest 
carcinoma 

Gene: GC% -0,435 
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Step 4: Choosing interesting and unknown 
correlations for further analysis 

This is the hardest part of the research that 
requires human interpretation and cannot be easily 
done by a computer. Out of all correlations extracted 
in step 3 one has to chose the most interesting ones 
for detailed study.  

As shown in table 3 very strong correlation was 
observed between gene and isochore GC percentage 
which confirms results presented in [15]. High 
overall gene GC percentage also results from the 
nucleotide composition of coding sequence (CDS) 
which due to specific codon bias can change in a 
large interval keeping the same protein structure 
information due to degeneracy of the genetic code, 
as was observed in [16]. Also a very strong positive 
correlation was observed between the gene GC 
percentage and amount of miRNA binding sites 
which also turns out to be already a known fact [17] 

Long coding sequence is connected with large 
amount of exons which sounds obvious since they 
form in a process called splicing the final coding 
sequence. High occurrence of RELA transcription 
factor binding sites is connected with NF-kappaB 
sites but this only results from the fact that they are 
very similar and since the analysis algorithm 
specificity level allows slight differences between 
target sites and the original motif, the correlation 
might be expected. 

What is very interesting is the negative 
correlations between the nucleotide content and 
changes of expression in irradiated Me45 cells. The 
largest correlation is observed for the entire gene 
GC% and since the GC% of gene is correlated with 
isochore GC% and negatively with miRNA binding 
sites amount such correlations are also observed with 
genes which expression changed due to irradiation. 
A slight decrease of correlation level was  observed 
over the next 12h and 24h of experiment which is 
also similar to K562 cells expression profile. 
Additionally in K562 cells 1007 genes  which 
expression increased due to irradiation out of 1208 
have a CpG island in their promoter region which 
was not expected because of their negative 
correlation with GC rich genome region. This is 
explained by the correlation between promoter CpG 
islands and GC% of promoter and 5’-UTR sequence 
which is very high, while low with entire gene and 
isochore GC%. 

Based on ArrayExpress expression profile data 
most of the genes expressed in breast cancer tissues 
are GC poor which is shown by the negative 
correlation measure. Additionally breast cancer 
expression profile shows huge similarities to muscle 
invasive cancer sharing the levels of expression 
profile changes for 1166 out of 1339 genes 
differently expressed due to at least one disease state. 

Does it mean that the two cancers are very 
similar? Not necessarily, since even a few genes that 
are regulated in a different way can make a huge 
difference. 

 

Step 5: Detailed analysis of selected factors 

Features derived by the correlation study for 
irradiated Me45 cells were compared using all genes 
and not only those sharing all the analyzed features 
as described in step 1 and not based on binarized 
values. Statistical significance of differences in GC 
content and miRNA binding sites between up and 
down regulated genes due to irradiation was assessed 
with the Wilcoxon rank sum test for equal medians – 
Fig.2 

 

 

Fig.2. Median of GC% and miRNA binding sites in 
genes significantly up/down regulated or non 

differentially expressed due to irradiation in Me45 
cells, p-value represents statistical significance 

between up and down regulated groups of genes 

 

Step 6: Validation of results with different methods  

What is pointed very often in many articles is that 
the statistical significance doesn’t always mean 
biological significance because in many cases the 
analysis is possible to be performed only due to 
many simplifying assumptions. Additionally many of 
the analysis methods might not reflect the real 
biological nature of the processes therefore 
experimental verification is a must when one aims to 
publish the work in a journal with a high impact 
factor. Additional biological methods to confirm the 
identified relations are needed, like the real-time 
polymerase chain reaction used as a confirmation of 
imprecise microarray expression study. Further 
research including expression profiling of other cell 
lines and in other conditions also might confirm the 
observed relations although they overpass the 
borders of this work. 

4. Conclusions 

This work shows that lack of computational 
resources which is the main reason for rapid 
advancement in informatics involving parallel or 
heterogeneous computing isn’t always the key 
problem when performing large scale analysis. The 
huge amount of different analysis scenarios and 
possibility to test hundreds of them even on a home 
computer can sometimes generate more results then 
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we are able to view and understand without the use 
of further analysis steps. 

The amount of different factors and relations 
between them makes the genomic data mining and a 
very challenging task driven by the vision of huge 
benefits in many fields of science. Success will 
depend on our ability to properly interpret the data 
and overcome many problems related to data 
processing, which in turn requires us to adopt 
advances in bioinformatic methods.  

Even if statistical significance does not 
necessarily mean biological significance, such large 
scale analysis may provide useful indication for 
further experimental work which normally could not 
be performed in such extent  because of enormous 
coasts and lack of fast and efficient methods. 
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