
287

Objects recognition on Block World Environment scene:

Algorithm of objects detection and classification

Tomasz Grzejszczak, Silesian University of Technology
(07.07.2010, MSc. Tomasz Grzejszczak, Silesian University of Technology)

Abstract

Artykuł opisuje problem rozpoznania sceny z
elementarnego świata klocków za pomocą system
wizyjnego. Skupia się on na algorytmie wykrywania
klocków. Algorytm ten rozróżnia kolorowe obiekty
od tła i klasyfikuje je. Ten algorytm i inne opisane
tutaj funkcje są częścią działającego systemu
wizyjnego używanego do sterowania manipulatorami.

W pierwszej części tego artykułu przedstawione
jest stanowisko laboratoryjne do problemu
planowania w świecie klocków. Opisane są cele,
konstrukcja i ograniczenia. Następnie dogłębnie
wyjaśniony jest algorytm wykrywania klocków i
klasyfikacji kolorowych obiektów. Ostatnia część
przedstawia inne zastosowania tego algorytmu
wykorzystane w systemie wizyjnym.

1. Introduction

Elementary Block World (EBW) is an artificial
intelligence planning domain. In typical elementary
block world problem there is a finite number of
blocks, each on the working space. Each block can
be either on the table or on another block. The
whole scene contains a towers of blocks placed on
the table.[1]

An laboratory stand has been created. It contains
colour blocks, two cameras, two manipulators and a
computer with software for block detecting vision
system and manipulator controlling planning
program.

This article will focus on presenting the ways of
detection, recognition and classification of the
blocks. The semantic representation of classification
and algorithms of solving the EBW planning
problem will not be described in this article, however
it can be found in [2][3].

2. Scene construction and equipment

The described laboratory stand is presented on
figure 1. The scene consists of a table on witch there
are several color blocks. Each block can be put on a
table on another block formulating columns. Those
columns are placed in a row creating a matrix of all
possible positions of blocks. In case of fig.1. there

are four blocks, which can produce a 4x4 matrix.
The manipulators are placed in such way that they
can reach for every block placed in any position of
blocks matrix. In order to provide a good
recognition of the scene, the cameras are placed
from top and from side. This solution provides an
opportunity of adding the white background for
better blocks detection.

ARM1 is a robot-manipulator with five degrees
of freedom and a grabber. In order to grab a block
from any direction, all blocks were assumed to be a
cylinder shape. The used cameras are Live! Cam
Video IM Pro web cameras. Web cameras are cheap,
easy to use and provide the sufficient image quality
for their purpose. Blocks differ from each another
by its unique color.

Fig.1. Scene construction. (a) table, (b) blocks,
(c) manipulators, (d) cameras.

The vision system computer program was created
in C++ with use of OpenCV. The OpenCV is a free
open source computer vision library with set of
functions and tools for image interpretation. It has
wide range of application. Some of most frequently
used features are filtering, binarization, image
statistics, calibration techniques, detection, tracking,
shape analysis, segmentation and recognition.

All the functions and algorithms in OpenCV are
optimized, which guarantees high performance and
quality. The functions are written using dynamic data
structures, ensuring flexibility of application.[4]

XIII International PhD Workshop
OWD 2011, 22–25 October 2011

288

3. Block detection algorithm

The aim of the vision system is to provide the
feedback information about the state of the scene
for control program. The blocks position matrix
containing a state of a scene is concluded using
information from top and side camera. Those data is
called a vector of blocks seen from top or side. The
top and side vector can formulate a blocks position
matrix using reasoning algorithm. An example of
scene, position matrix and position vectors is shown
in figure 2.

Fig.2. Example of (a) scene with 5 blocks and its
interpretation with use of (b) top position vector, (c)

side position vector and concluded (d) position matrix.

In order to get a position vector an recognition
algorithm needs to be performed. The algorithm can
be presented in following points:
1. Prepare image. Grab a frame from camera,

convert it to HSV color space.
2. Threshold image in order to cut the background

and obtain a mask of objects (blocks).
3. Calculate color histogram in order to know the

color distribution on the image.
4. Find most popular color and get its position on

image.
5. Subtract detected area from mask, and find

another color from new mask (perform step 3-5
until the most popular color area is below
certain level)

6. Sort all gathered data and create a position
vector from all detected blocks.

All of the above algorithm points will be
described in the next subchapters.

3.1 Image preparation

The first point of any vision system is to grab a
frame from a vision device. In this case it were two
USB web cameras. With use of C++ and OpenCV,
created program was able to constantly grab frames
from two devices and process them. Each frame is a
RGB image, which is described by three
monochromatic maps presenting intercity of red,
green and blue color. However the scene consist of
color blocks on white background, thus another
color model needs to be introduced.

HSV is a model based on human vision. Its three
components describe the hue, saturation and light
intensity called value. This color space has been
chosen because it allows an easy background cutting

by thresholding low saturated regions of image and
easy block recognition using hue value.[5]

In conclusion, after this point, a computer
program has two images from two cameras, each
converted to HSV and ready to process.

Fig.3. Example of frame and its transformation into

HSV color space.

3.2 Thresholding

In order to know where is a useless background
and where are the blocks that we would like to
detect, a background cutting needs to be performed.
It is assumed that the background is white. Even if
there is a shadow that would change the light
intensity value, its saturation should not change.
Thus a threshold can be assigned in order to
determine the saturation value under which a pixel is
considered as background and under which its
considered as block. The result of thresholding is a
binary mask in form of map of pixels with the same
dimensions as the original image. After multiplying
the mask and image, the result is a new image with
cut background and with blocks only.

The mask do not uniformly distinguish regions.
There are some lonely pixels that was assigned
improperly. In order to get rid of them, it is
convenient to use morphological functions.

Fig.4. Thresholding image using saturation. (a) The

obtained mask after threshold, (b) region of interest
after applying mask on hue map.

3.3 Calculating color histogram

With mask telling the region of block, the next
step is to obtain the mask of only one block. The
first step is to calculate a color histogram. The hue
value from region pointed by first mask is gathered
and presented in form of histogram. The highest
pitch of histogram means that certain color is on the

289

highest number of pixels, thus it is assumed that a
block with this color is the biggest.

Again, a shadow from another block, or from
cylindrical shape of block should only affect light
value, instead of hue. However, some bounds of
error are assumed, thus after detecting a color of
exemplary value 44 from range 0-180, the second
mask of this block should be thresholded from a
range. For example from value 41-47.

Fig.5. (a) Color histogram of threshold hue image with

two colors and dominant red (value near 0). (b)

Calculated mask for red color.

3.4 Obtaining position of detected

color

The second mask describes the region of one
block. In this point the block would be identified
and it will be assigned to a position in detection
vector. In order to perform the assignment, a series
of OpenCV functions are performed. The most
crucial one is called camshift.

Intel describes camshift as an algorithm that for
each frame captured from video device converts it
into probability distribution image using hue. It is
obtained from color histogram. For declared color,
CamShift finds regions of this color, and enclose it
in rectangle. The output is this rectangle with
calculated size, position and orientation. Also this
calculated data is passed again to CamShift as an
initial position for finding objects on next frame.
CamShift is an extension of Mean Shift algorithm.[4]

Presented vision system works in similar way.
Here a frame consist of few blocks, each with
different color, and all of those blocks are needed to
be found. However it is not necessary to constantly
track the objects, thus previously calculated positions
are not helpful to find blocks on the next frame. The
block detecting vision system uses this function only
to calculate the center of object.

After this point an information about block color
and position are stored and are waiting for further
calculations.

3.5 Subtracting color from mask

When the block position is calculated, it is time to
detect another block. This lead to repeating the
algorithm from point 3. However without changing
the first mask, the block just detected would be
detected again. It is necessary to modify the first

mask by subtracting from it the second mask. This
operation result in considering just detected block as
a part of background. After performing step 3 again,
the most popular color from image would not be
considered, leaving an opportunity for another color
to be detected.

When a color is detected, and a second mask with
block is formed, all its pixels are summed, and an
area of block is obtained. If this area is too small, it
means that all blocks has been detected, and no
more blocks are on the scene. The object with too
small area that is already detected is not considered
to be a block and this leads to a final step of an
algorithm.

Fig.6. (a) First mask after threshold, (b) second mask

of block, (c) resulting mask with undetected blocks.

3.6 Creating position vector

After all blocks has been detected, program
analyzes all data gathered about blocks colors and
positions and calculates the side position vector.

For side vector, all positions are sorted. For
example if a red block has been detected with lower
vertical coordinate value then blue block, it means
that red block lies on blue. The block colors are
compared to defined colors obtained from
calibration. If an exemplary block with hue value 44
would be detected, and in a database there are two
blocks defined: 1) 40, 2) 58, then our block would be
recognized as block 1.

Side vector is detected similarly, however there
are possibilities of empty places (see fig. 2., top
vector, position 3, 5) In this cases detected blocks
needs to be assigned into defined from calibration
positions.

When the side and top vector are obtained, the
final step is to conclude the blocks position matrix.
This step is performed using reasoning algorithm
described in [3].

4. Other functions of vision system

Obtaining the blocks position matrix was the
main task of the vision system, however there were
two other useful functions, which were implemented
using the similar algorithm. Those functions were
camera distinguish function and a calibration
function.

4.1 Distinguish function

After connecting the USB cameras, operating
system automatically gives a number to a connected
device. However it is unknown which camera (side

290

or top) has been connected first. This is the reason
for implementing a camera distinguish function. The
aim of this function is to determine which image
stream from a camera suits the expectation of top
and side camera.

First two steps of main recognition algorithm are
used in the same way, however a block mask is then
used to calculate the contours of objects. The
contours of objects is used to calculate area and
perimeter, and then to calculate the circularity shape
factor. It is assumed that top camera would see some
cylindrical blocks from top, that are projected as
circles. On the other hand, side camera would see
the piles of blocks projected as rectangles. The shape
factors are calculated and the camera with image
containing more round objects is assumed to be a
top camera.

4.2 Calibrate function

 The main recognition algorithm is searching for
blocks, however without a previous declarations, it
would not know what to search for. It is necessary to
declare the initial conditions and searched blocks
properties. The function is divided into three steps.

First, the user is asked to properly adjusted the
cameras in order to see the whole scene clearly. The
region of interest is selected from the camera field of
view.

Next, user is asked to put all blocks on the scene,
that all of them would be seen from top camera. In
other words, the position matrix should contain all
blocks in the last, bottom row. User is able to adjust
the saturation level for thresholding.

Final step is performed automatically. All blocks
from top camera are detected with the same
algorithm as presented in point 3, however the last
point of algorithm do not uses gathered data to
conclude the top position vector, but to get
information about the blocks colors and their
positions.

5. Conclusion

The presented algorithm has been implemented
in vision system. Despite its limitations it is working
as expected and it is providing good feedback for
manipulator control program. It has been tested in
various cases. The algorithm can be changed in order
to detect other types of object that are
distinguishable by color. Its output data can be used
as a base for more complicated algorithms. In the
presented application the algorithm is used as a base
for blocks reasoning using incomplete information

Bibliography (Style Chapter)

[1] Slaney J., Thiébaux S., Blocks World Revisited,
Canberra, Australia, 14 June 2000

[2] Grzejszczak T., Semantic representation of simple
Block World environment in application to ARM1
robot arm control, Gliwice: master's thesis, Dept.
Automatic Control, Electronics and Computer
Science, Silesian University of Technology,
2010.

[3] Grzejszczak T. Semantic representation of Block
World Environment: algorithm of scene reasoning from
incomplete information, Przegląd
Elektrotechniczny, Polska 2011.

[4] Intel Corporation, Open Source Computer Vision
Library Reference Manual, USA 2001

[5] Bovic A., Handbook of Image and Video Processing
Second Edition, USA 2005

Authors:

MSc. Tomasz Grzejszczak
Silesian University of Technology
44-100 Gliwice
tel. (+48 32) 237 21 76
fax. (+48 32) 237 11 65

email: tomasz.grzejszczak@polsl.pl

