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Abstract 

 The paper presents calculations of power losses 
in a single core structure of a superconducting cable. 
Superconducting materials have many nonlinear 
properties but this article focuses on the J-E 
nonlinear curve. Because of the nonlinearity – the 
problem contains nonlinear continuity equations and 
a nonlinear boundary condition in the case when 
imposing the electric field strength at the edge of the 
analyzed structure. In order to obtain a solution of 
the problem, an analytical-numerical method is 
introduced, which involves the calculation of a 
partially symbolic solution. This solution contains 
some terms in numerical form (those that can be 
evaluated immediately) and others in symbolic form 
(those that are to be obtained). Continuity equations 
and the imposed boundary condition together form 
a system of nonlinear equations. This system can be 
solved with a chosen numerical method. After 
obtaining the unknowns that determine the field 
distribution, other quantities, like power loss, can be 
obtained. In this article, losses are calculated by 
Poynting method. A maximum differential equation 
error is also calculated, which indicates the accuracy 
of the obtained solution. The chosen criterion is 
calculated for the strongest nonlinearities taken into 
account while evaluating power losses. It can be 
observed that for a greater amount of correctional 
terms, the chosen errors gain values much lower 
than 1%. 

1. Introduction 

Analytical methods can be used to solve a limited 
variety of electromagnetic field problems. More 
often one can find applications of numerical 
methods due to the amount of commercial solvers 
available and computational requirements of 
problems that form geometrically complicated 
structures. Even when dealing with field parameter 
nonlinearities (despite required computer time) 
numerical methods are applied. Analytical methods 
however, are useful in cases where an exact solution 

of a problem exists or if it is necessary to validate a 
numerical method. When a differential equation, 
derived from Maxwell’s equations, has an exact 
known solution or an approximate solution can be 
derived, one can obtain the electromagnetic field 
distribution. Naturally, this requires proper boundary 
conditions to be imposed. Analytical solutions can 
be mostly found in problems of simple geometry and 

linear ε, γ, µ field parameters. In the case of 
complicated geometries, sometimes an analytical-
numerical method is used [1]. Various hybrid 
analytical-numerical methods can also be used when 
the problem has a simple geometry but is nonlinear 
[2] even when non-sinusoidal waves are considered 
[3]. The paper presents a part of the author’s work 
related to constructing an analytical-numerical 
method based on the method of small parameter [4]. 
As an example, power losses are calculated in a wire 
with a high temperature superconductor. 

2. Problem formulation 

The core of many cable structures consists of a 
copper former and a superconducting tape [5], [6], 
[7]. These are covered by shields or return 
conductors in three phase or coaxial cables. In this 
article, only the core structure is considered (fig.1). 

 
Fig.1. Model of superconducting cable core. 

The material properties of copper are well known 
and need no further discussion. A superconducting 
material on the other hand, has a wide range of 
nonlinear properties, some of which are: 

XIII International PhD Workshop 
OWD 2011,  22–25 October 2011 



446 
 

 - J-E curve [8], [9] expressing nonlinear conductivity 
(the relationship becomes strongly nonlinear 
especially above a critical current density Jc), 
 - the critical current was observed as dependent on 
external magnetic flux density acting on the 
superconductor [10], 
- B-H curve expresses nonlinear and hysteretic 
behavior [11] at low values (especially in the 
Meissner state), 
 - magnetic anisotropy was observed in high 
temperature superconducting materials used in 
power transfer [12], 
 - HTS material properties are all dependent highly 
on the operating temperature. 

Out of the above relationships, when modeling 
superconducting phenomena, mostly the first is 
used. It is also the case for this article where the 
other dependencies are omitted (but require further 
analysis in the future). Superconductors in the mixed 

state express magnetic permeability values near µ0 
[13], which allows to omit B-H nonlinearity and 
magnetic anisotropy properties. The assumption of a 
constant temperature and steady-state analysis allows 
to omit the last relationship. Hence, only the 
conductivity nonlinearity is considered. A theoretical 
curve is taken into account (fig.2). The relationship is 
assumed to consist of a linear and nonlinear term: 
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In this paper, m is assumed to be 5. 
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Fig.2. Nonlinear J-E  superconductor curve (Ec is often 

assumed to be 1µµµµV/cm [14]) 

The appointed task is to calculate losses in the 
analyzed structure. The problem is simplified further 
on by assuming that the structure is surrounded by 
air (hence omitting ground influence and the angular 
derivative) and assuming l>>Rs (omitting 
longitudinal analysis). The two-layer structure is 
placed in a cylindrical coordinate system (figure 3). 
 

 
Fig.3. Superconducting cable core in cylindrical 

coordinates 

3. Partially symbolic solution by 

analytical-numerical method 

3.1. Calculating the current density 

distribution 

In this chapter, field quantities of the inner 
conductor are written with a “Cu” lower index and 
all others relate to the superconducting layer. The 
simplifications brought forth in the previous chapter 
lead to the consideration of only the angular 
component of magnetic field strength and the z-axis 
component of electric field strength. The Poynting 
method is used for calculating losses in the 
cylindrical structure. The Poynting vector can be 
represented by its radial component Sr alone – 
subject to Hφ and Ez. Instead of assuming the 
magnetic vector potential as the state variable for the 
nonlinear region, in the case of the discussed 
problem, it is more convenient to derive the 
differential equation for current density: 
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In this case, we also derive the differential equation 
for the linear region in terms of current density: 
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Assuming a periodic current flowing through the 
entire analyzed region, the current density can be 
expressed by a Fourier series (this concerns both the 
linear conductor and the superconducting layer): 
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For harmonic h (presented with the use of complex 
numbers), the solution of the differential equation 
(3) consists of Bessel functions: 
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where c0,h = 0 to avoid a singularity at r = 0. ΓCu h is 
the propagation constant for waves of harmonic h: 
 

.j 0Cu0Cu µγωΓ hh =                    (7) 

 
c are unknown distribution coefficients, dependent 
on the boundary condition. 

The nonlinear terms are deliberately placed on 
the right-hand side of (2) for further use. Assuming 
current density as the state variable, it is expanded 
into the series: 
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The κ parameter is assumed as: 
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Equation (2) then becomes: 
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Terms with the same power of κ are collected and 
formed into linear differential equations of the form: 
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The right-hand side terms depend on solutions of 
smaller i. Thus, for i > 1 one can write: 
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The solution of (11) for i = 1 is: 
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where the propagation constant: 
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while for i > 1: 
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where: 
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N is the Wronsky matrix: 
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The definite integral in (17) implies for i > 1 both: 
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Continuity at r = RCu forces tangent components of 
electric and magnetic field strengths to be equal: 
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The continuity equations and a boundary condition, 
imposed on the edge r = Rs, combine into 3hn 
equations and unknowns, where hn is the number of 
non-zero harmonics. Whether electric or magnetic 
field values are imposed, they both form nonlinear 
boundary conditions in reference to the state variable 
J. (21) and (22) are also nonlinear equations; hence, 
one obtains 3 nonlinear equations for each non-zero 
harmonic. However, first the partially symbolic 
solution must be obtained in order to formulate 
these equations. It is possible to calculate numerical 
values of the expressions that do not contain the 
unknowns – then only the unknowns are left in 
symbolic form. In this article, this is referred to as 
the partially symbolic solution. The analytical 
calculations of the partially symbolic expressions are 
complicated hence the unknowns of the 
superconducting layer are represented by vectors of 
their magnitudes: 
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and phases: 
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For term i=1 of (8) and harmonic h the solution can 
be presented in partially symbolic form: 
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Where A1,h′, A1,h″, α1,h′, α1,h″ do not depend on c 

and θθθθ. The remaining terms do not have such a 
direct relationship with the unknown coefficients. 
Therefore, their solutions can only be presented in a 
general form: 
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The i-th term’s relationships are: 
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If one obtains the above in a symbolic form (relating 
to the unknowns), the solutions can be gathered: 
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thus obtaining the partially symbolic solution of the 
nonlinear problem. The continuity equations can be 
expressed in the following form, for each harmonic 
h: 
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which can be reduced to one nonlinear equation: 
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This equation and a boundary condition combine 
into two nonlinear equations, which can be solved by 
a chosen numerical method. 

3.2. Nonlinear boundary condition and 

power loss 

Poynting’s theorem allows to represent the flow 
of instantaneous power through the surface Ω by: 
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X represents points on the Ω surface. In the case of 
the analyzed problem – Ω is the cylinder side 
surface. Therefore the instantaneous power 
dissipated in the cylindrical structure is: 
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When multiplying the field quantities, the result is in 
form of a Fourier series where the active power is 
simply the constant term of the result. The result is 
presented in units per cable length (W/m). In this 
paper, the task was to obtain a curve of power loss 
depending on the electric field strength E(t,Rs) with 
the assumption that this time function is only of the 
first time harmonic. Both E and H (and therefore S) 

depend on c and θθθθ. A boundary condition with 
respect to E is imposed, which has the following 
nonlinear form for current density: 
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The following steps lead to obtaining the power loss 
dependence on electric field strength at the boundary 
surface (figure 3): 
 - imposing the nonlinear boundary condition (35) 
for every drawing step of E; 
 - solving the system of nonlinear equations in order 

to obtain c, θθθθ; 
 - calculating the active power for the unknowns 
evaluated in the previous step. 
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Fig.3. Superconducting cable core losses when taking 

into account a nonlinear J-E  curve and those when 

assuming linear dependence (as a function of electric 
field strength at the boundary) 

The results were obtained after a few 
simplifications had been assumed. The electric field 
strength on the edge of the structure contained only 
the first time harmonic. Furthermore, only the first 
time harmonic was taken into account for all field 
values E, J, B and H (higher harmonics have not 
been omitted in intermediate calculations, just in the 
results of Ji). In (8) it was assumed that the 
maximum n is 4. For this n, the power losses have 
been obtained. The introduced limits allowed for an 
analysis with smaller nonlinearities, which is why low 
E values were chosen in the last figure. 

3.3. Differential equation error calculations 

In order to ascertain the accuracy of the solution, 
a maximum error criterion is introduced. In the 
nonlinear differential equation (2), one can choose 
left- and right-hand sides of the equation for 
comparison: 
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Then, assuming that the solution can be presented in 
complex form (first time harmonic) it is possible to 
formulate two different kinds of a relative 
differential equation error – in terms of amplitude: 
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and phase: 
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Taking into account various values of n, the above 
errors have been evaluated and put together in table 
1. 

Tab.1. 

Error calculation results for various n  

n 1 2 3 4 

eAmp. max 

[%] 
85.65 2.99e-1 1.87 1.13e-4 

eph. max 

[%] 
3.20e-2 7.62 1.06e-3 6.59e-4 

 
It can be noticed, that for the linearized case (n=1) 
the amplitude error is very big. For n=4, a very 
accurate solution can be obtained. The results speak 
in favor of the method for calculating similar 
nonlinear problems. 

4. Conclusions 

An electromagnetic field nonlinear boundary 
value problem was formulated. The nonlinear 
example was that of a core structure used in 
superconducting cables. The attention has so far 
focused on the nonlinear J-E curve. A differential 
equation was formulated with respect to the state 
variable (being the current density). The differential 
equation was solved by an analytical-numerical 
method based on the method of small parameter. 
The solution took a partially symbolic form hence 
reducing the problem into a system of nonlinear 
equations. Partially symbolic solutions (despite the 
difficulties associated with obtaining them) allow to 
perform analyses of various types i.e. the calculations 
of power loss per cable length, which were 
computed in the article. The evaluated errors (of 
chosen criteria) indicate the effectiveness of the 
method. 
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