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Abstract 

The paper presents an automatic method for liver 
vasculature segmentation in volumetric images 
obtained during Computed Tomography (CT) 
patient examination. The method, apart from the CT 
image, also requires an additional image containing 
binary liver mask. A modified multiscale vesselness 
filter (VF) performs vasculature detection. VF 
response is used to determine the starting voxels for 
the segmentation and to calculate parameters 
characterizing detected blood vessels. The 
segmentation is done using region growing algorithm 
with dynamic thresholds calculated for each voxel 
according to the VF response. Testing was done on 
a set of 40 CT liver studies in portal phase. The 
images were of various voxel size and liver-vessels 
contrast. Obtained results are following: in one case 
the vessel tree could not be detected, in 4 cases the 
segmentation was of poor quality. In the remaining 
35 cases the vessel tree was segmented above: 1st 
bifurcation (2 cases), 2nd bifurcation (11 cases) and 
3rd bifurcation (22 cases).  

1. Introduction 

Patient preparation for liver surgery involves 
diagnosis with the use of tomographic imaging. Most 
commonly used is Computed Tomography (CT), less 
often Magnetic Resonance [1]. As a result a series of 
2D cross-sectional images is obtained. Those images 
compose a single volumetric image. The value of 
each voxel is expressed in Hounsfield Units (HU) 
and results from the average X-ray attenuation factor 
of all tissues contained within its volume.  

During a liver CT study a patient is intravenously 
injected with a contrast agent allowing blood vessels 
to be distinguished from the surrounding liver tissue. 
However, depending on the acquisition protocol, 
time, type of the contrast agent and technician’s 
experience the achieved image contrast may vary 
from study to study.  

From the images radiologists can perform 
diagnosis of the liver pathology (tumor, cirrhosis and 
others). During the diagnosis not only the tumor 
blood supply is assessed, but the vascularization of 
the liver is also of importance as it defines 

anatomical liver segments [2, 3]. Preoperative surgery 
planning is especially important for the minimally 
invasive surgical procedures, where the surgeon has 
much smaller field of view, thus has to know the 
anatomy beforehand. 

Manual processing of volumetric images for 
vasculature delineation is time consuming and 
tedious due to the tree-like structure intersecting the 
image sections at various angles. Therefore, for years 
are being developed semi- or fully automatic 
methods for vasculature segmentation.  

The paper is organized as follows: the next 
section describes the processing framework, with 
emphasis on the most important preprocessing 
steps, the modified vesselness filter and the 
segmentation algorithm. Section 3 briefly presents 
the testing data, in section 4 the results are described. 
The paper ends with a short summary in section 5. 

2. Presented method 

The presented method for automatic liver 
vasculature segmentation in CT images consists of 
three main stages: (1) preprocessing, (2) multiscale 
blood vessels detection and segmentation, (3) post 
processing. In all processing stages the information 
about voxel size obtained form DICOM [4] file 
header is used. 

The method requires as input two volumetric 
images of the same size and coordinate system [4]: 

the image I  (Fig.1) obtained during CT study and 

a binary mask M  (Fig.2) containing segmented 

liver, obtained from image I  by an external method. 

Following denotation ),,( zyxII xyz =  defines value 

of the image I  at voxel located in ),,( zyx .  

2.1 Preprocessing 

In the first step, the average avgv , median medv  

intensities and histogram Ih  form the region of 

image I  defined by the mask M  are calculated. 

The intensity for which the histogram Ih  has its 

maximum is found. Liver tissue intensity liverv  is 

determined by:  
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 ( )( )medavgIliver vvvhv ,,)(maxargmin= . (1) 

 
Fig.1. Transverse slice of a CT image I.  

 
Fig.2. Corresponding slice of the mask M.  

Obtained liver tissue intensity is used to saturate 

image I  intensities below the value liverv  because 

none of them is of importance for vessels detection. 

Image I  is also saturated form above at the level of 
500[HU] that still allows to distinguish contrast 
enhanced blood vessels from bones or other hard 
structures  
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Next preprocessing step required for proper 
vessels detection removes all structures with X-ray 
attenuation factor higher than the value for bone 
tissue (400[HU]). Such structures may be present 
within the liver as an erroneous operation of the 
external liver segmentation resulting in ribs being 
considered as a part of the liver or due to presence 
of metallic implants (Fig.3).  

 

The procedure used for removing “hard 
structures” is a modified version of the one 
described in [5] and consists of the following steps: 
1. grayscale dilation with ball structuring element 

of radius equal to the slice thickness; 
2. region growing starting from voxels with 

intensity above 425[HU] and lower threshold 
equal to )425(25.0 liverMaxliver vv −⋅+ , where 

liverMaxv  

is the minimal intensity for which cumulative 

histogram of I  attains 99.9% of total counts; 
3. blurring the binary result obtained in step 2 with 

Gaussian kernel of standard deviation 1.5 [mm]; 
4. subtracting image intensities according to the 

blurred mask as described in [5]. 
An example of removed metallic drain is shown in 
Fig.4. 

 
Fig.3. Metallic drain inside liver. 

 
Fig.4. Metallic drain removed. 

The final preprocessing step performs “soft 
masking” of the liver region. “Hard masking” would 
result in cutting largest blood vessels that are not 
inside the liver, but close to it, for example the portal 
vein (Fig.5).  

“Soft masking” gradually attenuates image 

intensities according to (3), where xyzd  is the 

distance from voxel ),,( zyx  to the nearest voxel on 

the liver boundary specified by mask M  
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This way image content that is within some margin 
within 3D space (here equal to 15[mm]) to the liver 
boundary is preserved, what can be seen in Fig.6. 

 
Fig.5. “Hard” masking. 

 
Fig.6. “Soft” masking. 

2.2 Detection and segmentation 

For the detection of bright vessel-like structures 
a modification of Frangi’s vesselness filter (VF) [6] is 
used. Its operation employs eigen decomposition of 
a Hessian matrix. For each image voxel a Hessian 
matrix is calculated and its eigen decomposition is 
performed. According to the relation between the 
eigenvalues local image structure can be determined. 
The analysis within the scale-space [7, 8] uses image 
convolution with the derivatives of a Gaussian 
kernel with variance related to the scale of analysis to 
calculate image spatial derivatives. The multiscale 
analysis is repeated for several discrete values of 
scale and the final result is accumulated as voxel-wise 
maximum of the single scale responses. More 
detailed description of the Frangi’s multiscale VF can 
be found in [9]. 

In the modified VF the response function is based 
on sigmoids instead of Gaussians. Also a parameter 

CR  was introduced after [10] that better 

distinguishes between plate-like, cylindrical and blob-

like structures than original Frangi’s parameter BR . 

Following formulae define the modified VF 
response and all the values are calculated for every 
voxel ),,( zyx  and scale t  (subscripts omitted for 

clarity): 
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 SCAxyzt vvvV ⋅⋅=, , (9) 

where: λ1, λ2, λ3 (|λ1|≤|λ2|≤|λ3|) are the 
eigenvalues of a Hessian matrix calculated at voxel 

),,( zyx  and scale t , parameters AR  and CR  allow 

to distinguish between image structures (Tab.1).  

Tab.1. 

Dependence between RA, RC parameters and image 

structure 

RA RC image structure 

≈0 ≈2 plane 

≈1 ≈1 tube/cylinder 

≈1 ≈0 sphere/blob 

 

Parameter AcR  defines the “center” (inflection 

point) of the sigmoid, AsR  is responsible for the 

slope of the sigmoid. Similarly, the parameters CcR , 

CsR  define the “center” and “slope” of the 

bisigmoid curve of parameter CR , and CwR  defines 

“half width” of the bisigmoid (Fig.7). The Sv term 

has exactly the same form as in the original Frangi’s 
filter and is responsible for attenuation of the filter’s 

response to image noise, 
FxyztHS ,=  is Frobenius 

matrix norm of a Hessian calculated at voxel 

),,( zyx  and scale t . 
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Fig.7. Response functions plots for the modified vesselness filter,  
RAc=0.5, RCc = 1.0, RAs=RCs = 0.05, RCw = 0.3, γγγγ=10. 

 
Automatic adaptation of the filter to image noise 

is possible by calculating the gamma parameter for 
each scale of analysis as  

 
3

max , Fxyzt
xyz

t

H
=γ . (10) 

Values of the “ R ” parameters are as follows: 

AcR  = 0.5, AsR  = 0.05, CcR  = 1.0, CsR  0.05, CwR  = 

0.3 and follow from the theoretical relations (Tab.1). 
Multiscale analysis is performed for 5 discrete values 
of scale t  corresponding to standard deviation of 
the Gaussian kernel form 1.5[mm] to 5.5[mm] with 

logarithmic spacing: t  = {1.5; 2.07; 2.87; 3.97; 

5.5}[mm]. 
The multiscale VF response is accumulated 

voxel-wise as maximum response from all scales: 

 ( )xyzt
t

xyz VV ,max= . (11) 

Resulting image V  is subject to morphological 
dilation with spherical structuring element of radius 
1 voxel (26-neighbourhood), followed by averaging 
using the same neighborhood. Exemplary transverse 
slice of the vesselness response image is shown in 
Fig.8.  

 
Fig.8. Image V – final response of the VF. 

This image is then used to: 
• determine starting points for the segmentation, 
• dynamic thresholds modification during the 

segmentation. 

Starting points are those voxels within liver for 
which the VF response is higher than a threshold p . 

The threshold is calculated form the histogram of 

the image V  limited to the region specified as liver 

by the mask M . The threshold value p  is 

determined by 10% of voxels with the highest VF 
response within the liver comparing to all voxels 
within liver with VF response higher than 0.5 (Fig.9). 

Basing on the starting points the average vessel 

intensity vessv  and its standard deviation vessσ  are 

calculated. Allowed intensity range g  for the 

segmentation is determined by  

 ( )vesslivervess vvg σ3),(max −= . (12) 

Finally, vasculature segmentation is performed by 
a region growing algorithm [11] on the preprocessed 

image I  and using auxiliary data: image V , values 

vessv  and g . Region growing iteratively adds voxels 

to the starting points that are 6-connected and for 
which the condition  

 xyzvessxyzxyzvess VgvIVgv ⋅+≤≤⋅−  (13) 

is satisfied. As a result a binary image N  is obtained 
containing the volume of segmented liver blood 
vessels. 

Dynamic threshold modification allows that 
voxels with high intensity difference, comparing to 

the established vessv  value, can be incorporated into 

the segmentation result as long as their spatial 
position is close to detected vessels spatial position 
by the VF. Decline of the vesselness response causes 
more strict condition on the allowed intensity range 
thus preventing from segmentation leaks even for 
images with relatively low liver-vessels contrast.  

2.3 Postprocessing 

Obtained previously image N  containing the 
segmentation result is subject to the following 
postprocessing steps within 26-neighborhood: 

• binary voting – if a voxel with value 1 has less 
than 3 neighbors with value 1, it is removed 
from the segmentation result, i.e. its value is 
changed to 0; 
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 100% counts 

10% counts 

 

Fig.9. VF response within the liver – determination of the threshold p that  
defines starting points for the segmentation. 

Tab.2. 

Summary of the segmentation results 

Quality of the 
segmentation 

Nr of cases 
Bifurcation from 
the portal vein 

Average vessel-
liver contrast[HU] 

Standard deviation 
of the vessel-liver 

contrast 

bad 1 0 42 - 
poor 4 [1, 2) 45 18 

moderate 2 [1, 2) 38 4 
good 11 [2, 3) 61 20 
good 22 ≥3 80 35 

 

• binary voting – if a voxel with value 0 has more 
than 12 voxels with value 1, it is added to the 
segmentation result, i.e. its value is changed to 1. 

Finally, a binary median filtering of the image N  
also within 26-neighbourhood is performed. 

Postprocessing ensures more smooth result as it 

removes small irregularities form the image N . 

3. Testing 

Testing was performed on 40 CT volumetric 
images of abdomen in the portal (or portal-venous) 
phase. The images were of various voxel size (from 
[0,84; 0,84; 0,62][mm] to [0,7; 0,7; 5,0][mm], most 
common [0,85; 0,85; 2,5][mm]). Liver–vessels 
contrast was also diverse, from about 35[HU] to 
above 150[HU]. Some of the images contained 
considerable CT reconstruction artifacts.  

Due to lack of a “gold standard” derived form 
segmentation performed by experts, the assessment 
of the presented method performance was done only 
qualitatively taking into consideration number of 
bifurcations from the portal vein where vessels were 
segmented and the overall segmentation quality 
(leaks, discontinuities). 

4. Results 

The results are summarized in Table.2. In one 
case the vessel tree could not be detected, low liver-
vessels contrast caused too low VF response to 
obtain starting points. In 4 cases the segmentation 
was of poor quality (leaks to nearby tissues, mostly 
heart, kidney or tumor) and in the remaining 35 
cases the vessel tree was segmented above: 1st 

bifurcation (2 cases), 2nd bifurcation (11 cases) and 
3rd bifurcation (22 cases). Exemplary 3D 
visualizations of the segmentation are presented in 
Fig.10.  

5. Summary 

In the article a method for automatic liver 
vasculature segmentation is described. The method 
requires two images as input (CT image and binary 
liver mask) and performs vessels segmentation in a 
completely automatic manner. The detection is based 
on a modified multiscale vesselness filter, in which 
sigmoidal response function replaces the original 
ones. Segmentation uses region growing algorithm 
with thresholds calculated dynamically for each 
analyzed voxel. Obtained results show the 
applicability of the method for vasculature 
segmentation in clinical CT images of various quality. 
In 35 out of 40 cases the vessel tree was segmented 
above: 1st bifurcation (2 cases), 2nd bifurcation (11 
cases) and 3rd bifurcation (22 cases). Further work 
includes improvement of the segmentation results by 
involving more advanced image processing 
algorithms, decomposition of the vessel tree into 
anatomical segments that would allow automatic 
liver segments labeling according to Couinaud’s 
scheme. 
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Fig.10. 3D visualization of several segmentation results. 
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