ON VARIETIES OF GROUPS WITHOUT POSITIVE LAWS

P. Kozhevnikov¹ and O. Macedońska²

¹Department of Mechanics and Mathematics, Moscow State University, Moscow 117234, Russia 2 Institute of Mathematics, Silesian University of Technology, Gliwice 44-100, Poland

Abstract

We give negative answers to three questions concerning positive laws and $\mathfrak{A}_p\mathfrak{A}$ varieties.

Let $\mathfrak A$ denote the variety of all abelian groups and $\mathfrak A_p$ — the variety of all abelian groups of exponent p. By F we denote a free group and by V a verbal subgroup in F.

We write $G \supseteq \mathcal{F}$ to say that G contains a free nonabelian subsemigroup. A variety generated by G is denoted by $var(G)$.

A law $u(x_1, ..., x_n) = u'(x_1, ..., x_n)$ is called positive if u, u' are positive words, i.e. words written without inverses of variables. Each positive law implies a binary positive law. If a group G satisfies a positive law, then $var(G)$ has a basis of positive laws [3]. By Zorn Lemma there exist minimal varieties without positive laws, so called *just not p.l.* varieties. It follows from [1], that varieties $\mathfrak{A}_p\mathfrak{A}$ for prime p are just not p.l. varieties.

For each finitely generated relatively free group G the following questions either have a positive answer or none.

Question 1. Let G contain a free nonabelian subsemigroup. Does $var(G)$ contain $\mathfrak{A}_n\mathfrak{A}$ for some p?

Question 2. Let G contain a free nonabelian subsemigroup. Does G/G'' also contain a free nonabelian subsemigroup?

¹ e-mail: kozhevn@mccme.ru

² e-mail: olga@zeus.polsl.gliwice.pl

Lemma. For a finitely generated relatively free group G the above Questions are equivalent.

Proof. We get the required equivalence by proving the following implications:

$$
G \supseteq \mathcal{F} \quad \overset{\perp}{\longleftrightarrow} \quad var(G) \supseteq \mathfrak{A}_p \mathfrak{A}
$$

\n
$$
G/G'' \supseteq \mathcal{F} \quad \longleftrightarrow \quad var(G/G'') \supseteq \mathfrak{A}_p \mathfrak{A}
$$

In implication 1 we have that a verbal subgroup $V \subseteq F$, corresponding to $var(G)$ satisfies $V \subseteq F''(F')^p$ for some p. By result of Mal'cev [4], $F/F''(F')^p$ contains a free nonabelian subsemigroup and hence the relatively free group G also contains a free nonabelian subsemigroup, which proves the implication. Implication 2 is clear.

Consider now the horisontal equivalence. By result of Rosenblatt [6] for finitely generated soluble groups: G/G'' either contains a free nonabelian subsemigroup or is nilpotent-by-finite. By result of Groves [1] for finitely generated soluble groups: either $var(G/G'') = \mathfrak{A}_n \mathfrak{A}$ for some p, or G/G'' is nilpotent-by-finite. These imply the horisontal equivalence.

The vertical equivalence follows, because for a verbal subgroup V , the inclusion $V \subseteq F''(F')^p$ is equivalent to $F''V \subseteq F''(F')^p$. Since our Questions concern the implications inverse to 1, 2, their equivalence

follows. \Box

Corollary. A negative answer to the above Questions implies the existence of a just not p.l. variety different from $\mathfrak{A}_n \mathfrak{A}$ for any p. This solves the problem posed in ([7] 19.2): whether $\mathfrak{A}_p\mathfrak{A}$ are the only just not p.l. varieties?

Proof. Since in a relatively free group G any relation on free generators is a law, we have that G contains a free nonabelian subsemigroup if and only if G does not satisfy a positive law. So the negative answer to Question 1 means that there exists G such that $var(G)$ does not satisfy positive laws and does not contain $\mathfrak{A}_p\mathfrak{A}$ for any p. This implies that $var(G)$ contains a just not p.l. variety different from any of $\mathfrak{A}_n\mathfrak{A}$. \Box

To show that the questions have negative answer, we consider the relatively free group G with two or more free generators, defining a pseudoabelian variety (without non-abelian metabelian subgroups) which is studied in Chapter 9 of [5]. Let

$$
w(x,y) = [x,y]v(x,y)^{n}[x,y]^{e_1}v(x,y)^{n+1}\dots [x,y]^{e_{h-1}}v(x,y)^{n+h-1},
$$

where $v(x,y) = [[x^d, y^d]^d, [y^d, x^{-d}]^d], h \equiv 1 \pmod{10}, e_{10k+1} = e_{10k+2}$ $e_{10k+3} = e_{10k+5} = e_{10k+6} = 1$, $e_{10k+4} = e_{10k+7} = e_{10k+8} = e_{10k+9} = e_{10k+10}$ $-1, k = 0, 1, \ldots, (h-1)/10$ and d, n, h are sufficiently large natural numbers chosen with respect to the restrictions that are introduced in Chapter 7 of [5]. Note that $e_1 + \cdots + e_{h-1} = 0$. G is defined by the law $w(x, y) = 1$.

Theorem. The group G defined above contains a free non-abelian subsemigroup, while $var(G)$ does not contain $\mathfrak{A}_n\mathfrak{A}$ for any p.

Proof Assume that $var(G)$ contains $\mathfrak{A}_p\mathfrak{A}$ for some p, then $G \cong F/V$ and $V \subseteq F''(F')^p$. This implies $G/G''(G')^p \cong F/F''(F')^p$, which is not true, because every metabelian group in $var(G)$ is abelian.

To show that G contains a free non-abelian subsemigroup we use the technique of graded diagrams developed in [5]. All references below concern this book. Let a, b be two distinct free generators in G . We are going to prove that the subsemigroup generated by a and b is a free semigroup. Suppose to the contrary that an equality $u(a, b) = u'(a, b)$ holds in G, for some distinct positive words u, u' . Without loss of generality we can assume that u and u' have distinct leading and ending letters; thus we can assume that the word $u^{-1}u'$ is a cyclically reduced non-empty word (one of the words u, u' could be an empty word).

Now for the group G , defined by the word w we consider a reduced diagram Δ of the equality $u^{-1}u' = 1$. The contour of Δ is presented in the form pq , where the section p has the label $\varphi(p) = u^{-1}$ and the section q has the label $\varphi(q) = u'$. Since the equality $u^{-1}u' = 1$ does not hold in a free group, the rank of Δ is greater than 0 (see § 11).

By Theorem 22.2, in Δ there is an R-cell Π and a subdiagram Γ of rank 0 satisfying the following conditions: 1) Γ is a contiguity subdiagram of a long section t of the contour of Π to one of the sections p or q; 2) Γ-contiguity degree of t to p (or q) is not less than ε (see Chapter 7, §20). This implies (by reasoning similar to that in Theorem 19.1) that one of the labels $\varphi(p)$, $\varphi(q)$ has a common subword of length $|A|^{[\varepsilon n]}$ with the section t, where A is a period corresponding to the cell Π. In particular, one of the words $\varphi(p)$, $\varphi(q)$ contains either the word A or the word A^{-1} as a subword. Since $\varphi(p)$ is a negative (i.e. containing only negative powers of a and b) word and $\varphi(q)$ is a positive word, we see that the word A is either positive or negative. From the definition of periods (see \S 29.3) it follows that A^f for some integer f $(f \neq 0$ by Lemma 30.3) is conjugate in G to a word $v(X, Y)$ for some words X, Y and the word v defined above. The word v is a commutator word (i.e. $v(X, Y)$ belongs to the commutator subgroup of a free group with free

generators X, Y), hence $A^f \in G'$. The variety $var(G)$ is defined by the law $w(x, y) = 1$, where w is a commutator word; hence, $\mathfrak{A} \subseteq var(G)$. Therefore A^f is a commutator word (i.e. A^f belongs to the commutator subgroup F' of the free group $F = F(a, b)$ freely generated by a and b). Since the factorgroup F/F' has no torsion and $f \neq 0$, the word A belongs to F'. This means that the number of occurrences of the letter a in the word A is equal to the number of occurrences of the letter a^{-1} , and the same is true for the letters b and b^{-1} . Hence the word A is neither positive nor negative. We get the contradiction which ends the proof. \Box

Corollary. There exists continuously many just not p.l. varieties.

Proof. It follows from the results obtained in [2], that there exists a continuous set of infinitely based pseudo-abelian varieties with pairwise intersections equal to \mathfrak{A} . Since the Theorem holds if we replace $var(G)$ by any of these varieties, the statement follows. \Box

References

- [1] Groves, J.R.J. Varieties of soluble groups and a dichotomy of P.Hall. Bull. Austral. Math. Soc. 1971, 5, 391–410.
- [2] Kozhevnikov, P.A. On group varieties of large odd exponent. Deposited in VINITI 05.06.2000, 1612-00, 26 pp.
- [3] Lewin, J.; Lewin, T. Semigroup laws in varieties of soluble groups. Proc. Camb. Phil. Soc. 1969, 65, 1–9.
- [4] Mal'cev, A.I. Nilpotent semigroups. Uchen. Zap. Ivanovsk. Ped. Inst. 1953, 4, 107–111.
- [5] Ol'shanskii, A.Yu. Geometry of defining relations in groups; Mathematics and its applications (Soviet Series), 70; Kluwer Academic Publishers: Dordrecht, 1991.
- [6] Rosenblatt, J.M. Invariant measures and growth conditions. Trans. Am. Math. Soc. 1974, 193, 33–53.
- [7] L. N. Shevrin, M. V. Volkov, Identities of semigroups (in Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 11 (1985), 3–47. English translation: Soviet Math. (Iz. VUZ) 29 (1985), no. 11, 1–64.