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Abstract

We give negative answers to three questions concerning positive
laws and ApA varieties.

Let A denote the variety of all abelian groups and Ap — the variety of
all abelian groups of exponent p. By F we denote a free group and by V —
a verbal subgroup in F .

We write G ⊇ F to say that G contains a free nonabelian subsemigroup.
A variety generated by G is denoted by var(G).

A law u(x1, ..., xn) = u′(x1, ..., xn) is called positive if u, u′ are positive
words, i.e. words written without inverses of variables. Each positive law
implies a binary positive law. If a group G satisfies a positive law, then
var(G) has a basis of positive laws [3]. By Zorn Lemma there exist minimal
varieties without positive laws, so called just not p.l. varieties. It follows
from [1], that varieties ApA for prime p are just not p.l. varieties.

For each finitely generated relatively free group G the following questions
either have a positive answer or none.

Question 1. Let G contain a free nonabelian subsemigroup. Does var(G)
contain ApA for some p?

Question 2. Let G contain a free nonabelian subsemigroup. Does G/G′′

also contain a free nonabelian subsemigroup?
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Lemma. For a finitely generated relatively free group G the above Questions
are equivalent.

Proof. We get the required equivalence by proving the following implica-
tions:

G ⊇ F 1←− var(G) ⊇ ApA
2 ↑ l

G/G′′ ⊇ F ←→ var(G/G′′) ⊇ ApA

In implication 1 we have that a verbal subgroup V ⊆ F , corresponding to
var(G) satisfies V ⊆F ′′(F ′)p for some p. By result of Mal’cev [4], F/F ′′(F ′)p

contains a free nonabelian subsemigroup and hence the relatively free group G
also contains a free nonabelian subsemigroup, which proves the implication.
Implication 2 is clear.
Consider now the horisontal equivalence. By result of Rosenblatt [6] for
finitely generated soluble groups: G/G′′ either contains a free nonabelian
subsemigroup or is nilpotent-by-finite. By result of Groves [1] for finitely
generated soluble groups: either var(G/G′′) = ApA for some p, or G/G′′ is
nilpotent-by-finite. These imply the horisontal equivalence.
The vertical equivalence follows, because for a verbal subgroup V , the inclu-
sion V ⊆ F ′′(F ′)p is equivalent to F ′′V ⊆ F ′′(F ′)p .
Since our Questions concern the implications inverse to 1, 2, their equivalence
follows. 2

Corollary. A negative answer to the above Questions implies the existence of
a just not p.l. variety different from ApA for any p. This solves the problem
posed in ([7] 19.2): whether ApA are the only just not p.l. varieties?

Proof. Since in a relatively free group G any relation on free generators is a
law, we have that G contains a free nonabelian subsemigroup if and only if G
does not satisfy a positive law. So the negative answer to Question 1 means
that there exists G such that var(G) does not satisfy positive laws and does
not contain ApA for any p. This implies that var(G) contains a just not p.l.
variety different from any of ApA. 2

To show that the questions have negative answer, we consider the re-
latively free group G with two or more free generators, defining a pseudo-
abelian variety (without non-abelian metabelian subgroups) which is studied
in Chapter 9 of [5]. Let

w(x, y) = [x, y]v(x, y)n[x, y]e1v(x, y)n+1 . . . [x, y]eh−1v(x, y)n+h−1,



where v(x, y) = [[xd, yd]d, [yd, x−d]d], h ≡ 1 (mod 10), e10k+1 = e10k+2 =
e10k+3 = e10k+5 = e10k+6 = 1 , e10k+4 = e10k+7 = e10k+8 = e10k+9 = e10k+10 =
−1 , k = 0, 1, . . . , (h−1)/10 and d, n, h are sufficiently large natural numbers
chosen with respect to the restrictions that are introduced in Chapter 7 of [5].
Note that e1 + · · ·+ eh−1 = 0. G is defined by the law w(x, y) = 1.

Theorem. The group G defined above contains a free non-abelian subsemi-
group, while var(G) does not contain ApA for any p.

Proof Assume that var(G) contains ApA for some p, then G ∼= F/V and
V ⊆ F ′′(F ′)p. This implies G/G′′(G′)p ∼= F/F ′′(F ′)p, which is not true,
because every metabelian group in var(G) is abelian.
To show that G contains a free non-abelian subsemigroup we use the tech-
nique of graded diagrams developed in [5]. All references below concern this
book. Let a, b be two distinct free generators in G. We are going to prove
that the subsemigroup generated by a and b is a free semigroup. Suppose to
the contrary that an equality u(a, b) = u′(a, b) holds in G, for some distinct
positive words u, u′. Without loss of generality we can assume that u and u′

have distinct leading and ending letters; thus we can assume that the word
u−1u′ is a cyclically reduced non-empty word (one of the words u, u′ could
be an empty word).
Now for the group G, defined by the word w we consider a reduced diagram
∆ of the equality u−1u′ = 1. The contour of ∆ is presented in the form pq,
where the section p has the label ϕ(p) = u−1 and the section q has the label
ϕ(q) = u′. Since the equality u−1u′ = 1 does not hold in a free group, the
rank of ∆ is greater than 0 (see § 11).
By Theorem 22.2, in ∆ there is an R-cell Π and a subdiagram Γ of rank 0
satisfying the following conditions: 1) Γ is a contiguity subdiagram of a long
section t of the contour of Π to one of the sections p or q; 2) Γ-contiguity
degree of t to p (or q) is not less than ε (see Chapter 7, §20). This implies
(by reasoning similar to that in Theorem 19.1) that one of the labels ϕ(p),
ϕ(q) has a common subword of length |A|[εn] with the section t, where A is
a period corresponding to the cell Π. In particular, one of the words ϕ(p),
ϕ(q) contains either the word A or the word A−1 as a subword. Since ϕ(p) is
a negative (i.e. containing only negative powers of a and b) word and ϕ(q) is
a positive word, we see that the word A is either positive or negative. From
the definition of periods (see § 29.3) it follows that Af for some integer f
(f 6= 0 by Lemma 30.3) is conjugate in G to a word v(X, Y ) for some words
X, Y and the word v defined above. The word v is a commutator word
(i.e. v(X, Y ) belongs to the commutator subgroup of a free group with free



generators X, Y ), hence Af ∈ G′. The variety var(G) is defined by the law
w(x, y) = 1, where w is a commutator word; hence, A ⊆ var(G). Therefore
Af is a commutator word (i.e. Af belongs to the commutator subgroup F ′

of the free group F = F (a, b) freely generated by a and b). Since the factor-
group F/F ′ has no torsion and f 6= 0, the word A belongs to F ′. This means
that the number of occurrences of the letter a in the word A is equal to the
number of occurrences of the letter a−1, and the same is true for the letters
b and b−1. Hence the word A is neither positive nor negative. We get the
contradiction which ends the proof. 2

Corollary. There exists continuously many just not p.l. varieties.

Proof. It follows from the results obtained in [2], that there exists a continu-
ous set of infinitely based pseudo-abelian varieties with pairwise intersections
equal to A. Since the Theorem holds if we replace var(G) by any of these
varieties, the statement follows. 2

References

[1] Groves, J.R.J. Varieties of soluble groups and a dichotomy of P.Hall.
Bull. Austral. Math. Soc. 1971, 5, 391–410.

[2] Kozhevnikov, P.A. On group varieties of large odd exponent. Deposited
in VINITI 05.06.2000, 1612-00, 26 pp.

[3] Lewin, J.; Lewin, T. Semigroup laws in varieties of soluble groups. Proc.
Camb. Phil. Soc. 1969, 65, 1–9.

[4] Mal’cev, A.I. Nilpotent semigroups. Uchen. Zap. Ivanovsk. Ped. Inst.
1953, 4, 107–111.

[5] Ol’shanskii, A.Yu. Geometry of defining relations in groups; Mathemat-
ics and its applications (Soviet Series), 70; Kluwer Academic Publishers:
Dordrecht, 1991.

[6] Rosenblatt, J.M. Invariant measures and growth conditions. Trans. Am.
Math. Soc. 1974, 193, 33–53.

[7] L. N. Shevrin, M. V. Volkov, Identities of semigroups (in Russian), Izv.
Vyssh. Uchebn. Zaved. Mat. 11 (1985), 3–47. English translation: Soviet
Math. (Iz. VUZ) 29 (1985), no. 11, 1–64.


