Two questions on semigroup laws

O. Macedońska

August 17, 2013

Abstract

B. H. Neumann recently proved some implication for semigroup laws in groups. This may help in solution of a problem posed by G. M. Bergman in 1981.

Let G be a group, and $S \subseteq G$ be a subsemigroup generating G. It is clear that if S is commutative, then G is commutative. The following question is equivalent to the one posed by G. M. Bergman [2], [3].

Question 1 Let S generating G satisfy a law. Must G satisfy the same law?

For some laws the answer is positive [9], [5], [8], [1], however in general the question is open and in opinion of S. V. Ivanov and E. Rips it has a negative answer. All semigroups we consider are cancellative.

Question 2 Let a semigroup law a = b implies a semigroup law u = v in groups. Does the same implication hold in semigroups?

To show implication of laws in semigroups we can use only so-called positive endomorphisms, which map generators to positive words. It is shown in [8] (an example at the end of this paper), that all implications for positive laws of length ≤ 5 which hold in groups, also are valid for semigroups. The fact that the law $x^2y^2x = yx^3y$ implies xy = yx in semigroups (and hence in groups) is proved in [5, p.132].

We show the equivalence of the above Questions.

It is shown in [10], that the law $x^{s+t}y^2x^t = yx^{s+2t}y$, gcd(s,t) = 1, implies $xy^2x = yx^2y$ in groups (which is equivalent to [x, y, x] = 1 [12]). So if

AMS subject classification: Primary 20E10; Secondary 20M07.

there exists a semigroup satisfying $x^{s+t}y^2x^t = yx^{s+2t}y$, gcd(s,t) = 1, but not $xy^2x = yx^2y$, the desired counterexample for Question 1 would be found.

Let $a = a(x_1, ..., x_n)$, $b = b(x_1, ..., x_n)$ be positive words. A semigroup law a = b is called *balanced* if every x_i has the same exponent sum in a and b. The law is *trivial* if $ab^{-1} = 1$ in F. The law is called *cancelled* if the first (and the last) letters in a and b are different.

Notation

Let F be a free group and $\mathcal{F} \ni 1$ be a free semigroup, both generated by x_1, x_2, x_3, \dots . Words in \mathcal{F} are called positive. We denote:

 End^+ – the set of positive endomorphisms which map x_i to positive words,

 N_w – a normal End^+ -invariant closure of a word w in F,

End – the set of all endomorphisms of the free group F,

 V_w – a fully invariant subgroup generated by a word $w \in F$,

 $(u, v)^{\#}$ – the smallest cancellative congruence in \mathcal{F} providing the law u = v. A relatively free cancellative semigroup, defined by the law u = v is isomorphic to $\mathcal{F}/(u, v)^{\#}$ [8].

We note that if N_w contains a positive word, say x^2yz^4 , then it contains x^7 and hence $x^{-1} \in x^6 N_w$ implies $F = \mathcal{F} \mod N_w$.

Remark 1 Since each semigroup with a non-balanced law is a group, we have to consider only balanced non-trivial semigroup laws. Each such a law implies a binary balanced and cancelled law A(x, y) = B(x, y) [6].

Questions and Results

To formulate the above Questions in terms of normal subgroups we need

Lemma 1 A semigroup law u = v implies a = b in semigroups if and only if $N_{ab^{-1}} \subseteq N_{uv^{-1}}$. The implication holds in groups if and only if $V_{ab^{-1}} \subseteq V_{uv^{-1}}$.

Proof The law u = v implies a = b in semigroups if and only if corresponding smallest congruences satisfy $(a, b)^{\#} \subseteq (u, v)^{\#}$. If we map $F \to F/N$, then \mathcal{F} is mapped onto $\mathcal{F}/N^{\#}$, where $N^{\#}$ is a cancellative congruence in \mathcal{F} defined as: $N^{\#} = \{(s, t); st^{-1} \in N \cap \mathcal{FF}^{-1}\}$. It is proved in [7], Thm. 2, that $N := N_{uv^{-1}}$ is a smallest normal subgroup such that $N^{\#} = (u, v)^{\#}$. So we have

$$(u,v)^{\#} = \{(s,t); st^{-1} \in N_{uv^{-1}} \cap \mathcal{F}\mathcal{F}^{-1}\}.$$
(1)

Since $\mathcal{F}/(u, v)^{\#}$ is embeddable into a group $F/N_{uv^{-1}}$, and $N_{uv^{-1}}$ is the smallest normal subgroup with this property, it follows by [4], 12.3, that

$$N_{uv^{-1}} = gpn(st^{-1}; \ (s,t) \in (u,v)^{\#}).$$
(2)

Hence by (1), (2): $(a, b)^{\#} \subseteq (u, v)^{\#}$ if and only if $N_{ab^{-1}} \subseteq N_{uv^{-1}}$, which gives the first statement of the Lemma. The second statement is known [11]. \Box

In terms of normal subgroups the above Questions are:

Question 1' Does $N_{ab^{-1}} = V_{ab^{-1}}$ hold for each semigroup law a = b? Question 2' Does $V_{ab^{-1}} \subseteq V_{uv^{-1}}$ imply $N_{ab^{-1}} \subseteq N_{uv^{-1}}$ for semigroup laws a = b and u = v?

We shall prove that for each semigroup law a=b there exists a semigroup law u = v such that the fully invariant closure of ab^{-1} coincides with the End^+ -invariant normal closure of uv^{-1} . This will imply the equivalence of the Questions.

Theorem For every n-variable semigroup law a = b there exists an n+1-variable semigroup law u = v such that $V_{ab^{-1}} = N_{uv^{-1}}$.

Corollary The Questions 1 and 2 are equivalent.

Proof We have to show that for each semigroup law a = b the equality holds: $N_{ab^{-1}} = V_{ab^{-1}}$. Take u = v as in the Theorem, then $V_{ab^{-1}} \stackrel{\mathrm{T}}{=} N_{uv^{-1}}$. By taking the fully invariant closure we get $V_{ab^{-1}} = V_{uv^{-1}}$. If Question 2 has a positive answer then we have $N_{ab^{-1}} = N_{uv^{-1}} \stackrel{\mathrm{T}}{=} V_{ab^{-1}}$, as required. \Box

Lemmas and Proof of the Theorem

Lemma 2 Let A(x,y) = B(x,y) be a balanced and cancelled semigroup law and the first letter in A(x,y) is x. Then there exist $a_i = a_i(x,y)$, $b_i = b_i(x,y) \in \mathcal{F}$, i = 1, 2, such that

(i)
$$x^{-1}y = a_1b_1^{-1} \cdot (A^{-1}B)^{b_1^{-1}},$$
 (ii) $xy^{-1} = a_2^{-1}b_2 \cdot (AB^{-1})^{\varepsilon b_2}, \ \varepsilon = \pm 1,$
(iii) $F = \mathcal{F}\mathcal{F}^{-1}N_{AB^{-1}} = \mathcal{F}^{-1}\mathcal{F}N_{AB^{-1}}.$

Proof Since the law A = B is cancelled, it can be written as $x \cdot a_1 = y \cdot b_1$, which gives $A^{-1}B = a_1^{-1}x^{-1}yb_1$ and hence (i). The law A = B (or B = A) can be written as $a_2 \cdot x = b_2 \cdot y$. In the first case $AB^{-1} = a_2xy^{-1}b_2$ gives $xy^{-1} = a_2^{-1}b_2 \cdot (AB^{-1})^{b_2}$. If $B = a_2 \cdot x$, $A = b_2 \cdot y$, then $xy^{-1} = a_2^{-1}b_2 \cdot (AB^{-1})^{-b_2}$, which gives (ii).

Since $(A^{-1}B) = (AB^{-1})^{B^{-1}} \in N_{AB^{-1}}$, we get from (i), that $x^{-1}y \in \mathcal{FF}^{-1} \mod N_{AB^{-1}}$, which holds under every substitution elements from \mathcal{F} for x and y. Since every word in F is a product of words in $\mathcal{F} \cup \mathcal{F}^{-1}$, we get $F = \mathcal{FF}^{-1}N_{AB^{-1}}$. Similarly, from (ii) we get $F = \mathcal{F}^{-1}\mathcal{F}N_{AB^{-1}}$. \Box

The following Lemma is well known in terms of a group of fractions and Ore conditions.

Lemma 3 Let a = b be a nontrivial semigroup law, and g_1, g_2, \ldots, g_n be elements in F. Then there exist elements s_1, s_2, \ldots, s_n and d in \mathcal{F} such that $g_i = s_i d^{-1} \mod N_{ab^{-1}}$.

Proof By [6], the law a = b implies balanced and cancelled binary law A = B. Since $N_{AB^{-1}} \subseteq N_{ab^{-1}}$, the inclusions in Lemma 2 are valid $mod N_{ab^{-1}}$. Then by (*iii*) we have modulo $N_{ab^{-1}}$: $g_i = a_i b_i^{-1}$ for some $a_i, b_i \in \mathcal{F}$. For n = 2, $g_1 = a_1 b_1^{-1}, g_2 = a_2 b_2^{-1}$. Also by (*iii*), there exist c, d such that $b_2^{-1} b_1 = cd^{-1}$. We introduce $r := b_1 d = b_2 c$, then $g_1 = a_1 b_1^{-1} = a_1 dd^{-1} b_1^{-1} = a_1 dr^{-1} =:$ $sr^{-1}, g_2 = a_2 b_2^{-1} = a_2 cc^{-1} b_2^{-1} = a_2 cr^{-1} =: tr^{-1}, s, t, r \in \mathcal{F}$. So, by repeating this step we can write g_1, \ldots, g_n with a "common denominator" $mod N_{ab^{-1}}$ as required. \Box

To compare End^+ -invariant and End-invariant closures of words we make an observation that by positive endomorphisms we can map xy^{-1} into any word $g \in F \mod N_{ab^{-1}}$ if write $g = st^{-1}$ and map x to s, and y to t.

Lemma 4 There exists an automorphism $\alpha \in Aut \ F$ such that for any $w \in F$, $N_{w^{\alpha}}$ is fully invariant mod $N_{ab^{-1}}$, for any nontrivial $ab^{-1} \in \mathcal{FF}^{-1}$. That is $V_w \subseteq N_{w^{\alpha}}N_{ab^{-1}}$.

Proof Let $w = w(x_1, \ldots, x_n)$. We take $\alpha \in Aut F$ which maps $x_i \to x_i x_{n+1}^{-1}$, $i = 1, \ldots, n$ and leaves x_i , i > n, fixed. It is enough to show that for any g_1, \ldots, g_n in F, $w(g_1, \ldots, g_n) \in N_{w^{\alpha}} N_{ab^{-1}}$. By Lemma 3, we write $g_i = s_i d^{-1} \mod N_{ab^{-1}}$ and define $\nu \in End^+$ by $x_i^{\nu} = s_i$, $i \le n$, and $x_{n+1}^{\nu} = d$. Then modulo $N_{ab^{-1}}$ we have $(x_i x_{n+1}^{-1})^{\nu} = g_i$ and $w(g_1, \ldots, g_n) = w(x_1 x_{n+1}^{-1}, \ldots, x_n x_{n+1}^{-1})^{\nu} = (w(x_1, \ldots, x_n)^{\alpha})^{\nu} \in N_{w^{\alpha}}^{\nu} \subseteq N_{w^{\alpha}}$, as required. \Box

Corollary 1 For a nontrivial semigroup law a = b the equality holds

$$V_{ab^{-1}} = N_{(ab^{-1})^{\alpha}}$$

Proof We have $ab^{-1} \in N_{(ab^{-1})^{\alpha}}^{\alpha^{-1}}$. Since α^{-1} is in End^+ , then $N_{(ab^{-1})^{\alpha}}^{\alpha^{-1}} \subseteq N_{(ab^{-1})^{\alpha}}$ and hence $ab^{-1} \in N_{(ab^{-1})^{\alpha}}$, which gives

$$N_{ab^{-1}} \subseteq N_{(ab^{-1})^{\alpha}}.\tag{3}$$

By Lemma 4 for $w := ab^{-1}$, by (3), and since $End^+ \subseteq End$, we have:

$$V_{ab^{-1}} \subseteq N_{(ab^{-1})^{\alpha}} N_{ab^{-1}} = N_{(ab^{-1})^{\alpha}} \subseteq V_{ab^{-1}},$$

which implies $V_{ab^{-1}} = N_{(ab^{-1})^{\alpha}}.\Box$

We denote by δ the endomorphism which maps $x_{n+1} \to 1$ and leaves other generators fixed, then $\delta \in End^+$. As above, $\alpha \in Aut F$ maps $x_i \to x_i x_{n+1}^{-1}$, $i = 1, \ldots, n$ and leaves $x_i, i > n$, fixed.

Lemma 5 Let a = b be a nontrivial semigroup law, and \mathcal{F}_{n+1} be a free subsemigroup generated by $x_1, ..., x_{n+1}$. Then for any positive word $p(x_1, ..., x_n)$, there exist positive words $u_i = u_i(x_1, ..., x_{n+1})$, $v_i = v_i(x_1, ..., x_{n+1})$, i = 1, 2, such that $p^{\alpha} = u_1 v_1^{-1} = u_2^{-1} v_2 \mod (N_{ab^{-1}} \cap \operatorname{Ker} \delta)$.

Proof We show first that for any words $c, q \in \mathcal{F}_{n+1}$ the inclusion hold:

(*)
$$cx_{n+1}^{-1} \in \mathcal{F}_{n+1}^{-1}\mathcal{F}_{n+1} \mod (N_{ab^{-1}} \cap Ker\delta),$$

(**) $x_{n+1}^{-1}q \in \mathcal{F}_{n+1}\mathcal{F}_{n+1}^{-1} \mod (N_{ab^{-1}} \cap Ker\delta).$

The law a = b implies balanced and cancelled binary law A = B, so it is enough to prove the inclusions for the law A(x, y) = B(x, y).

If apply δ to the balanced equality $A(c, x_{n+1}) = B(c, x_{n+1})$, it becomes trivial, and hence the word $AB^{-1}(c, x_{n+1})$ is in $Ker \delta$. Similarly we get $A^{-1}B(x_{n+1}, q) \in Ker \delta$. We put now c, x_{n+1} for x, y in (*ii*) (Lemma 2) to get (*), and then put x_{n+1}, q in (*i*) (Lemma 2) to get (**).

We continue the proof modulo $(N_{ab^{-1}} \cap Ker\delta)$. To show that: $p(x_1x_{n+1}^{-1}, ..., x_nx_{n+1}^{-1}) \in \mathcal{F}_{n+1}\mathcal{F}_{n+1}^{-1}$, and $p(x_1x_{n+1}^{-1}, ..., x_nx_{n+1}^{-1}) \in \mathcal{F}_{n+1}^{-1}\mathcal{F}_{n+1}$, we use induction on the length |p| = m. Let $p(x_1, ..., x_n) = c_m c_{m-1} ... c_2 c_1$, $c_i \in \{x_1, ..., x_n\}$, then $p^{\alpha} = c_m x_{n+1}^{-1} c_{m-1} x_{n+1}^{-1} ... c_2 x_{n+1}^{-1} c_1 x_{n+1}^{-1}$. For m = 1, $p^{\alpha} = c x_{n+1}^{-1} \in \mathcal{F}_{n+1} \mathcal{F}_{n+1}^{-1}$ and by (*), $p^{\alpha} = c x_{n+1}^{-1} \in \mathcal{F}_{n+1}^{-1} \mathcal{F}_{n+1}$.

Let |p| = m, then $p = c_m c_{m-1} \dots c_2 c_1$ and by inductive assumption $p^{\alpha} = c_m x_{n+1}^{-1} \cdot qr^{-1}$. Then by (**), there exist $s, t \in \mathcal{F}_{n+1}$, such that $x_{n+1}^{-1}q = st^{-1}$ and hence $p^{\alpha} = c_m (x_{n+1}^{-1}q)r^{-1} = c_m (st^{-1})r^{-1} = (c_m s)(rt)^{-1} \in \mathcal{F}_{n+1}\mathcal{F}_{n+1}^{-1}$.

Again for |p| = m, we get by assumption $p^{\alpha} = r^{-1}s \cdot c_1 x_{n+1}^{-1} = r^{-1}(sc_1)x_{n+1}^{-1}$. By (*) for sc_1 instead of c, there exist $t, u \in \mathcal{F}_{n+1}$, such that $sc_1 x_{n+1}^{-1} = t^{-1}u$. Then $p^{\alpha} = r^{-1}(sc_1)x_{n+1}^{-1} = r^{-1}t^{-1}u = (tr)^{-1}u \in \mathcal{F}_{n+1}^{-1}\mathcal{F}_{n+1}$ as required. \Box

Proof of the Theorem

We have to show that for every nontrivial *n*-variable semigroup law a = bthere exists an n + 1-variable semigroup law u = v such that $V_{ab^{-1}} = N_{uv^{-1}}$.

By Lemma 5 for the words $a = a(x_1, ..., x_n)$ and $b = b(x_1, ..., x_n)$ we get respectively: $a^{\alpha} = u_1 v_1^{-1} \mod (N_{ab^{-1}} \cap Ker\delta)$, and $b^{\alpha} = u_2^{-1} v_2 \mod (N_{ab^{-1}} \cap Ker\delta)$. Then $(ab^{-1})^{\alpha} = u_1 v_1^{-1} v_2^{-1} u_2 = u_2^{-1} (u_2 u_1) (v_2 v_1)^{-1} u_2 \mod (N_{ab^{-1}} \cap Ker\delta)$. We denote $u := u_2 u_1, v := v_2 v_1$, then

$$(ab^{-1})^{\alpha} = (uv^{-1})^{u_2} \ mod \ (N_{ab^{-1}} \cap Ker\delta) \tag{4}$$

This implies:

$$N_{(ab^{-1})^{\alpha}} \subseteq N_{uv^{-1}} N_{ab^{-1}} \tag{5}$$

and

$$N_{uv^{-1}} \subseteq N_{(ab^{-1})^{\alpha}} N_{ab^{-1}}.$$
 (6)

To prove the equality

$$N_{(ab^{-1})^{\alpha}} = N_{uv^{-1}},\tag{7}$$

we apply δ to (4). Since $\alpha\delta$ is the identity map on x_i , $i \leq n$, and δ is in End^+ , we have that $ab^{-1} = (ab^{-1})^{\alpha\delta}$ is conjugate to $(uv^{-1})^{\delta} \in N_{uv^{-1}}^{\delta} \subseteq N_{uv^{-1}}$. This implies $N_{ab^{-1}} \subseteq N_{uv^{-1}}$ which, together with (5) gives $N_{(ab^{-1})^{\alpha}} \subseteq N_{uv^{-1}}$. Since by (3), $N_{ab^{-1}} \subseteq N_{(ab^{-1})^{\alpha}}$, it follows from (6), that $N_{uv^{-1}} \subseteq N_{(ab^{-1})^{\alpha}}$, and hence (7) holds.

Now, since by Corollary 1, $V_{ab^{-1}} = N_{(ab^{-1})^{\alpha}}$, we have by (7), the required equality $V_{ab^{-1}} = N_{uv^{-1}}$.

Example of implications in semigroups [8]

The law $(xy)^2 = (yx)^2$ implies $xy^2 = y^2x$ for groups because we can apply the automorphism $\alpha : x \to x, \ y \to x^{-1}y$. For semigroups we can not use this automorphism. To prove that $(xy)^2 = (yx)^2$ implies $xy^2 = y^2x$ for semigroups we show first that $(xy)^2 = (yx)^2$ implies:

$$\begin{array}{ll} (i) & (yx)^2y = y(yx)^2, \\ (ii) & x((yx)^2y)^2 = ((yx)^2y)^2x, \\ (iii) & ((yx)^2y)^2 = (yx)^4y^2, \\ (iv) & (yx)^4 = (xy)^4. \end{array} \\ \begin{array}{ll} (use \ (h)^\alpha, \ x^\alpha = xyx^2, \ y^\alpha = y \ (h), \\ (use \ ((yx)^2y)((xy)^2y) \ (h), \\ (use \ ((yx)^2y)((xy)^2y) \ (h), \\ (use \ (h)^\alpha, \ x^\alpha = xyx^2, \ y^\alpha = y \ (h), \\ (use \ ((yx)^2y)((xy)^2y) \ (h), \\ (use \ (h)^\alpha, \ x^\alpha = xyx^2, \ y^\alpha = y \ (h), \\ (h)^\alpha, \ x^\alpha = xyx^2, \ (h)^\alpha, \\ (h)^\alpha, \ (h)^\alpha = xy^2, \ (h)^\alpha, \ (h)^\alpha, \ (h)^\alpha = xy^2, \ (h)^\alpha, \ (h)^\alpha, \ (h)^\alpha = xy^2, \ (h)^\alpha, \ (h)^\alpha, \ (h)^\alpha, \ (h)^\alpha = xy^2, \ (h)^\alpha, \ (h)$$

Then for some word p we start with $p \cdot xy^2$ and by using (i) - (iv) obtain $p \cdot y^2 x$, which by cancellation, implies required $xy^2 = y^2 x$.

Namely, for
$$p = (xy)^4$$
 we have

$$pxy^2 = (xy)^4 xy^2 = x(yx)^2 (\underline{yx})^2 y \stackrel{\text{(i)}}{=} x(yx)^2 \underline{y(yx)}^2 y = x((yx)^2 y)^2 \stackrel{\text{(ii)}}{=} ((yx)^2 y)^2 x \stackrel{\text{(iii)}}{=} (yx)^4 y^2 x \stackrel{\text{(iv)}}{=} (xy)^4 y^2 x = py^2 x,$$
which gives $pxy^2 = py^2 x$ and hence $xy^2 = y^2 x$ as required

References

- Robert G. Burns, Olga Macedońska, Yuri Medvedev, Groups Satisfying Semigroup Laws, and Nilpotent-by-Burnside Varieties, Journal of Algebra 195, (1997), 510–525.
- [2] G. M. Bergman, *Hiperidentities of groups and semigroups*, Aequat. Math. 23, (1981), 55–65.
- [3] G. M. Bergman, Questions in algebra, Preprint, Berkeley, U.C. 1986.
- [4] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Math. Surveys 7, AMS, 1964.
- [5] J. Krempa, O. Macedońska, On identities of cancellative semigroups, Contemporary Mathematics 131, (1992), 125–133.
- [6] Jacques Lewin and Tekla Lewin, Semigroup laws in varieties of soluble groups, Proc. Camb. Phil. Soc. 65, (1969), 1–9.
- [7] O. Macedońska, On cancellative congruences for semigroups, Zeszyty Naukowe Politechniki Slaskiej 84, (1999), 171–176.
- [8] O. Macedońska, M. Zabka, On equivalence of semigroup identities, Mathematica Scandinavica 88 (2), (2001), 161–181.

- [9] A. I. Malcev, Nilpotent semigroups, Uchen. Zap. Ivanovsk. Ped. Inst. 4, (1953), 107–111.
- [10] B. H. Neumann, Some Semigroup Laws in Groups, Canad. Math. Bull. 44 (1), (2001), 93–96.
- [11] Hanna Neumann, Varieties of groups, Springer-Verlag, Berlin, Heidelberg, New York, 1967.
- [12] A. I. Shirshov, On some positively defined varieties of groups, Sib. Mat. J. (1959), 165–178.

Institute of Mathematics, Silesian Technical University, ul. Kaszubska 23, 44-100 Gliwice, Poland e-mail: olga@zeus.polsl.gliwice.pl