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Abstract

B. H. Neumann recently proved some implication for semigroup
laws in groups. This may help in solution of a problem posed by G.
M. Bergman in 1981.

Let G be a group, and S ⊆ G be a subsemigroup generating G. It is clear
that if S is commutative, then G is commutative. The following question is
equivalent to the one posed by G. M. Bergman [2], [3].

Question 1 Let S generating G satisfy a law. Must G satisfy the same law?

For some laws the answer is positive [9], [5], [8], [1], however in general
the question is open and in opinion of S. V. Ivanov and E. Rips it has a
negative answer. All semigroups we consider are cancellative.

Question 2 Let a semigroup law a = b implies a semigroup law u = v in
groups. Does the same implication hold in semigroups?

To show implication of laws in semigroups we can use only so-called po-
sitive endomorphisms, which map generators to positive words. It is shown
in [8] (an example at the end of this paper), that all implications for positive
laws of length ≤ 5 which hold in groups, also are valid for semigroups. The
fact that the law x2y2x = yx3y implies xy = yx in semigroups (and hence in
groups) is proved in [5, p.132].

We show the equivalence of the above Questions.

It is shown in [10], that the law xs+ty2xt = yxs+2ty, gcd(s, t) = 1, implies
xy2x = yx2y in groups (which is equivalent to [x, y, x] = 1 [12] ). So if
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there exists a semigroup satisfying xs+ty2xt = yxs+2ty, gcd(s, t) = 1, but not
xy2x = yx2y, the desired counterexample for Question 1 would be found.

Let a = a(x1, ..., xn), b = b(x1, ..., xn) be positive words. A semigroup
law a = b is called balanced if every xi has the same exponent sum in a and
b. The law is trivial if ab−1 = 1 in F . The law is called cancelled if the first
(and the last) letters in a and b are different.

Notation
Let F be a free group and F 3 1 be a free semigroup, both generated by
x1, x2, x3, ... . Words in F are called positive. We denote:

End+ – the set of positive endomorphisms which map xi to positive words,

Nw – a normal End+-invariant closure of a word w in F ,

End – the set of all endomorphisms of the free group F ,

Vw – a fully invariant subgroup generated by a word w ∈ F ,

(u, v)# – the smallest cancellative congruence in F providing the law u= v.
A relatively free cancellative semigroup, defined by the law u = v is

isomorphic to F/(u, v)# [8].

We note that if Nw contains a positive word, say x2yz4, then it contains
x7 and hence x−1 ∈ x6Nw implies F = F mod Nw.

Remark 1 Since each semigroup with a non-balanced law is a group, we
have to consider only balanced non-trivial semigroup laws. Each such a law
implies a binary balanced and cancelled law A(x, y) = B(x, y) [6].

Questions and Results

To formulate the above Questions in terms of normal subgroups we need

Lemma 1 A semigroup law u = v implies a = b in semigroups if and only if
Nab−1 ⊆ Nuv−1. The implication holds in groups if and only if Vab−1 ⊆ Vuv−1.

Proof The law u = v implies a = b in semigroups if and only if corresponding
smallest congruences satisfy (a, b)# ⊆ (u, v)#. If we map F → F/N , then F
is mapped onto F/N#, where N# is a cancellative congruence in F defined
as: N# = {(s, t); st−1 ∈ N ∩ FF−1}. It is proved in [7], Thm. 2, that
N := Nuv−1 is a smallest normal subgroup such that N# = (u, v)#. So we
have

(u, v)# = {(s, t); st−1 ∈ Nuv−1 ∩ FF−1}. (1)
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Since F/(u, v)# is embeddable into a group F/Nuv−1 , and Nuv−1 is the small-
est normal subgroup with this property, it follows by [4], 12.3, that

Nuv−1 = gpn(st−1; (s, t) ∈ (u, v)#). (2)

Hence by (1), (2): (a, b)# ⊆ (u, v)# if and only if Nab−1 ⊆ Nuv−1 , which gives
the first statement of the Lemma. The second statement is known [11]. 2

In terms of normal subgroups the above Questions are:

Question 1′ Does Nab−1 = Vab−1 hold for each semigroup law a = b?
Question 2′ Does Vab−1 ⊆ Vuv−1 imply Nab−1 ⊆ Nuv−1 for semigroup laws
a = b and u = v?

We shall prove that for each semigroup law a=b there exists a semigroup
law u = v such that the fully invariant closure of ab−1 coincides with the
End+-invariant normal closure of uv−1. This will imply the equivalence of
the Questions.

Theorem For every n-variable semigroup law a = b there exists an n+1-
variable semigroup law u=v such that Vab−1 = Nuv−1 .

Corollary The Questions 1 and 2 are equivalent.

Proof We have to show that for each semigroup law a = b the equality holds:
Nab−1 = Vab−1 . Take u = v as in the Theorem, then Vab−1

T
= Nuv−1 . By taking

the fully invariant closure we get Vab−1 = Vuv−1 . If Question 2 has a positive
answer then we have Nab−1 = Nuv−1

T
= Vab−1 , as required. 2

Lemmas and Proof of the Theorem

Lemma 2 Let A(x, y) = B(x, y) be a balanced and cancelled semigroup law
and the first letter in A(x, y) is x. Then there exist ai = ai(x, y), bi =
bi(x, y) ∈ F , i = 1, 2, such that

(i) x−1y = a1b
−1
1 · (A−1B)b

−1
1 , (ii) xy−1 = a−12 b2 · (AB−1)εb2 , ε = ±1,

(iii) F = FF−1NAB−1 = F−1FNAB−1 .

Proof Since the law A=B is cancelled, it can be written as x · a1 = y · b1,
which gives A−1B = a−11 x−1yb1 and hence (i). The law A=B (or B=A) can
be written as a2 · x = b2 · y . In the first case AB−1 = a2xy

−1b2 gives xy−1 =
a−12 b2 · (AB−1)b2 . If B = a2 · x, A = b2 · y, then xy−1 = a−12 b2 · (AB−1)−b2 ,
which gives (ii).
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Since (A−1B) = (AB−1)B
−1 ∈ NAB−1 , we get from (i), that x−1y ∈

FF−1 modNAB−1 , which holds under every substitution elements from F
for x and y. Since every word in F is a product of words in F ∪F−1, we get
F = FF−1NAB−1 . Similarly, from (ii) we get F = F−1FNAB−1 . 2

The following Lemma is well known in terms of a group of fractions and Ore
conditions.

Lemma 3 Let a = b be a nontrivial semigroup law, and g1, g2, . . . , gn be
elements in F . Then there exist elements s1, s2, . . . , sn and d in F such that
gi = sid

−1 modNab−1.

Proof By [6], the law a = b implies balanced and cancelled binary law A = B.
Since NAB−1 ⊆ Nab−1 , the inclusions in Lemma 2 are valid modNab−1 . Then
by (iii) we have modulo Nab−1 : gi = aib

−1
i for some ai, bi ∈ F . For n = 2,

g1 = a1b
−1
1 , g2 = a2b

−1
2 . Also by (iii), there exist c, d such that b−12 b1 = cd−1.

We introduce r := b1d = b2c, then g1 = a1b
−1
1 = a1dd

−1b−11 = a1dr
−1 =:

sr−1, g2 = a2b
−1
2 = a2cc

−1b−12 = a2cr
−1 =: tr−1, s, t, r ∈ F . So, by repeating

this step we can write g1, . . . , gn with a ”common denominator” modNab−1

as required. 2

To compare End+-invariant and End-invariant closures of words we make
an observation that by positive endomorphisms we can map xy−1 into any
word g ∈ F mod Nab−1 if write g = st−1 and map x to s, and y to t.

Lemma 4 There exists an automorphism α∈Aut F such that for any w∈F ,
Nwα is fully invariant mod Nab−1, for any nontrivial ab−1 ∈ FF−1. That is
Vw ⊆ NwαNab−1 .

Proof Let w = w(x1, . . . , xn). We take α ∈ AutF which maps xi →
xix
−1
n+1, i = 1, . . . , n and leaves xi, i > n, fixed. It is enough to show that

for any g1, . . . , gn in F , w(g1, . . . , gn) ∈ NwαNab−1 . By Lemma 3, we write
gi = sid

−1 modNab−1 and define ν ∈ End+ by xνi = si, i ≤ n, and xνn+1 = d.
Then modulo Nab−1 we have (xix

−1
n+1)

ν = gi and w(g1, . . . , gn) =
w(x1x

−1
n+1, . . . , xnx

−1
n+1)

ν = (w(x1, . . . , xn)α)ν ∈ Nν
wα ⊆ Nwα , as required. 2

Corollary 1 For a nontrivial semigroup law a = b the equality holds

Vab−1 = N(ab−1)α .
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Proof We have ab−1 ∈ Nα−1

(ab−1)α . Since α−1 is in End+, then Nα−1

(ab−1)α ⊆
N(ab−1)α and hence ab−1 ∈ N(ab−1)α , which gives

Nab−1 ⊆ N(ab−1)α . (3)

By Lemma 4 for w := ab−1, by (3), and since End+ ⊆ End, we have:

Vab−1 ⊆ N(ab−1)αNab−1 = N(ab−1)α ⊆ Vab−1 ,

which implies Vab−1 = N(ab−1)α .2

We denote by δ the endomorphism which maps xn+1 → 1 and leaves
other generators fixed, then δ ∈ End+. As above, α ∈ AutF maps xi →
xix
−1
n+1, i = 1, . . . , n and leaves xi, i > n, fixed.

Lemma 5 Let a = b be a nontrivial semigroup law, and Fn+1 be a free sub-
semigroup generated by x1, ..., xn+1. Then for any positive word p(x1, ..., xn),
there exist positive words ui = ui(x1, ..., xn+1), vi = vi(x1, ..., xn+1), i =
1, 2, such that pα = u1v

−1
1 = u−12 v2 mod (Nab−1 ∩Kerδ).

Proof We show first that for any words c, q ∈ Fn+1 the inclusion hold:

(∗) cx−1n+1 ∈ F−1n+1Fn+1 mod (Nab−1 ∩Kerδ),

(∗∗) x−1n+1q ∈ Fn+1F−1n+1 mod (Nab−1 ∩Kerδ).
The law a = b implies balanced and cancelled binary law A = B, so it is
enough to prove the inclusions for the law A(x, y)=B(x, y).

If apply δ to the balanced equality A(c, xn+1) =B(c, xn+1), it becomes
trivial, and hence the word AB−1(c, xn+1) is in Ker δ. Similarly we get
A−1B(xn+1, q) ∈ Ker δ. We put now c, xn+1 for x, y in (ii) (Lemma 2) to
get (∗), and then put xn+1, q in (i) (Lemma 2) to get (∗∗).

We continue the proof modulo (Nab−1 ∩Kerδ). To show that:
p(x1x

−1
n+1, ..., xnx

−1
n+1) ∈ Fn+1F−1n+1, and p(x1x

−1
n+1, ..., xnx

−1
n+1) ∈ F−1n+1Fn+1,

we use induction on the length |p| = m. Let p(x1, ..., xn) = cmcm−1...c2c1,
ci ∈ {x1, ..., xn}, then pα = cmx

−1
n+1cm−1x

−1
n+1...c2x

−1
n+1c1x

−1
n+1. For m = 1,

pα = cx−1n+1 ∈ Fn+1F−1n+1 and by (∗), pα = cx−1n+1 ∈ F−1n+1Fn+1.
Let |p| = m, then p = cmcm−1...c2c1 and by inductive assumption pα =

cmx
−1
n+1 · qr−1. Then by (∗∗), there exist s, t ∈ Fn+1, such that x−1n+1q = st−1

and hence pα = cm(x−1n+1q)r
−1 = cm(st−1)r−1 = (cms)(rt)

−1 ∈ Fn+1F−1n+1.
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Again for |p|=m, we get by assumption pα=r−1s · c1x−1n+1 =r−1(sc1)x
−1
n+1.

By (∗) for sc1 instead of c, there exist t, u ∈ Fn+1, such that sc1x
−1
n+1 = t−1u.

Then pα = r−1(sc1)x
−1
n+1 = r−1t−1u = (tr)−1u ∈ F−1n+1Fn+1 as required. 2

Proof of the Theorem

We have to show that for every nontrivial n-variable semigroup law a = b
there exists an n+ 1-variable semigroup law u = v such that Vab−1 = Nuv−1 .

By Lemma 5 for the words a = a(x1, ..., xn) and b = b(x1, ..., xn) we get
respectively: aα = u1v

−1
1 mod (Nab−1 ∩Kerδ), and bα = u−12 v2 mod (Nab−1 ∩

Kerδ). Then (ab−1)α = u1v
−1
1 v−12 u2 = u−12 (u2u1)(v2v1)

−1u2 mod (Nab−1 ∩
Kerδ). We denote u := u2u1, v := v2v1, then

(ab−1)α = (uv−1)u2 mod (Nab−1 ∩Kerδ) (4)

This implies:
N(ab−1)α ⊆ Nuv−1Nab−1 (5)

and
Nuv−1 ⊆ N(ab−1)αNab−1 . (6)

To prove the equality

N(ab−1)α = Nuv−1 , (7)

we apply δ to (4). Since αδ is the identity map on xi, i ≤ n, and δ is in End+,

we have that ab−1 = (ab−1)αδ is conjugate to (uv−1)
δ ∈ N δ

uv−1 ⊆ Nuv−1 .
This implies Nab−1 ⊆ Nuv−1 which, together with (5) gives N(ab−1)α ⊆ Nuv−1 .
Since by (3), Nab−1 ⊆ N(ab−1)α , it follows from (6), that Nuv−1 ⊆ N(ab−1)α ,
and hence (7) holds.

Now, since by Corollary 1, Vab−1 = N(ab−1)α , we have by (7), the required
equality Vab−1 = Nuv−1 .2

Example of implications in semigroups [8]

The law (xy)2 = (yx)2 implies xy2 = y2x for groups because we can apply
the automorphism α : x → x, y → x−1y. For semigroups we can not use
this automorphism. To prove that (xy)2 = (yx)2 implies xy2 = y2x for
semigroups we show first that (xy)2 = (yx)2 implies:
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(i) (yx)2y = y(yx)2, (use the word y(xy)2),
(ii) x((yx)2y)2 = ((yx)2y)2x, (use (i)α, xα = xyx2, yα = y ),
(iii) ((yx)2y)2 = (yx)4y2, (use ((yx)2y)((xy)2y) ),
(iv) (yx)4 = (xy)4.

Then for some word p we start with p · xy2 and by using (i) - (iv) obtain
p · y2x, which by cancellation, implies required xy2 = y2x.

Namely, for p = (xy)4 we have

pxy2 = (xy)4xy2 = x(yx)2(yx)2yy
(i)
= x(yx)2y(yx)2y =

x((yx)2y)2
(ii)
= ((yx)2y)2x

(iii)
= (yx)4y2x

(iv)
= (xy)4y2x = py2x,

which gives pxy2 = py2x and hence xy2 = y2x as required.
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