
Finitely Generated G′ and Positive Laws

Olga Macedońska
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Abstract

We conjecture that a finitely generated relatively free group G has
a finitely generated commutator subgroup G′ if and only if G satisfies
a positive law. We confirm this conjecture for groups G in the large
class, containing all residually finite and all soluble groups.

Let u, v be different words in a free semigroup generated by X={x1, x2, ...}.
A group G satisfies n-variable positive law u(x1, ..., xn) = v(x1, ..., xn), if un-
der each substitution X → G, the equality u(g1, ..., gn) = v(g1, ..., gn) holds.
We denote: Nc – the variety of all nilpotent groups of nilpotency class c,
Sn – the variety of all soluble groups of solubility class n,
Be – the Restricted Burnside variety of exponent e, i.e. the variety gener-
ated by all finite groups of exponent e. All groups in Be are locally finite of
exponent e. The existence of such varieties for each positive integer e follows
from the positive solution of the Restricted Burnside Problem and relies on
classification of finite simple groups (see [6]).

Every finitely generated group satisfying positive law has finitely gener-
ated commutator subgroup ([1], p. 514). The converse is not true in general,
for example the group G = 〈x〉2 ∗ 〈y〉3 has no laws while G′ is finitely gener-
ated. We conjecture that if G is a finitely generated relatively free group then
G′ is finitely generated if and only if G satisfies a positive law. We confirm
the conjecture for groups in the large class C, introduced in [1] as a sum
C = ∪n∆n, where ∆1 is the class of groups contained in all finite products of
varieties V1V2...Vm, where Vi is either Sd or Be for various d, e, and
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∆n+1 = {groups, locally in ∆n} ∪ {groups, residually in ∆n}.
We note that ∆1 contains all nilpotent-by-finite groups.

{G′f.g.} denotes the class of all finitely generated, relatively free groups with
finitely generated commutator subgroups,
PL denotes the class of finitely generated, relatively free groups, which satisfy
positive laws. Inclusion {G′f.g.} ⊇ PL follows from [1].

Our main result here is that {G′f.g.} ∩ C consists of nilpotent-by-finite
groups and coincides with PL ∩ C.

Lemma 1 Let G be in {G′f.g.}. Then every derived subgroup in any finitely
generated group H ∈ var G is finitely generated.

Proof Let G be freely generated by g1, g2, ..., gn, n > 1. If we map all
generators, but g1, g2 into 1, then the finitely generated subgroup 〈g1, G′〉
has an image 〈g1〉 [〈g1〉, 〈g2〉] = 〈g〈g2〉1 〉, which also is finitely generated. Since
G is relatively free, it follows that in any finitely generated group H ∈ var G
for all a, b ∈ H, the subgroup 〈a〈b〉〉 is finitely generated. Then by ([4], p.
1421), every derived subgroup in H is finitely generated. 2

Lemma 2 Let G be in {G′f.g.}. Then every finitely generated soluble group
in var G is nilpotent-by-finite.

Proof It is enough to show that if G itself is soluble then G is nilpotent-
by-finite. The group G is isomorphic to F/V , where F is a finitely gen-
erated free group and V – a verbal subgroup. If there exists p such that
V ⊆ F ′′(F ′)p, then G/G′′(G′)p ∼= F/F ′′(F ′)p has an infinitely generated
commutator subgroup. So G also has an infinitely generated commutator
subgroup, which contradicts the assumption. Hence for some n and for all p
we have F (n) ⊆ V 6⊆ F ′′(F ′)p. Then by ([2], (ii)), G is nilpotent-by-finite. 2

Lemma 3 Let G be in {G′f.g.}. If G is residually finite, then G is nilpotent-
by-finite.

Proof As in the proof of Lemma 1, we get that for free generators g1, g2 ∈ G
the subgroup 〈g〈g2〉1 〉 is finitely generated by, say, k elements. Since G is
relatively free, it follows that for any a, b ∈ G, the subgroup 〈a〈b〉〉 is generated
by at most k elements. Then G has no sections isomorphic to a twisted
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wreath product E twrLH, of an elementary abelian p-group E and a finite
cyclic group H, where |H : L| > k. Now by Theorem 4 in [7] it follows that
G contains a soluble normal subgroup N of finite index. So N is finitely
generated and by Lemma 2, N is nilpotent-by-finite. Then G, as a finite
extension of N , is also nilpotent-by-finite. 2

Lemma 4 Let G be in {G′f.g.}. Then every section of G, which belongs to
a product BeSd for some e, d, is nilpotent-by-finite.

Proof It is enough to assume that G itself belongs to a product BeSd. Then
by Lemma 1, G(d) is finitely generated and since G(d) ∈ Be, we get that G(d) is
finite. Then the centralizer C of G(d) must have a finite index in G, and hence
is finitely generated. Moreover, C is soluble, because C(d+1) ⊆ [G(d), C] = 1.
By Lemma 2, C is nilpotent-by-finite. So G, as a finite extension of C, is
also nilpotent-by-finite. 2

Theorem 1 Every group in {G′f.g.}∩C is nilpotent-by-finite.

Proof We show first that every group in G in {G′f.g.}∩∆1 is nilpotent-by-
finite. Since G is in V1V2 . . .Vm, where each variety Vi is either soluble
or a Restricted Burnside variety, then G has a finite series 1 = N0 / N1 /
...Nm−1 /Nm = G, in which each section Ni/Ni−1 belongs to Vi. If a section
Ni/Ni−2 is in BeSn for some e, n, then by Lemma 4, this section belongs to
a product of a nilpotent variety and a Restricted Burnside variety. So we can
replace (starting from the right) every pair of the type BS by some pair of
the type NB, and obtain, that G belongs to a soluble-by-Restricted Burnside
variety SdBk for some d, k. Then, by Lemma 2, G is nilpotent-by-finite. So
{G′f.g.}∩∆1 consists of nilpotent-by-finite groups.

If G is a finitely generated group in the class C, then we can see that
G is residually in ∆1. Indeed, if G is in ∆n+1, then G has to be residually
in ∆n. That is G is a subcartesian product of finitely generated quotients
G/N ∈ ∆n. Then, similarly, each G/N is residually in ∆n−1 and hence G is
residually in ∆n−1, which implies inductively that G is residually in ∆1.

Let now G be in {G′f.g.}∩C, then G is a subcartesian product of its
quotients G/N ∈ ∆1 ∩ var G. Since ∆1 is a union of varieties, G/N is an
image of a relatively free group in {G′f.g.}∩∆1, which, as we have proved,
is nilpotent-by-finite. Then G/N is nilpotent-by-finite and by [3], G/N is
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residually finite. It follows that G also is residually finite. Now by Lemma
3, G is nilpotent-by-finite as required. 2

By [1], a finitely generated group G ∈ C is nilpotent-by-finite if and only if
G ∈ PL. So we get the required inclusion {G′f.g.}∩C ⊆ PL∩ C which gives

Corollary 1 A finitely generated, relatively free group G ∈ C satisfies a
positive law if and only if its commutator subgroup G′ is finitely generated.

Corollary 2 Each n-engel group G ∈ C satisfies a positive law.

Let G ∈ C be a finitely generated relatively free n-engel group. The law
[x, y, y, ..., y] implies that xyn is in a subgroup generated by x, xy, ..., xyn−1

.
Then for all a, b ∈ G, the subgroup 〈a〈b〉〉 is finitely generated and hence G′

is finitely generated. Then by Corollary 1, G satisfies a positive law. 2

Question Does there exist a finitely generated, relatively free group G, con-
taining a free nonabelian subsemigroup and with G′ finitely generated?
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