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Abstract 

The paper presents modified LMS based filtering 
algorithm of non-stationary nonlinear engine-
induced acceleration signal. Analysis is dedicated to 
vehicle measurement system which is a key element 
of vibration control system. Engine-induced 
vibrations, which can be modelled using multi-notch 
filter, are assumed to corrupt stationary wideband 
desired signal defined in a band of 0 – 100 [Hz]. 
Initially, it was stated, based on offline analysis, the 
optimal filter parameter exists for all experiment 
conditions. Adaptation constant of LMS algorithm 
as well as bandwidth parameter of multi-notch filter 
are made dependent on cross-correlation of filtered 
signal and its delayed version as well as on power 
estimation of input corrupted signal. Time-frequency 
domain analysis proved significant efficiency of the 
adaptive filtering algorithm. 
 
Keywords: vehicle engine nonlinear vibrations, LMS 
based measurement filtering, multi-notch filter. 

1. Introduction 

Nowadays kinematic sensors based measurement 
systems used in vehicles require high accuracy and 
reliability, especially in applications dedicated to 
vibration control, road profile scanning and ride 
safety. However, such measurement data, especially 
if taken using accelerometers, can be very easily and 
strongly corrupted with vibration and acoustic noise 
generated by vehicle engine. Engine-induced 
nonlinear vibrations contribute to the resultant 
vibration measurements, apart from desired road and 
maneuver-induced vibration measurements. 

Further analysis is dedicated to all-terrain vehicle 
which exhibits high level of engine-induced 
vibrations, such as in [1]. Frequency band, in which 
these disturbances are defined in most cases overlaps 
band of desired measurements so disturbances 
cannot be cancelled using straight-forward linear 
band-pass filtering method. Moreover, vehicle 
engine speed and frequency of engine ignitions are 
not constant which makes the disturbance non-

stationary and requires adaptive filtering methods to 
be used [2]. 

Adaptive LMS (Least-Mean Square) based 
algorithms include reference model which is, in 
many cases, constituted as FIR filter [3]. However, in 
frequency tracking applications the reference model 
needs to be suited to the nonlinear multi-harmonics 
disturbance, which can be satisfied by narrowband 
filter. Parameters of all notch sub-filters are related 
which reduces the number of multi-harmonic 
parameters and leads to increase of algorithm 
accuracy. Usually kinds of narrowband filters are 
taken into account in tracking of single harmonic, 
i.e.: zeroing polynomial filter [4] and notch filter [5], 
which includes additional bandwidth parameter. 

Frequency tracking methods dedicated to single 
harmonic signals lose its accuracy in case of 
nonlinear multi-harmonic signals. Separate 
narrowband filters can be used; however, all sub-
filters may track the same dominant harmonic. 
Instead, comb filters [6] or cascade multi-harmonics 
filters [7] are recommended to accompany LMS 
algorithm. Modifications of multi-notch filter based 
adaptive algorithms additionally include a scheme of 
parameters adaptation such as [8] in which notch 
filter bandwidth is made dependent on LMS 
adaptation constant. Both LMS adaptation constant 
and multiple-notch filter bandwidth can be also 
made dependent on cross-correlation derived based 
on filter output and delayed output [9]; additionally, 
stability analysis was presented. 

The article is organized as follows. Chapter 2 
presents features of an experimental vehicle and its 
measurement system. In chapter 3 an offline solution 
for the problem is reported. Chapter 4 introduces 
modified multi-notch filter which is based on LMS 
algorithm. In chapter 5 efficiency of the algorithm is 
validated. Finally, chapter 6 concludes the results. 

2. Experimental vehicle and 

measurement system characteristics 

Research is dedicated to an ATV (all-terrain 
vehicle), strictly ATV Sweden CF-Moto 500 (Figure 
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1), which is the key element of a vehicular vibration 
control system [10]. Measurement part of the system 
consists of accelerometers which are located in the 
vehicle body and underbody parts. There are 
numerous components which can contribute to the 
resultant acceleration measurements. Some of them 
describe road-induced or maneuver-induced vehicle 
vibration as well as vibration generated by other 
vehicle elements; others have origin in vehicle engine 
vibrations, which are not desired. 

 
Figure 1. Experimental vehicle including accelerometers and engine. 

The experimental vehicle is equipped with four-
stroke petrol engine including one cylinder; 
consequently, every second engine revolution an 
ignition of fuel-air mixture occurs. Engine-induced 
vehicle body vibrations exhibit high level of power 
and include multiple higher harmonics. It can be 
stated that first harmonic should be correlated with 
engine ignitions; second harmonic corresponds to 
engine speed. Further harmonics are derivatives of 
first two fundamental harmonics. 

 
Figure 2. Power spectral density function for vehicle engine run at 

42 [Hz] of engine speed. 

Initially, engine-induced disturbance was analyzed 
during 50 [sec] long engine’s run for manually set 
engine speed of 42 [Hz] with results presented as 
power spectral density function (Figure 2). It can be 
noticed that theoretical expectations about frequency 
of engine ignitions and engine speed as well as multi-
harmonics nature of acceleration measurements are 
justified by experiment results. Frequency of the first 
and the second harmonics are equal to 21 [Hz] 
(engine ignitions) and 42 [Hz] (engine speed), 
respectively. 

3. Offline filtering of measurements 

Two classes of measurement filtering algorithms 
can be distinguished, i.e.: online and offline filtering 
methods. Online filters process data during real-time 
algorithm execution. Offline filters are more strictly 
introduced as smoothers due to their a posteriori 
data processing and utilized if an object is observed 
rather than controlled. Offline smoother output is 
available after all input data are acquired; however, 
offline algorithms can be more accurate, are non-
causal and take advantage of future samples. Mean 
values of certain parameters and quantities can be, 
initially, estimated for measurement data and used 
again in the filtering method. The following offline 
analysis can mainly show that there exists an optimal 
solution to the problem of engine-induced signal’s 
filtering. 

3.1. Cascade connection of notch sub-filters 

Nonlinear engine-induced acceleration signal can 
be modelled with high accuracy as multi-harmonic 
filter. Two classes of narrowband digital filters have 
been taken into account, i.e.: zeroing polynomial 
filter and notch filter. Notch filters, which have been 
selected for the task, exhibit non-constant group 
delay; however, bandwidth of zeroing polynomial 
filter cannot be tuned as in case of 2-order notch 
filters due to the poles’ absence. 

Center frequencies of all sub-filters included in 
the multi-notch filter have been made dependent on 
consecutive multiplications of one parameter 
denoted as fundamental frequency parameter. 
Consecutive harmonics of engine-induced 
disturbance can be filtered out using such cascade 

notch-based filter which is defined in z domain as 
follows: 
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where M = 5 is a number of notch sub-filters 

included in the cascade filter. Symbol rH denotes 

bandwidth parameter of all notch sub-filters and ωH 
denotes their center frequency parameter. 

3.2. Nonlinear solution space of quality 

index 

Problem of optimizing parameters of the multi-
notch filter (1) can be assumed as modification of 
searching for optimal Wiener filter parameters. 
However, in this case a filter, which is being 
adjusted, is nonlinear and includes one parameter. 
According to Wiener filter theory, desired and 
estimated signals are defined. These signals are 

denoted as x(n) and )(ˆ nxM  and correspond to 

corrupted engine-induced acceleration signal and the 
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estimated signal which is the output of the filter (1), 

respectively. Estimated signal )(ˆ nxM  is derived 

based on x(n) as follows: 

 )()],,(1[)(ˆ nxrnhnx HHMNotchM     (2) 

where hNotch-M(n) is an impulse response of the multi-
notch filter (1). 

Main goal of the optimization problem can be 

defined as searching for parameter ωH which 
minimizes a mean square value of the estimation 

error eM(n). If such optimization condition is met, 
the filter output will be the MMSE (minimum mean-

squares error) estimate of desired signal x(n). Mean 
squared estimation error can be approximated by 
estimation quality index as follows: 
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where 

 )(ˆ)()( nxnxne MM   (4) 

Values of the quality index (3) were derived in the 
offline manner based on measurements for engine 
speed equal to 58 [Hz] and presented in Figure 3. 

Two cases are analyzed which differ in value of rH 
parameter of the filter (1), i.e.: 0.65 and 0.85. Due to 
strong nonlinearity of filter transform function (1) a 
solution space of quality index (3) includes numerous 
local minimum points and is not unambiguous. An 

optimal filter parameter ωH can be obtained for the 
global minimum point of the quality index (3). 

 
Figure 3. Solution space of QIeM quality index for engine speed equal to 

58 [Hz] and bandwidth parameter values 0.65 and 0.85. 

Nonlinear shape of QIeM solution space significantly 
increases difficulty of minimum searching algorithm 
which tends to converge to local minimum points. It 
is worth noticing that the lower parameter of multi-
notch filter, the smoother the solution space and 

greater its slope (Figure 3). For lower rH equal to 
0.65 it is easier to reach the neighborhood of the 
global minimum; however, for such conditions the 
minimum searching algorithm is not accurate 

enough. After increasing rH parameter, global 
minimum point (Figure 3) occurs at frequency equal 

to 29 [Hz] which is equivalent to the frequency of 
engine ignitions. 

4. Online filtering of measurements 

Real-time applications require a minimum point 
of the solution space of function (3) to be found 
iteratively and online. Gradient-based methods, such 
as LMS algorithm, can converge to the minimum 
point online, which makes them widely used in the 
field of vibrations cancellation and filtering. 

4.1. Multi-notch filter based LMS algorithm 

The LMS adaptive algorithm was selected to be 
used in measurement filtering, accompanied by 
multi-notch filter (1) as a reference model; it is 
defined including squared estimation error (4) as 
follows: 
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where symbol μ denotes adaptation constant of the 
LMS algorithm. According to the stability analysis 

presented in [10], LMS algorithms remain stable if μ 

remains within range of (0 ; 1/λmax), where λmax is the 
maximum eigenvalue of the auto-correlation matrix 
which is derived based on the desired input signal 

x(n). The LMS correction element can be rewritten 
as follows: 
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Substituting (6) to (5) gives a final version of LMS 
algorithm as follows: 
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The adaptive measurements filtering problem can 
be formulated as frequency tracking problem which 
is dedicated to multi-harmonics signals. A novel 
approach to frequency tracking method was 
presented in [10]. Authors have included the multi-
notch filter (1) in LMS algorithm and derived a 
recursive formula for the gradient of the estimation 
error (4) as follows: 
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for m = 1,2,…,M, where 
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Initial values of Gm and em used in the recursive 
expression (8) are constituted as follows: 

e0(n) = x(n), G0(n) = 0, G0(n-1)  = 0, G0(n-2) = 0. 
Authors [10] have proposed choosing the initial 

value of bandwidth parameter rH in the 
neighborhood of quality index (3) minimum point to 
prevent the algorithm from converging to the local 
minimum point. 

4.2. Tuning of adaptation constant μ and 

bandwidth parameter rH 

Due to the non-trivial shape of solution space 
function (Figure 3), authors [10] have made 
improvement to the presented algorithm (7) – (9). 

Consequently, parameter rH can be adjusted 
adaptively and set to high values if the algorithm has 
already converged to the global minimum. In other 

cases rH needs to be set to low values to increase 
slope of the solution space function, increase the 
algorithm’s convergence rate and assure the 
algorithm will converge to the global minimum, not 
the local one. Instantaneous quality of adaptation 
result can be evaluated using cross-correlation 

estimation of the estimation error signal eM(n) and 
its delayed version as follows: 

 )1()()(  nenenC MMM  (10) 

High frequency component of cross-correlation (10) 
is filtered out using low-pass 1-order filter including 

parameter λC as follows: 

 
)()1()1(

)(

nCnC

nC

MCLPMC

LPM










 (11) 

Adaptation constant μ is also made dependent on 
cross-correlation estimation (11); that is, while 
algorithm is reaching the global minimum the 

parameter μ should be significantly greater than zero 
until the algorithm reaches the optimal solution and 

μ is set close to 0 to avoid algorithm’s divergence. 

Dynamics of rH and μ is defined in [10] using 
exponential functions as follows: 
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where rH is limited to the chosen range of (rHmin ; 

rHmax) and μ is within (μmin ; μmax). Symbol α denotes 
saturation rate of Expressions (12) and (13); it can be 
also interpreted as a scaling factor of cross-

correlation estimation CM-LP. Additionally, an initial 
coarse estimation of frequency, which is to be 
tracked, was proposed; however, it is inapplicable for 
filtering problem presented in the current paper. 

4.3. Estimation of engine-induced 

acceleration power 

Experimental results showed that there exists 

dependence of adaptation constant μ and saturation 

rate α on power of the corrupted input signal x(n). 
Power estimation problem is solved as follows: 

 )()1()1()( 2 nxnVnV VLPxVLPx     (14) 

where Vx-LP is corrupted signal power estimation 
after excluding high frequency components using 

filter parameter λV. Corrected adaptation parameter 

μV is inversely proportional to the power estimation 

(14) and linearly dependent on the original μ 
parameter as follows: 

 )()()( 1 nVnn LPxV

   (15) 

Moreover, it was stated based on measurements, that 
due to the ATV engine construction, the higher 
engine speed, the higher estimated power (14). 

Relation between estimated power Vx-LP and 
saturation rate α was empirically approximated as: 

 )](log[)( 1 nVn LPxV

  (16) 

where αV denotes the scaling parameter. 

5. Experimental results 

All experiments were performed using the 
experimental vehicle (Figure 1). Three classes of 
measurement data analysis are distinguished, i.e.: 
frequency and time domain analysis of stationary 
engine-induced acceleration signals as well as 
frequency/time analysis of non-stationary 
measurements. For the first two classes, 
measurements, which were taken for different values 
of engine speed, were used for tuning and validating 
parameters of the adaptive filtering algorithm. 
According to the third class, a non-stationary 
measurement signal was composed based on 
different stationary measurement signals and used in 
final time/frequency domain non-stationary 
validation. 

5.1. Experiment conditions 

Engine-induced vibrations mostly propagate into 
the vehicle body so the front right accelerometer is 
the sensor which captures such vibrations with the 
highest gain. All measurement data were acquired 
with sample rate of 500 [Hz]. Experiments were 
performed for four conditions which differ in value 
of manually set engine speed: 2500, 3000, 3500 and 
4000 revolutions per minute (42, 50, 58 and 67 
revolutions per second). Each measurement set was 
limited to 50 seconds of steady state and constant 
engine speed. 
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It is assumed that the vibration measurement 
system is dedicated to acceleration acquisition in the 
frequency band within the range of 0 – 100 [Hz]. 
Such frequency band overlaps the band of engine-
induced acceleration signal. For the need of 
algorithm validation a desired stationary wideband 

signal has been generated, denoted as sref(n) and 
defined in the band of 0 – 100 [Hz]. Power of the 
desired signal is adjusted to the certain engine-
induced acceleration power and described by 
DSENR coefficient (desired signal to engine noise 
ratio). 

The adaptive filtering algorithm was validated 
based on all measurement data sets including added 
wideband desired signal. Frequency parameter 

ωH(n), which was estimated in the first stage, was 
used in the second stage in filtering task using 

constant bandwidth parameter rF: 

 )()](,,[)( nxnrnhny HFMNotchF     (17) 

Parameter rF is set to 0.85 which corresponds to 
significantly narrowband notch filter and prevents 
multi-notch filter from cancellation of wideband 
desired signal components. 

5.2. Frequency domain analysis of 

stationary engine-induced vibrations 

In the following analysis engine-induced 
vibrations signal is assumed as stationary. Parameters 
of the algorithm were estimated for all measurement 
data sets (Table 1) and were used in further 
validation. It was stated that for all experiment 
conditions the algorithm converges to the correct 

value of parameter rH. The power spectral density 
function is presented in Figure 4 for engine speed 
equal to 58 [Hz] and for DSENR of 1.0. 

Tab.1. 

Parameters of LMS based filtering algorithm  

M = 5 λC = 0.995 λV = 0.999 

rHmin = 0.50 μmin = 0.01 αV = 900 

rHmax = 0.85 μmax = 0.1 rF = 0.85 

 
Figure 4. Power spectral density function of corrupted and filtered 

stationary engine-induced vibrations for engine speed of 58 [Hz] and 

desired signal to engine noise ratio equal to 1.0. 

The figure shows an averaged PSD of corrupted 
and filtered signals estimated for 50 seconds. The 
bandwidth of harmonic peaks mainly comes from 
inaccuracy of setting engine speed; however, it is 
sufficient in the analyzed case. It can be noticed that 
fundamental frequency of measurement signal is 
being tracked properly and the final harmonic filter 
(17) cancels engine-induced harmonic peaks 
accurately not corrupting the desired wideband 
signal. 

5.3. Time domain analysis of stationary 

engine-induced vibrations 

In order to qualify performance of the filtering 
algorithm, a quality index has been defined: 
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where sref(n) denotes desired wideband signal, 

snoisy(n) denotes filtered yF(n) or unfiltered corrupted 

x(n) signal. Value of the quality index QIF is 
inversely proportional to the quality of the 
measurement signal. Both estimation results groups 

of QIF for filtered and unfiltered signals are listed in 
Table 2. Power of the wideband desired signal is 
described using DSENR and varies from 0 to 5. For 
all stationary experiment conditions the algorithm 
improves quality of corrupted measurement signal. 
Significant degradation of filtering quality can be 
stated for certain DSENR values; the higher the 
engine speed, the lower border of significant 
degradation which is approximately equal to 1.0 for 
engine speed of 67 [Hz]. 

Tab.2. 

Quality index QIF for stationary and non-stationary 

engine-induced vibrations  

Quality Index QIF [m2s-4] 

Engine 

speed 

[Hz] 

Filtered Signals 

Corrupted 

Signals 

Desired wideband signal 

to engine noise ratio 

0 0.1 1 5 

42 0.19 0.19 0.20 0.23 0.91 

50 0.26 0.26 0.27 0.46 1.49 

58 0.32 0.32 0.34 0.63 4.28 

67 0.49 0.49 0.94 25.50 23.48 

 

Volatile 0.89 0.94 0.94 1.99 4.68 

5.4. Time/Frequency domain analysis of 

non-stationary engine-induced vibrations 

Validation of the filtering algorithm was 
additionally performed using a non-stationary 
measurement signal which has been prepared as a 
compound of all parts of stationary engine-induced 
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signals, each 10 [sec] long for certain engine speed 
values (Figure 5a). Such experiment allows validating 
accuracy of the algorithm while engine speed is 
changing and wideband desired signal is added to the 
non-stationary disturbance signal. Time-frequency 
characteristic of such non-stationary measurement 
signal and results of adaptive filtering which shows 
significant improvement of non-stationary 
measurements are presented in Figure 5b. High 
performance of the algorithm for non-stationary 
disturbance has been also estimated using quality 

index QIF (18) (Table 2). Similarly to stationary 
vibrations dedicated cases, also filtering of non-
stationary engine-induced vibrations is 
recommended for DSENR not higher than 1.0. 

 
(a) 

 
(b) 

 
Figure 5 Time-frequency analysis of adaptive filtering for non-stationary 

engine-induced vibrations and desired signal to engine noise ratio equal 

to 1: a) desired engine speed, b) time-frequency filtering results. 

6. Conclusions 

Engine-induced vibrations have significant 
impact on the quality of measurements taken in 
vehicles. Most of road vehicles are equipped with 
engines which can significantly deteriorate accuracy 
of measurements while running. The adaptive 
filtering LMS based algorithm including multi-notch 
filter was proposed. Validation of the filtering 
algorithm was performed using offline and online 
methods. An offline measurement analysis showed 
that an optimal filter, which efficiently suppresses 
nonlinear engine-induced vibrations, exists. 
Developments of the adaptive algorithm improve 
filtering efficiency in case of stationary and non-

stationary engine-induced acceleration signals as well 
as additional wideband desired signal. 

Further improvements need to be included to 
increase accuracy of the algorithm. The algorithm 
may be used also in applications of fundamental 
frequency tracking and engine speed estimation. 
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