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Abstract 

The application of indivertible elementary bilinear 
stochastic models in data encryption has been rece-
ntly proposed. The preliminary result obtained, sho-
wed that it is possible to encrypt text information by 
bilinear stochastic process and restore it (decryption) 
by dedicated identification algorithm. This paper 
presents a discussion about improvement of encod-
ing procedure used in that application basing on 
statistical properties of the estimation procedure 
applied to elementary bilinear stochastic process. 

1. Introduction 

The elementary bilinear stochastic models (EB) are 
the simplest representatives of bilinear stochastic 
models family. The exploration of the nonlinear sto-
chastic modelling begun in 1978 Granger and An-
dersen [1] are recognised as the first researchers in 
this filed. They may also be counted as the first au-
thors who focused their work on bilinear stochastic 
models [2]. Few years later other contributions to the 
field of bilinear time series modelling have been 
done by Subba T. Rao [3], Quinn, Gooijger and 
Heuts [5]. The last mentioned authors prepared the 
fundaments for method of moments, which is up to 
now one of the most common identification algo-
rithm used for bilinear time-series. Also the Least 
Squares (LS) algorithm has been tested for bilinear 
stochastic models by Guegan and Pham [6]. Unfor-
tunately, both of this algorithms showed very limited 
efficiency in estimation of the coefficients of bilinear 
stochastic models. 

First improvement in LS algorithm was made by 
Bielińska and Nabagło [7] in 1994. They proposed a 
simple modification for LS algorithm which sta-
bilised the identification procedure and this way re-
duced the bias of the estimates obtained by it. This 
modification was based on enforcing the limit on 
identification error values, which estimates of stimu-
lation signal in this case. One year later Brunner and 
Hess [8] discovered the next troublesome feature of 
the identification of bilinear time series models, 
studying the shape of the cost function in Maximum 
Likelihood function (ML). They found that this 

function may possess global minimum which is hard 
to access by common optimisation algorithm used in 
identification. The similar observations for LS algo-
rithm were presented in [9]. Also it was stated that 
complicity of the cost function depends on the EB 
model coefficient value. 

Further research performed by Maliński [10] con-
cerned the influence of proposed in [7] modification 
on shape of the LS cost function. The author 
showed that it is possible to obtain unbiased esti-
mates of EB model coefficient in its entire stability 
range if the enforced limit on identification error 
values is correctly selected. Next development by the 
same author [11] provided with solution how to au-
tomatically select the correct value of limit enforced 
on identification error values. 

Finally, the practical application of indivertible 
EB models (which become identifiable) was presen-
ted in [12]. The noticeable precision obtained in 
identification of indivertible EB models provided 
with opportunity to use it in data encryption applica-
tions. The results were promising, but there are still 
some problems to be solved. Therefore, further in 
this paper the discussion will be presented to show if 
it is possible to improve the efficiency of this en-
cryption application using some statistical features of 
identification of EB models. 

2. Theoretical background 

The elementary bilinear stochastic (EB) model (1) 
is defined as a sum of a single bilinear component 
and a stimulation sequence e(t): 

 )()()()( ltyktetety −−+= β . (1) 

Typically, some assumptions about a stimulation 
sequence e(t) must be undertaken. For the purpose 
of this paper we assume that e(t) sequence will have 
a Gaussian distribution thus following statistical pro-
perties:  
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Due to above assumptions the stability (3) and 
inevitability (4) are defined by following formulas: 

 122 <λβ ; (3) 

 1' )2(2 <ymβ , (4) 

where })({' 2)2( tyEm y = . 

In the practical application proposed in [12], the 
stable indivertible EB models are used. The stable in-
divertible bilinear model is the model for which co-
efficient β, and stimulation sequence variance λ2 
satisfy the stability condition (3), but do not satisfy 
invertibility condition (4). As shown in [10] and in 
[11] the biases for estimates obtained for those spe-
cific models are the lowest. Therefore, it is possible 
to assign the certain value of β coefficient to the 
character and encrypt it by generation the stochastic 
process using EB model. Then, the original β value 
can be restored using identification of the EB model 
with the same structure as original. In result the orig-
inal assigned information can be restored. 

Although, this encryption methodology seems to 
by trivial and uninnovative, there is a special feature 
of this approach to data encryption which make it 
interesting. The stochastic process obtained by simu-
lation of EB model can carry the information but its 
autorotation function has zero (insignificant) values 
as reported in [12]. It means that everyone, who will 
use autocorrelation to seek for information imprint-
ed in data sequence encrypted this way, will fail to 
find it. This is the main idea of using the indivertible 
EB models for data encryption. 

Although, the dedicated identification algorithm 
is already developed, it is in publishing process at the 
time this paper is written, so it will not be presented 
here and it is not possible to provide the literature 
reference to it now. However, the results provided in 
[10] and [11] should be enough to prove that indiver-
tible models are identifiable. 

3. Encoding procedure 

In the original paper [12] the encoding procedure 
used assignment of each alphanumeric character to 
specific value of β coefficient. The assignment has 
been made using predefined coding table which 
linked the characters to the precise sub-ranges of the 
coding range. Those sub-ranges were evenly distribu-
ted in the entire coding range so the width of each 
sub-range was the same.  

Now, looking into results provided in [10] and 
[11] it is possible to come to the conclusion that 
scatter of identification results decreases along with 
increasing value of EB model coefficient β. It means 
that a chance to restore a character assigned to the 
sub-range at the end of the coding range is signif-
icantly larger than a chance to restore the character 
assigned to the sub-range placed at its beginning.  

Due to this conclusion, the idea of the modi-
fication has been brought up to replace the evenly 
distributed sub-ranges with sub-ranges of succes-
sively decreasing width. This means that a sub-range 
at the beginning of the coding rage will be signif-
icantly wider than its counterpart from the end of 
the coding range. In theory it should increase the 
efficiency of this encryption methodology. 

For the purpose of the above proposed modi-
fication, the following nonlinear sub-range width 
function has been proposed: 

  00m
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where: cj is the right border of the j sub-range and 
the left border of the cj+1 sub-range, h is the devia-
tion from the linear width function (see fig. 1), cm is 
the end of the entire coding range and also the right 
border of the last (j = m) sub-range and finally c0 is 
the beginning of the coding range and the left border 
of the first (j = 1) sub-range. The x is the auxiliary 
variable picked from range <0, 1> which is used to 
divide the coding range to explicit number of ranges 
(m). The range <0, 1> of the x variable is always 
divided evenly. 

The example of nonlinear sub-range width fun-
ction (bold line) for m = 4 sub-ranges is presented in 
figure 1. The h parameter defines the deviation from 
linear function (thin line) and provides the oppor-
tunity to control the function concavity (for h > 0) 
or convexity (for h < 0).  

It is obvious that by taking the large enough ab-
solute value of h, we can force the function to 
change monotonicity within the used range of x vari-
able. This is certainly not a desired option, therefore 
the constraint on the function c first divertive (6) in 
point (1,cm) has to be enforced. 

 04' 0 ≥−+−= cchc m . (6) 

The solution to (6) provides with the following 
constraint (7) on the h value: 
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This way we obtained the maximum absolute 
value of h which satisfy our needs for control the 
shape of  sub-range width function. Moreover, in 
order to make the work with this function even easi-
er, the parameter α which is used in following for-
mula: 

 maxhh α= , (8) 

can be introduced. 

Using (8) we released the h parameter with α 
which can be picked from range <-1,1> to ensure 
the correct monotonicity of the sub-range width fun-
ction.
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Fig.1. Nonlinear sub-range with function  

(example for m = 4 sub-ranges). 

Finally, in order to obtain the sub-ranges borders 
(cj values), the three arguments are needed (cm, c0 
and α) and formulas (8), (7) and (5) have to be 
solved in that precise order. 

The proposed nonlinear sub-range width fun-
ction provide us with possibility to assign the char-
acters to the sub-ranges of decreasing (0 < α ≤ 1) or 
incising (0 > α ≥ -1) width. It is also possible to ob-
tain the sub-ranges of equal width (evenly distributed 
in coding range) using function c and parameter 
α = 0. This will produce the same coding tables as 
presented in original paper [12].  

During the encoding procedure the β value equal 
to the centre of the j sub-range is assigned to the 
corresponding alphanumeric character (according to 
the coding table). Then the encryption is performed 
by simulation of N samples of bilinear stochastic 
process using EB model. 

In the opposite procedure, first the decryption 
procedure is executed by acquiring the β value from 
identification performed on N samples of bilinear 
stochastic process. Then the decoding begun and 
obtained β value is compared to the borders of par-
ticular sub-ranges. The decoded character is taken 
from the coding table for j sub-range if identification 
result is satisfying following condition: cj-1 ≤ β < cj. 

4. Simulation results 

Initial simulations have been made similarly to [12] 
using the same information: ‘The indivertible ele-
mentary bilinear time series models for data encryp-
tion’, the same coding range, N-values, etc. More-
over, two different experiments were performed: 

• the first with the same coding table as in [12] 
(α = 0). 

• the second with the modified coding table 
(α = 1). 

The performance indices have been computed ac-
cording to this proposed in [12]: 

• Efficiency Ratio – a percentage of successfully 
decrypted characters, defined as: 
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• Unrecognised Ratio – a percentage of unrecog-
nised characters (identification results beyond 
used coding range), defined as: 
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In formulas above, the R is the number of inde-
pendent encryption/decryption runs, n is number of 
characters in information text, si is number of cor-
rectly decrypted characters in encryption/decryption 
run number i, and the ui is the number of unrecog-
nised characters (identification result beyond the 
coding range) in encryption/decryption run number 
i. The results obtained have been summarised in 
similar graphic representation (Fig. 2) as in [12]. 

The results obtained for α = 0 (Fig. 2a) are very 
similar to those presented in [12], as it has been anti-
cipated. However, surprising is the fact that the re-
sults presented in figure 2b (α = 1) clearly shows that 
proposed modification slightly decreased the effi-
ciency of the decryption. The most significant loss in 
efficiency has been observed for the lower values of 
N-values. The more thorough analysis of this unex-
pected outcome will be presented in the discussion 
below. 
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a)  

b)  
Fig.2. The summarised results of initial simulations:  

a) for αααα = 0; b) for αααα = 1.

Some changes have been made to improve the 
simulations efficiency. The first one concerned the 
information text itself. The original text used in [12] 
contain almost all letters which are lower case. 
Therefore, it cover a fragment of the coding range 
only. The new text information for testing is consist-
ed every character in the coding table and is com-
posed in following arrangement (“_” means 
“space”): “_0123456789ABC…XYZabc…xyz”. 

The second one concerns the N-values that are 
tested. Looking at the initial simulations the results 
obtained for N-values of 500 and higher are very 
similar regardless to the value of α parameter. More-
over, the efficiency of the encryption methodology 
using those high N-values are fairly satisfactory, so 
there is no immediate need for improvement in this 
area. Therefore, the following simulations and analy-
sis concern the first three N-values (50, 100, 250) 
only. 

The new simulations have been performed for 
R = 100 independent encryption/decryption proce-
dures. As in the previous simulations, the overall 
efficiency has been evaluated only. This time the 
efficiency of decryption for every single character in 
the coding table is also rated. The simulations have 
been performed for four different α values taken 

from set A = {0, 0.2, 0.5, 1}. The overall perfor-
mance indices are presented in table 1. 

Tab.1. 

Performance indices of the decryption for different αααα values. 

αααα 0.0 0.2 

N 50 100 250 50 100 250 
ER 23.6 50.1 84.1 24.2 50.5 84.8 
UR 33.2 17.4 4.3 34.4 17.2 4.1 
αααα 0.5 1.0 

N 50 100 250 50 100 250 
ER 23.7 51.1 85.7 23.5 51.3 85.1 
UR 34.0 18.0 4.3 36.2 19.3 5.1 

 
As we can see, the introduction of sub-ranges 

with successively decreasing width (α > 0) has very 
subtle impact on overall efficiency on decryption 
procedure. For low value of this parameter (α = 0.2) 
a very little improvement for every N-value has been 
observed. For midrange parameter value (α = 0.5) 
the slight improvement in efficiency has been ob-
served for N = 100 and N = 250 samples, however 
this improvement is not satisfactory. Finally, the 
results obtained for maximum parameter value 
(α = 1.0) present somehow average efficiency. 

At this point those results can be interpreted in 
many different ways. For example, an improvement 
in efficiency at the beginning of the coding range is 
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nullified by deterioration in efficiency at the end of 
the coding range. Thus, it can be concluded that the 
measurement of the overall efficiency might not be a 
good idea and more thorough analysis is required. 
On the other hand, using a coding table with de-
creasing sub-ranges width might simply have not 
significant enough impact on the overall efficiency to 
overcome the randomness of the results which al-
ways accompany statistical analysis. Also the α value 
itself might have to be very precisely chosen in order 
to observe any improvements at all. This might be 
concluded from the results obtained for α = 0.2.  

To cast more light on this unexpected outcome, 
the following tests, analysing the distribution of suc-
cesses in decryption for different fragments of the 
coding range have been performed. The coding table 
consisting 63 characters has been divided into 8 
fragments called Character Groups and labelled as 
follows: 

• “_-6” – this fragment consist “space” and digits 
from “0” to “6”, 

• “7-E” – this fragment consist digits “8” and “9” 
and upper case letters from “A” to “E”, 

• “F-M” - this fragment consist upper case letters 
from “F” to “M”, 

• “N-U” - this fragment consist upper case letters 
from “N”-“U”, 

• “V-c” – this fragment consist upper case letters 
from “V” to “Z” and lower case letters from 
“a” to “c”, 

• “d-k”- this fragment consist lower case letters 
from “d” to “k”, 

• “l-s” - this fragment consist lower case letters 
from “l” to “s”, 

• “t-z” - this fragment consist lower case letters 
from “t” to “z”. 

After the simulations, during the decoding proce-
dure Character Efficiency Ratio (CER) defined in 
(11) has been computed for every character in the 
coding table: 

 %100
R

s
CER j= , (11) 

where sj is the number of successful decryptions of j 
character in the coding table (j = 1, 2, …, 63). In the 
next step, the CER statistics for every character in 
particular fragment of the coding table have been 
averaged. This procedure has been performed for 
every value of α picked from set A. The results ob-
tained for N = 50, N = 100 and N = 250 are present-
ed in figure 3. 

The results presented in figure 3a-c explain the 
source of problem encountered during computation 
of overall efficiency of the decryption procedure due 
to α value. An explicit improvement in efficiency is 
observed in the first 3 fragments (the beginning of 
the coding range) and even more explicit deteriora-

tion of the efficiency is observed in last 2 or 3 frag-
ments (the end of the coding range). 

a)  

b)  

c)  
Figure 3. Averaged CER values for 

a) N = 50; b) N = 100; c) N = 250. 

5. Summary 

Although the results presented in the previous sec-
tion are not very optimistic, they seem to explain the 
lack of expected improvement. As long as, the im-
provement has not been achieved, the results ob-
tained provide us with interesting remarks. It seems 
that making further changes to the nonlinear sub-
ranges width function is not a good idea. Even if a 
more complicated shape of this function finally pro-
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vides us with a noticeable improvement in decryp-
tion efficiency, there is no reason to expect those 
changes to be significant Therefore, completely dif-
ferent approach to the problem is required in order 
to push further the development of encryp-
tion/decryption methodology based on indivertible 
EB model. 

At this point the possible solution might be seen 
in reduction of characters in the coding table. Per-
haps a two level coding is recurred. First the text 
information will be coded into transitional code 
composed of lesser characters and then an encryp-
tion with EB model might be performed. 
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