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Abstract 
 

In the paper the cast iron latent heat in the form of two components corresponding to the solidification of austenite and eutectic phases 
is assumed. The aim of investigations is to estimate the values of austenite and eutectic latent heats on the basis of cooling curve at the 
central point of the casting domain. This cooling curve has been obtained both on the basis of direct problem solution as well as from the 
experiment. To solve such inverse problem the evolutionary algorithm (EA) has been applied. The numerical computations have been 
done using the finite element method by means of commercial software MSC MARC/MENTAT. In the final part of the paper the 
examples of identification are shown. 
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1. Introduction 
 
At present, to solve the identification problem the 

evolutionary algorithms are among others used. Evolutionary 
algorithm (EA) is a search method that takes their inspiration 
from natural selection, survival and adaptation in biological world 
[1, 2, 3]. EA differ from more traditional optimization and 
identification techniques in that they involve a search from a 
population of solutions not, as in gradient method [4, 5, 6, 7, 8, 9, 
10, 11, 12], from a single point. Each iteration of an EA involves 
a competitive selection that get out poor solutions. The solutions 
with high fitness function are recombined with other solutions by 
exchange of part of the solutions with another ones. Solutions are 
mutated by making a small change to a single element of solution. 
Recombination and mutation are also used. 

The evolutionary algorithm operates on population of 
chromosomes (solutions) which contain the genes. Each 
chromosome is evaluating with use of the fitness function. The 

starting population is created randomly and next each 
chromosome is evaluated. Evolutionary operators change the 
genes values in some chromosomes. The offspring population is 
created as a result of a selection process. The stop criterion can be 
formulated as a maximum number of iterations or after achieving 
the predefined value of fitness function. 

In the paper the evolutionary algorithm is used for an 
identification of parameters appearing in the mathematical 
description of solidification process. 

 
 

2. Direct problem 
 

The energy equation describing the casting solidification has 
the following form [13, 14] 
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where C(T ) is the substitute thermal capacity [13], λ(T ) is the 
thermal conductivity, T, x, t denote the temperature, geometrical 
co-ordinates and time. 

The substitute thermal capacity can be written in the form 
[12] 
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where L is the volumetric latent heat, fS is the volumetric solid 
state fraction at the considered point from the casting domain, TL , 
TS are the liquidus and solidus temperature respectively, cL, cS, cP 
= 0.5*( cL + cS ) are the constant volumetric specific heats of 
molten metal, solid state and mushy zone sub-domain. 

The considered equation is supplemented by the equation 
concerning a mould sub-domain 
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where cm is the mould volumetric specific heat, λm is the mould 
thermal conductivity. 

In the case of typical sand moulds on the contact surface 
between casting and mould the continuity condition in the form 
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can be accepted. On the external surface of the system the Robin 
condition 
 

( ) ( )λ , α ,m m m aT x t T x t T− ⋅∇ = ⎡ −⎣n ⎤⎦  (5) 
 
is given (α is the heat transfer coefficient, Ta is the ambient 
temperature). For time t = 0 the initial condition 
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is also known. 
 
 

3. Experimental determination of 
substitute thermal capacity 
 
To determine the course of substitute thermal capacity of cast 

iron the experimental researches have been realized [15]. The heat 
cast of hypo-eutectic grey cast iron of EN-GJL200÷EN-GJL250 
class has been prepared. The charge material has been chosen 
according to the rules concerning the smelting of cast iron in the 
induction furnace. In the central part of the sampling casting the 
thermocouple PtRh-Pt has been installed. The thermocouple has 
been connected to the registering apparatus. The thermal and 
derivative analysis (TDA) has been done in order to determine the 

characteristic temperatures associated with the change transition. 
So, the heat processes proceeding in the solidifying metal 
connected with the latent heat emission of successive phases have 
been registered taking into account the cooling curve 

( ) ( ),d dT t T x t=
 and its time derivative ( ) /dT t t∂ ∂

. In Figure 1 
the cooling curve at the central point of  the sampling casting 
obtained by means of the experiment is shown.  

Using the diagrams of the thermal and derivative analysis the 
values of temperature-dependent latent heat have been registered. 
Next, the substitute thermal capacity distribution for mushy zone 
containing the information about the austenite and eutectic phases 
has been described – Figure 2. 

 

 
Fig. 1. Experimental cooling curve 

 
Of course, the physical condition in the form 
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must be fulfilled. 
 

 
Fig. 2. Substitute thermal capacity of cast iron 
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So, in the case of cast iron solidification the following 
approximation of substitute thermal capacity can be taken into 
account (Figure 2, eq. (8)) 
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where TE corresponds to the beginning of eutectic crystallization, 
Qaus , Qeu are the latent heats connected with the austenite and 
eutectic phases evolution. 
 
 

4. An inverse problem solution 
 
Let us the parameters appearing in the mathematical model of 

casting solidification are known except the segments p1, p2 
creating the function C(T ) – cf equation (8). 

Additionally, it is assumed that the values 
f

diT at the set of 
point xi (sensor) selected from the casting-mould domain for times 
t f are known 
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To solve the inverse problem the least aquares criterion is 
applied [4, 15] 
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where 
f

d iT
 (cf equation (9)) and ( ),f f

i iT T x t=
are the measured 

and estimated temperatures, respectively. The estimated 
temperatures are obtained from solution of the direct problem (cf 
chapter 1) by using the current available estimate for the unknown 
parameters. 

In order to minimize the functional (10), the evolutionary 
algorithm has been used (e.g. [1, 2, 3]). Evolutionary algorithm 
minimizes the fitness function (functional (10)) with respect to 
parameters pe [15]. A chromosome (vector) characterizes the 
solution 
 

T
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where pe are the genes containing information about the substitute 
thermal capacity function (cf equation (8)). 

The genes are the real numbers on which constrains are 
imposed in the form 
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The evolutionary algorithm starts with an initial population. 

This population consists of N chromosomes pn, n = 1, 2,..., N, 

generated in random way – Figure 3. Every gene is taken from the 
feasible domain. For the assumed values of pn, n = 1, 2,..., N, the 
direct problems described by equations (1) – (5) are solved. The 
next stage is an evaluation of the fitness function (10) for every 
chromosome pn and the selection is employed. The selection is 
performed in the form of ranking selection or the tournament 
selection [1, 2, 8, 9] and the evolutionary operators: mutation and 
crossover are applied. In this way the next population is created. 
The process is repeated until the chromosome, for which the value 
of the fitness function is zero, has been found or after the 
achieving the assumed number of populations. 
 

 
Fig. 3. Population and chromosome structure 

 
In evolutionary computations the following evolutionary 

operators are applied [1, 2, 8, 9, 12]: 
−  uniform mutation operator which changes the genes values in 

chromosome by choosing the new ones in random way, 
−  nonuniform mutation operator which changes the genes 

values in chromosome using the Gauss distribution, the 
amplitude of such mutation in each generation is equal 
σ 1/ ,pop= where pop is number of generation, 

−  arithmetic crossover operator which creates new chromosome 
with genes which are the linear combination of two randomly 
chosen chromosomes. 

In Figure 4 the scheme of evolutionary algorithm is presented. 
 

 
Fig. 4. Flow chart of evolutionary algorithm 
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5. Results of computations 

 

 
The casting–mould system shown in Figure 5 has been 

considered. At first, the direct problem has been solved. The 
following  input data have been introduced: λL = 20 [W/(mK)],  
λS = 40 [W/(mK)], λm =0.7 [W/(mK)], cL = 5.859⋅106 [J/(m3K)],  
cS = 5.422⋅106 [J/(m3K)], p1 = 5.35⋅107 [J/(m3K)], p2 = 1.586⋅107 
[J/(m3K)] (c.f. equation (8)), cm = 2.85 [MJ/(m3K)], pouring 
temperature T0 = 1342°C, liquidus temperature TL = 1220°C, 
border temperature TE = 1126°C, solidus temperature TS = 
1106°C, initial mould temperature Tm0 = 20°C. The problem has 
been solved using finite element method by means of the 
commercial package MSC MARC/MENTAT. 

In Figure 6 the discretization of the domain is shown, while 
Figure 7 illustrates the temperature distribution for times 10, 50, 
150 and 200 s. In Figure 8 the course of cooling curves at the 
control point from casting sub-domain obtained from direct 
solution (variant 1) and experiment (variant 2) are shown.  

Fig. 5. Casting–mould system Next, the inverse problem using evolutionary algorithm has 
been solved. In Table 1 the parameters applied in this algorithm 
are collected. The results obtained for variant 1 are presented in 
Table 2 and for variant 2 are presented in Table 3. In Figure 9 the 
comparison of cooling curves at the control point obtained from 
experiment and evolutionary computations are shown. 

 

 

 
Table 1.  
Evolutionary algorithm parameters 

Number of generations 200 
Number of chromosomes in each population 40 
Probability of uniform mutation 40% 

Probability of nonuniform mutation 30% 

Probability of arithmetic crossover 40% 

Probability of cloning 5% 
 
Table 2.  
Results of computations using the EA – variant 1 

Design variable p1 p2

Exact value 1.586⋅107 5.35⋅107

Found value 1.586⋅107 5.34⋅107

Error % 0 0.19 

 
Fig. 6. Discretization of the domain 

 
In the case of calculated cooling curve application (variant 1) 

the results of parameters p1, p2 estimation are very good, what 
more, the parameter p1 is exactly identified. 

 
Table 3.  
Results of computations using the EA – variant 2 

In the case of experimental cooling curve application (variant 
2) the error of identification is decidedly bigger (Figure 9). It 
results, first of all, from the essential differences between the 
experimental and calculated cooling curves at the point 
considered from the casting domain (cf Figure 8) especially in the 
second stage of solidification process, this means after 150 
seconds. 

Design variable p1 p2

Exact value 1.586⋅107 5.35⋅107

Found value 1.420⋅107 4.84⋅107

Error % 10.47 9.53 
 

A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  8 ,  I s s u e  4 / 2 0 0 8 ,  1 1 5 - 1 2 0  118 



 

 
Fig. 9. Experimental and identified cooling curves  

at the control point 
 
 

6. Conclusions 
 

To identify the substitute thermal capacity of cast iron the 
evolutionary algorithm has been applied. In the case of exact 
cooling curve obtained from the direct problem soltion, the results 
of identification are very close to the assumed values describing 
the course of the substitute thermal capacity. In the case of 
experimental cooling curve the error of identification is bigger, 
but acceptable. 

It should be pointed out that the evolutionary algorithm is 
time consuming and the error of identification is greater than in 
the case of gradient method application, but the solution of 
inverse problem is always obtained. 
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