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Abstract

The dual reciprocity boundary element method is applied for numerical modelling of solidification process. This variant of the BEM
is connected with the transformation of the domain integral to the boundary integrals. In the paper the details of the dual reciprocity
boundary element method are presented and the usefulness of this approach to solidification process modelling is demonstrated. In the
final part of the paper the examples of computations are shown.
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. During the past decade the meshless methods basing on
L. Introduction the boundary element approach have been developed. One of
them is the dual reciprocity boundary element method (DRBEM)
[10]. In this variant of the BEM only the boundary is discretized,
additionally the collocation points distinguished in the interior of
the domain considered should be introduced.

In the paper the DRBEM is adapted to solve the solidification
problem. The time stepping approach is applied and next
the algorithm basing on the boundary integral equation for
Poisson one written for transition t © ' — t ' s used.
The source function corresponds to the time derivative multiplied
by substitute thermal capacity corresponding to the moment tf,
Next, the domain integral is transformed to the boundary
integrals. In this way the discretization of the interior of
the domain is needless.

The thermal processes proceeding in the casting domain are
described by the energy equation (Fourier-Kirchhoff equation)
and boundary initial conditions resulting from the technology
considered [1, 2, 3]. In the case of solidification process
modelling this energy equation is strongly non-linear because
the evolution of latent heat has been taken into account (one
domain approach). There are the several numerical methods
which allow to solve the problem discussed. Most popular are
finite difference method (FDM) [1, 4, 5] and finite element
method (FEM) [1, 6, 7], but the boundary element method (BEM)
[8, 9] is also applied. All of these methods require the
discretization of boundary and interior of the casting domain.
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In the paper the mathematical model of solidification process
is presented, the DRBEM algorithm is discussed and finally
the results of computations are shown.

2. Governing equations

A transient temperature field in a casting domain is described
by the following equation

AT(X, 1)

xeQ: C(T) =AV2T(x,1)

(M

where A is the thermal conductivity, C (T ) is the substitute
thermal capacity [1], T=T (X, t), X = (X1, X2), t denote temperature,
spatial co-ordinates and time, respectively.

The substitute thermal capacity for cast steel can be defined as
follows [11] — Figure 1

(1 T>T,
C(T)=4c,+c,T+cT?+cT +cT*, To<T<T,
Cs, T <T;

@

where the temperatures T, Ts correspond to the beginning and
the end of the solidification process, respectively, C_ , Cs are
the constant volumetric specific heats of liquid and solid state.
The coefficients C., =1, 2, ..., 5 have been found on the basis of
conditions assuring the continuity of C ' class and physical
correctness of approximation [11].

The equation (1) is supplemented by adequate boundary and
initial condition resulting from the technology considered.
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Fig. 1. Substitute thermal capacity

3. Dual reciprocity boundary element
method

To solve the equation (1) the dual reciprocity boundary
element method has been used. So, the time grid is introduced

0=t <tl<. . <t f- <t f<...<tF

3)

with constant time step At=t fogf 1,

The equation (1) should be written for time t =t f

AVIT(x, th)- C(T)M =0
ot it f

“4)

The standard boundary element method algorithm leads to

the following integral equation [9, 12]

BE)T(E, t f>+jT*(é, x)q(x, t "ydr=
r

J'q*(g, )T(x, t Fydr-

T

oT(x,t *
[lem@D e wao
ot L

Q - )
where & is the observation point, B(§) € (0, 1], T*(é, X) is
the fundamental solution, q(x,t')=-A 8T (x,t ") /on is the heat
flux, q°(&, X) = —A 8T (&, X) /n is the heat flux resulting from
the fundamental solution, I is the boundary of domain Q.
Fundamental solution has the following form

1 1

T E, x) = In—
&, % Py

(6)

where r is the distance between the points & and X. Heat flux
resulting from the fundamental solution can be calculated
analytically, namely

a°E ="y

2nr %)
where
d= (Xl —?.jl)cos 0 +(X2 —éz)cos ) )

while cosa,, cosa, are the directional cosines of the boundary
normal vector n.

It should be pointed out that the function T " (£, X) fulfills
the equation

AVEIT™ , X)=-0(&, X
(& 0 =-3(, %) ©)
where 6 (&, X) is the Dirac function.
In the dual reciprocity method the following approximation is
proposed [10]

oT (X, t)} o
t=t

f
{cmat " ;ak(t ) P (%)

(10)
where a, (t ') are unknown coefficients, Py (X) are approximating

functions fulfilling the equations

a2
Pk(X)—)\'V Ui (x) 11
In equation (10) N + L corresponds to the total number of nodes,
where N is the number of boundary nodes and L is the number of
internal nodes.
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Putting (11) into (10) one has
N+L
= rat HvIUum

=k (12)
and then the last integral in equation (5) takes a form

{C(T)aT(x t)}

J- {C(T)(?T(x t)} T*E. ¥ do-
o t=tf
N-+L
7J' Lt HVZUL, (0T (€, %) dQ
Q k=l (13)

Using the second Green formula [9, 12] one has
N+L

Zak(t )J [1v2 7" 2. 0|uy ) do-

N+L

2 et )j {T €02y, T X)}dr

(14)
Because (c. f. formula (9))
j[xva*(g,x)]uk(x) dQ =
Q
-[[ s Ui sa--BOU©
Q (15)
therefore
N+L
D= at')BEOU @+
k=1
N+L
zak(t )j [T (&, W ()-Uy (09" (&, x)|dr
where
Wk(x)=—xauk(x)
on (17

Taking into account the formula (16) the equation (5) can be
written in the form

B(E) T(E, t f)+jT*(a, x) q(x,t") dr=
T

N-+L

Ja@oTothare Y ace HiBE U@+
r k=1

jT*(a, X) Wi (X) dr—j q" (&, X) Uy (x) dr
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In this way one obtains the integral equation in which only
the boundary integrals appear. It should be pointed out that this
equation can be successfully solved under the assumption that
the functions U  (X) are known.

4. Numerical realisation

To solve the equation (18), the boundary I is divided into N
boundary elements and in the interior of the domain L internal
nodes are distinguished. In the case of constant boundary
elements it is assumed that

Tt =Tk th=T]
xel;: ; ; ‘
q(X,t ):q(xj>t ):q] (19)
and
el U () =Ur(Xj)=U jx
T :
P W00 =Wy (x)) =W j 0

So the following approximation of equation (18) can be taken into
account (i=1,2,...,NN+1,...,N+L)

N N
BT+ a) [T 0 ar =1 [a" @ ary+
=T =T

N+L

Zak B; U|k+ZWJkIT (&, X) dr; -
N

DU a0 ar

j=l r;

21
or
L f L f
ZGquJ ZZHIJTJ +
j=1 j=1
N+L
Zak ZG,JW ZH iUk
= (22)
where
Gij = [T" @i 0 dr
i (23)
and
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[a'@ooar;. Qs
H i
= . o
J.q (&, x) dI'j - B; i=]
fi (24)

while B; =B (& ).
The following matrices of dimensions N + L x N + L can be
defined

Gll Gl2 GlN 0 0
G- Gng Gy v Gyn 0 - 0
Gnsir Gn+i2 0 Gnan 0 - 0
G G - G 0 - 0
| BN+LI N+L,2 N+L,N | ©5)
Hy Hip - Hpy 0 = 0]
He Hni  Hnz - Hyn 0 - 0
Hyet Hnwiz 0 Hyan -1 0 0
H H - H 0 - -1
| "UN+LI N+L,2 N+L,N i (26)
and
Uil Up - U ULN+l - UpN+L
| UN UN2 - UNN UN,N+1 - UNN+L
UN+LL UN+L2 o UN+LN UN+LN+1 0 UN+LN+L
UN+L1 UN+L2 - UN+LLN UN+LN+1 - UN+LN+L 7
Wi Wi oo Wiy Wyingr o WingL
wo| Whr W Win Winsr - Winse
0 0 0 0 0
| 0 0 0 0 0 | 28)

So, the system of equations (22) can be written in the matrix form
f f _ f
Gq '=HT'"+(GW-HU)a (29)

where
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C T -
Tl q1
f f
T
Tf _ ;\j , qf _ qN
TN+1 0
f
_TN+L_ L 0 i

2

r: r

jk jk
Uiy =—+——
K=y T
where (Figure 2)

2 2 2
ik :(Xlk_xlj) +(sz—xzj)
Using the formula (17) one obtains
oU jx
0% 11
Wi =7k[cosa1- cosaz-] :}Ld-k[—+fr-kj
J J J aujk ] 23 J
6X2j

where

djk =(x1k —le)cosalj +(X2k —ij)cosazj

Because

?Ug o°U
VZUSk = 2Sk + 25k :1+r5k
6X1k 6X2k

so on the basis of equation (11) one has

PSk :Pk(Xs)Z)u(1+rSk)

k

/_,DEM collocation point

sonrce pomt

Fig. 2. Illustration of rjj and I}

A time derivative is approximated as follows

(30)

€3]

(32)

(33)

(34

(35)

(36)
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fy f-l
C(T)aT(X, t) —c H)T(X,t )-T(x, t )
ot tet! At
- (37)
and then the equation (12) takes a form
TF_p i1 N
f-1 f
Cl = =D ay P
k=1 (38)
or
TSf —T5f71 _N+L ¢ Psk
At ko~ f-1y
At ~ el 9

wheres=1,2, ..., N, N+1,...,N+L
The system of equations (39) can be written in the matrix
form

f f-1
-0
1] Ty -Te |
f fo1 |7
At TN+1_TN+1
f f-1
_TN+L _TN+L_
P P2 I
= -1 f-1
c'™h cm'™ @™ | g
a,
Py Pn2 PNoNAL
= f-1 f-1 f
Cay ) CTy ) CTy ) ay
P P P f
N+f1,1] N+f1,21 N+1,fN+lL an
CTya) Cyy) Clya) ||
f
a
Pl PnsL2 PusLnsL | & VP
-1 f-1 f-1
_C(TN+L) C(TNJrL) c:(TNJrL) ] (40)
or
L(Tf _Tf—l):Zf—laf
At (41)
From (41) results that
af :L(Zf—l)—l(Tf 7Tf—1)
At (42)
Putting (41) into (29) one obtains
-1
Gq' =HT' +i(GW—HU)(Zf‘1) (Tf —Tf‘l)
At 43)

This system of equations allows to determine the temperatures at
the boundary and internal nodes.

5. Example of computations

The casting domain of dimensions 0.04 m x 0.04 m has been
considered. On the casting boundary the Dirichlet condition
T(X1, X;) = 1460 °C has been assumed, the pouring temperature
equals Ty = 1550 °C. The following input data have been
introduced: thermal conductivity A = 35 W/(mK), liquidus
temperature T, = 1505 °C, solidus temperature Ts = 1470 °C. The
coefficients Ce, € = 1, 2, ..., 5 appearing in the substitute thermal
capacity definition (c. f. equation (2)) are taken from [11].

The boundary is divided into N = 40 constant boundary
elements, in the interior of the domain L = 100 internal points
have been distinguished, time step: At = 2 s. In Figure 3 the
temperature distribution for times 60, 120 and 180 s is shown.
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Fig. 3. Temperature distribution (60, 120, 180 s)
Figure 4 illustrates the course of cooling curves at the points
1 (0.002, 0.002), 2 (0.006, 0.006), 3 (0.01, 0.01), 4 (0.014, 0.014)
and 5 (0.018, 0.018).
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Fig. 4. Cooling curves

6. Conclusions

The dual reciprocity method has been applied to solve
the solidification problem. This method requires only
the discretization of the boundary of the domain considered. In
future the algorithm presented should be extended on the
numerical modelling of the heat transfer processes proceeding in
the system casting-mould-environment.
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