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Abstract 
 

The dual reciprocity boundary element method is applied for numerical modelling of solidification process. This variant of the BEM 
is connected with the transformation of the domain integral to the boundary integrals. In the paper the details of the dual reciprocity 
boundary element method are presented and the usefulness of this approach to solidification process modelling is demonstrated. In the 
final part of the paper the examples of computations are shown. 
 
Keywords: Application of information technology to the foundry industry, Solidification process, Numerical techniques, Dual reciprocity 
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1. Introduction 
 
The thermal processes proceeding in the casting domain are 

described by the energy equation (Fourier-Kirchhoff equation) 
and boundary initial conditions resulting from the technology 
considered [1, 2, 3]. In the case of solidification process 
modelling this energy equation is strongly non-linear because  
the evolution of latent heat has been taken into account (one 
domain approach). There are the several numerical methods 
which allow to solve the problem discussed. Most popular are 
finite difference method (FDM) [1, 4, 5] and finite element 
method (FEM) [1, 6, 7], but the boundary element method (BEM) 
[8, 9] is also applied. All of these methods require the 
discretization of boundary and interior of the casting domain. 

During the past decade the meshless methods basing on  
the boundary element approach have been developed. One of 
them is the dual reciprocity boundary element method (DRBEM) 
[10]. In this variant of the BEM only the boundary is discretized, 
additionally the collocation points distinguished in the interior of 
the domain considered should be introduced. 

In the paper the DRBEM is adapted to solve the solidification 
problem. The time stepping approach is applied and next  
the algorithm basing on the boundary integral equation for 
Poisson one written for transition t 

f
 

−1 → t 

f  is used. 
The source function corresponds to the time derivative multiplied 
by substitute thermal capacity corresponding to the moment t 

f.  
Next, the domain integral is transformed to the boundary 
integrals. In this way the discretization of the interior of  
the domain is needless.  



In the paper the mathematical model of solidification process 
is presented, the DRBEM algorithm is discussed and finally  
the results of computations are shown. 

 
 

2. Governing equations 
 
A transient temperature field in a casting domain is described 

by the following equation 
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where λ  is the thermal conductivity, C (T ) is the substitute 
thermal capacity [1], T = T (x, t), x = (x1, x2), t denote temperature, 
spatial co-ordinates and time, respectively. 

The substitute thermal capacity for cast steel can be defined as 
follows [11] – Figure 1 
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where the temperatures TL, TS correspond to the beginning and  
the end of the solidification process, respectively, cL , cS are 
the constant volumetric specific heats of liquid and solid state.  
The coefficients ce, e = 1, 2, ..., 5 have been found on the basis of 
conditions assuring the continuity of C 

1 class and physical 
correctness of approximation [11]. 

The equation (1) is supplemented by adequate boundary and 
initial condition resulting from the technology considered. 
 

 
Fig. 1. Substitute thermal capacity 

 
 

3. Dual reciprocity boundary element 
method 
 

To solve the equation (1) the dual reciprocity boundary 
element method has been used. So, the time grid is introduced  
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with constant time step Δ t = t f – t f − 1.  

The equation (1) should be written for time t = t f
 

0
),(

)(),(λ 2 =⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
−∇

= ftt

f
t

txT
TCtxT

 (4) 
The standard boundary element method algorithm leads to  
the following integral equation [9, 12] 
 

∫

∫

∫

Ω =

Γ

Γ

Ω⎥
⎦

⎤
⎢
⎣

⎡
∂

∂

−Γ

=Γ+

)d,(ξ 
),(

)(

d),(),ξ(

d),(),ξ(),ξ()ξ(

*

*

*

xT
t

txT
TC

txTxq

txqxTtTB

ftt

f

ff

 (5) 
 

where ξ is the observation point, B(ξ) ∈ (0, 1], T*(ξ, x) is  
the fundamental solution,  q(x, t f ) = −λ ∂T (x, t  f ) /∂n is the heat 
flux, q*(ξ, x) = −λ ∂T*(ξ, x) /∂n is the heat flux resulting from  
the fundamental solution, Γ is the boundary of domain Ω. 
Fundamental solution has the following form 
 

r
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where r is the distance between the points ξ and x. Heat flux 
resulting from the fundamental solution can be calculated 
analytically, namely 
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where 
 

( ) ( ) 222111 αcosξαcosξ −+−= xxd  (8) 
 

while cosα1, cosα2 are the directional cosines of the boundary 
normal vector n. 

It should be pointed out that the function T 

*
 (ξ, x) fulfills  

the equation 
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where δ (ξ, x) is the Dirac function. 
In the dual reciprocity method the following approximation is 

proposed [10] 
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where ak (t f) are unknown coefficients, Pk (x) are approximating 
functions fulfilling the equations 
 

)(λ)( 2 xUxP kk ∇=   (11) 
 

In equation (10) N + L corresponds to the total number of nodes, 
where N is the number of boundary nodes and L is the number of 
internal nodes. 
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Putting (11) into (10) one has 
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In this way one obtains the integral equation in which only  
the boundary integrals appear. It should be pointed out that this 
equation can be successfully solved under the assumption that  
the functions U k (x) are known. 
 
 and then the last integral in equation (5) takes a form 
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4. Numerical realisation 
 

To solve the equation (18), the boundary Γ is divided into N 
boundary elements and in the interior of the domain L internal 
nodes are distinguished. In the case of constant boundary 
elements it is assumed that 
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Using the second Green formula [9, 12] one has 
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and 
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Because (c. f. formula (9)) 
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So the following approximation of equation (18) can be taken into 
account (i = 1, 2, …, N, N + 1, …, N + L) 
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or 
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where 
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Taking into account the formula (16) the equation (5) can be 
written in the form 
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while Bi = B (ξ i). 
The following matrices of dimensions N + L × N + L can be 

defined  
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where (Figure 2) 
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Using the formula (17) one obtains 
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and 
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so on the basis of equation (11) one has 
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So, the system of equations (22) can be written in the matrix form 
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where 
 

Fig. 2. Illustration of ri j and rj k
 
A time derivative is approximated as follows 
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This system of equations allows to determine the temperatures at 
the boundary and internal nodes. 
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5. Example of computations 
 

and then the equation (12) takes a form 
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The casting domain of dimensions 0.04 m × 0.04 m has been 

considered. On the casting boundary the Dirichlet condition  
T(x1, x2) = 1460 oC has been assumed, the pouring temperature 
equals T0 = 1550 oC. The following input data have been 
introduced: thermal conductivity λ = 35 W/(mK), liquidus 
temperature TL = 1505 0C, solidus temperature TS = 1470 oC. The 
coefficients ce, e = 1, 2, …, 5 appearing in the substitute thermal 
capacity definition (c. f. equation (2)) are taken from [11]. 
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   (39) The boundary is divided into N = 40 constant boundary 

elements, in the interior of the domain L = 100 internal points 
have been distinguished, time step: Δt = 2 s. In Figure 3 the 
temperature distribution for times 60, 120 and 180 s is shown. 

 
where s = 1, 2, …, N, N + 1, …, N + L 

The system of equations (39) can be written in the matrix 
form   
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From (41) results that 
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