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Abstract

The explicit and implicit approaches of sensitivity analysis using the boundary element method are presented. In particular, the problem of
casting solidification is considered. A perturbation of an input parameter (for example the thermal conductivity of casting material) causes the
changes of transient temperature field in the domain analyzed. The methods of sensitivity analysis allows to determine in mathematical way
the mutual connections between parameters perturbations and final results. In the paper some significant aspects of computational algorithms
associated with explicit and implicit approaches of sensitivity analysis are demonstrated.
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: There are two basic approaches to sensitivity analysis using
1. Introduction . ) : dr ;
boundary element formulation: the continuous approach and the

discretized one [9]. In the continuous approach (explicit
differentiation method) the analytical expressions for sensitivities
are derived and then they are calculated numerically using BEM.
They have the form of boundary integrals with integrands that
depend only on the variables of the primary and additional
problems. The implicit differentiation method, which belongs to the
discretized approach, bases on the differentiation of the algebraic
boundary element matrix equations. The derivatives of the

The thermal processes proceeding in the casting domain are
described by the energy equation (Fourier-Kirchhoff type equation)
and boundary initial conditions resulting from the technology
considered [1, 2, 3]. The transient temperature field in the casting
domain is dependent on the set of thermophysical parameters of
material, coefficients appearing in the boundary conditions and
initial (pouring) temperature. The perturbations of above selected
input data cause the change of the course of solidification process. boundary element system matrices can be calculated either
To analyze the connections between the parameters perturbations 2. ]

: : g N analytically or semi-analytically. In the paper some significant
and results of numerical simulations the sensitivity methods are ) P i ; . - ]
i aspects of formulations and computational algorithms associated
applied (2,4, 5, 6, 7, 8].

with both methods are demonstrated and the advantages and
disadvantages of both techniques are discussed.
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2. Governing equations

A casting-mould-environment system is considered. A transient
temperature field in a casting sub-domain is described by the
following equation

reli: c(r)a)_fw[x(r)vr])rg (1)
[y
where A (T) is the thermal conductivity, ¢ (T) is the volumetric
specific heat, @ = Q (x, 1) is the source function, T= T (x, 1), x, !
denote temperature, spatial co-ordinates and time, respectively.
As is well known, the source term Q (x, 1) is proportional to the
local solidification rate [ 1, 2, 3], this means

s @

Q=1-1a$

where f; is the solid state fraction at the neighborhood of the point
considered from casting domain, Ly is the volumetric latent heat.

If one assumes that fy is the known function of temperature (the
scope of fs is from O to 1, of course) then

3, _df(r)ar

= 3)
ot dT  dt
and
aT
xeQ: C(T)—=V|»(T)VT 4
i (T)5,; = V[M(T)VT] “)
where the parameter
dfs
C(T)=e¢e(T)-L,— (5
(T)=e(T)- L - )

is called a substitute thermal capacity of mushy zone sub-domain
[1, 2]. In the case of binary alloys the mushy zone sub-domain
corresponds to the temperature interval [Ts, 7, ], where Ty, T, are
the border temperatures determining the end and the beginning of
the solidification process.

In literature the several hypotheses concerning the function
describing a substitute thermal capacity of the mushy zone are
discussed [ 1, 2]. In this paper the substitute thermal capacity for cast
steel is defined as follows

Ci T>T,
CL + Cy L‘ . . . (6)
C(T)={—~—"+ : ZSTET
2 T, - T\' )
Cys T2

where ¢, cg are the constant volumetric specific heats of liquid
and solid state.

Because the solidification process proceeds in a rather small
interval of temperature one can assume the constant value of
thermal conductivity of cast steel and then the equation (4) takes
a form

xeQ: C(T)a}—;: =AVT M
¢

On a casting surface I" the Robin condition is given
xel: -kn-VT =a(T-T,) 8)

where @ is a substitute heat transfer coefficient (influence
of mould), T, is a conventionally assumed ambient temperature,

For the moment ¢ = 0 the initial temperature distribution
(pouring temperature) is known, namely

=01 T'=T, ©)

3. Boundary element method

To solve the equation (7) the boundary element method has
been used. If the thermal diffusivity is constant, this means a (T ) =
MC(T) = a = const, then for the partial differential equation (7)
a fundamental solution is available [10, 11, 12]

_ 1 5
T (&%t )= —exp| - - (10)
( ) [41{0(."” —r)] * [ da (s’ ")1

where m is the problem dimension (= 1, 2, 3 corresponds to 1D,
2D, 3D problem, respectively), [0, 1 © ] is the time interval under
consideration, & is the observation point, r is the distance between
the points £ and x.

In the case of non-constant thermal diffusivity the use of the
fundamental solution (10) should be accompanicd by a time
marching technique in which a (T ) is assumed constant at the
beginning of each time step [13]. So, the time grid is introduced

0="<y <ot etl g ettt (1)

with constant time step At = t/— /™,
Starting from the initial time ° over each time step [/, 1], the
value of a is taken as the mean average, namely

- L (12)
¢ fe[r(xe')]de
0

(J'f

Basing on the approximation (12), the equation (7) can be
transformed into the following integral equation for each time step
5

B(E)T (&1 )+ CLJ ] 7 (&xt 1) g (xr)dldr =

olr
E-IT JJ- fq‘ (‘:'~"~11-1)T(,\‘.r)dl'dr+ (13)
Jr
|7 (&xt )T (2 )dQ
Q

where forEe Q: B(E)=1landforEel B e (0, 1), g 0=
AnVT(x, 0, g E x D =AnVF Ex ) .
Fundamental solution 7" (&, x, ¢/, 1) has the following form

IR o] 1

T =
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The function g" (&, x, ¢, 1) can be calculated analytically [11]

q = A B exp{-r—:!] (15
2(41!)""'2 [ﬂf (,f _ f)](!m ) 40’ (If e ,)

where

a=3(n

k=

- &, )cosa, (16)

and cos a; are directional cosines of the normal vector n.
For constant elements with respect to time [10, 11], the
equation (13) can be written in the form

(E,)T (;r Jq ot g(§ x)dr =
(7
[T (xt" )nz ..t)dl‘+_[T gt/ /)T (xr)dQ
r a
where
h(E, t)- I & wt (18)
and
g(&x)=—; C, ] (&xtr)de (19)

Functions h (&, x), g (& x) are determined in analytical way [11]
and then

sgn(x—g) |r g . ID problem
2 ”Ja At
| .
2nr’up[ 4(,,‘“]. 2D problem 20)
h(&.x) =
= Jrerf +
o [ merfc oy
rl
Ja’A:‘xp[ 4a’Ar]]‘ 3D problem
and
[ ar ik (x-&)
Vxrc’ 4a’ At
|x-¢ [ |x-g| ]
erfc ID problem
g(i‘x)= 2) Z'Ja!Af @n

2
LEi 4 3 2D problem
4mh 4a’ At

1 r
erfc
dnhr 2\/(;ng

]. 3D problem

In order to solve equation (14), the boundary I" is divided into N
linear boundary elements I';, the interior £ is divided into L linear

internal cells €; and then we obtain the following system of
algebraic equations (i = 1, 2, ..., N)

¥6,4! —ZH., T/ + E!L £ 22)

Jj=1

where

G, = [ &(¢.x)dr, (23)
rJ

and

=l ' (24)

while

P, = IT' (&, xt 7")dQ, (25)

Q
The system of equations (22) can be written in the matrix form
Gq’ =HT/ +PT/" (26)

After determining the 'missing' b01|nd'1ry values (Tforq ), the
temperatures 7/ at internal nodes x‘ € Q for time ! are calculited

using the formula (i=N+ 1,N+2,...,.N+L)
$ . - s /-1
=2 H,;T] -3.G, 4] “‘"ZP Ty Gh
J=1 J=l 1=

4. Sensitivity analysis - explicit
differentiation method

Let us consider the sensitivity of the solidification problem
solution with respect to the parameter p (e.g. p corresponds to the
thermal conductivity or heat transfer coefficient or ambient
temperature).

The explicit differentiation method, which belongs to the
continuous approach, bases on the differentiation of governing
equations with respect to the parameter p [14, 15, 16]. So, the
differentiation of equation (7) leads to the following equation

xeQ: —aC(T)a—T+C(T) 3 (3T
Bp ot ap EJ.' (29)
dh 9 (o2
— VT + Ao —(V’T
ap Bp( )
or
ou am aC(T)aT
Q: C(T)—=AVU +—V°T - S (30)
re ( )3 . E)p dp Ot

where U= dT/dp is the sensitivity function.
Taking into account the formula (7) the equation (30) can be
written in the form
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+%C(T)J_T_DC(T)EJ_T

31
ap L ot dp ot e

xeQ: C(T)aa—[;’ =AVU

The boundary condition (8) is also differentiated with respect to
p and then

xel; E}} VT - )-—(n VT)=
31) 32)
du aT EJT
(T =T )+
dp ap ap
or
xel: =An-VU —-a—)—n VT+
ap 33)
a—u(T—T:,)+u U ..
dp ap
Differentiation of initial condition (9) gives
a7
t=0: =r"=0 (34)
dp

In this way one obtains the additional boundary initial problem
connected with the sensitivity function U described by equations
(31), (33), (34). This problem has been solved by means of the
boundary element method. So, one obtains the following system of
algebraic equations (c.f. equation (22))

N N L L
26w/ =X H;U] + 3 R U"+ 32,0 (35)
Jj=1 j=1 1=l I=1
where
z, = [2(g.x)dQ, (36)
o
and
,_AfarY _ a1/ -1
= — ] =——t (37)
“ J [a: ] a’ At
The system of equations (35) can be written in the matrix form
GW/ =HU’ + PU" + ZQ’ (38)

After determining the 'missing’ boundary values (U or W/), the
values of function U at internal nodes x ' €Q for time 1/ are
calculated using the formula (i=N+ I,N+2, ... N+ L)

N N IA L
=Y H, U/ -YG,W +YPU"+Y2,0 (39)
J=l J=l 1=l I=1

5. Sensitivity analysis - implicit
differentiation method
The implicit differentiation method, which belongs to the

discretized approach, bases on the differentiation of the algebraic
boundary element matrix equations [9].

So, the system of equations (26) has been differentiated with
respect to the parameter p and then
s ‘ 7y -1
CISPVERPCLL ) | O VAN CL ) & VI L W
ap dp  dp dp  dp dap

or

GW’/ = HU’ +ET’ __a_gq, +a—P'r"‘ +PU/! 41
ap ap Jap
The equation (27) concerning internal nodes is also
differentiated with respect to p, namely

aH,

Ul = iu,, U/ —iq}.w‘ z 'rf -

(42)
'}P
q/ + QP U™M+ ZiLps-
;E:' Z ! ; ap
6. 1D problem

The casting of thickness 2D is analyzed (1D problem). Taking
into account the symmetry, the following boundary initial problem
is considered

( 2
O<x<D: C(T)aT la—-{;

at ax*

aT

x=0: qg= ka—: (43)
] X
¥ =D q:—li—:a(T—T)

dx “
r=0: T=T,

In this case the boundary is reduced to the two points, namely
point 1 (x=0) and point 2 (x= D). The domain [0, D] is divided into
L linear internal cells of thickness h. The central points of these
cells are numbered as 3, 4, ..., L+2. The system of equations (26)
resulting from the BEM application has the following form

[Gu GIZ][(I{]={I!H ”12][7‘11]+
G, G, ‘7{ Hy Hy, Tzl

;o (44)
[Pu R, P.L] e
Pza PH P.'L

T“

2+L

where (c.f. equations (23), (24))

=g(¢.0). G,=¢(¥.D) (45)
and
e {h(g,o). Sk A {fr(é',!))‘ %) e
—17Z. i=j -1/2, i=j
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Let us assume that the parameter p corresponds to the thermal
conductivity of casting material. Using the explicit approach of
sensitivity analysis one obtains the following additional problem
(dC(T)0h= 0 - c.f. equation (6))

( 2
O<cx<D: C(T)a—!{ lau 1aT

— —_—
at ax* Lot
qU
'X=O: W=lﬁ=0 (47)
x=D: ‘V:—lﬂ:u U—i
dx ra
t=0: Uu=0

The problem (47) is coupled with the primary one (equation
(43)) because in order to solve it the derivative d7/dt and heat flux g
should be known.

In the case of implicit differentiation method application the
derivatives 9G;; /d\, dH,; /d) and 9P;, /o) should be calculated.
Because

(&) __ 1 [(Ar ,,,q,[_(x—:)’]+

o 2 \xrC 4a’ At @8)
]r_,éicrfc |"‘_§l
2)2 2Ja’ At
and
dh (ﬁi.l) _ (I—E_,) exp _('t_’g)z (49)
ah 42Jna’ At 4a’ At
S0
26, _s(8.x)|  ag, _s(2.x)| -
. ol | KT . | ,
and
ali(éi,.t) ah(»ﬁ".x] o
9Hy _ 7% © OHy _ Ty SRR EIN
al x=0 al x =0
0, 0, i=j

Finally, the derivative 0P; /A is calculated

x5 ( i iy
9F, : x-¥) (-8) dx (52)
A aira’Ar,,| 2a’Ar 4a’ At

The system of equations connected with the sensitivity function
has the following form

oH, 9dH,
[G.. G.z}[w}:[ﬂ., H,z][U.’]+ ENE [Tﬁ]ﬁ
Gy Gulw/ | My HylUl]"|3Hy 2H, ||T/
d)  dk

3G, 3G,] _ [3R, 2R, 3R T"

a a d | | o oo (T,

9G,, 9G,, “I{_ 9ph, a_P:_’_ 9P | -

L JL Ik dh  IL a i/} (53)
e

B Py o B RO

| Py Py oo Byl ..
U=

2+L

7. Example of computations

In numerical computations the following data have been
introduced: 2D = 0.02 m, % =35 [W/mK)], ¢, = 5.74 [MJ/(m’K)],
cs=5.175 [MI/m’ K], Ly=1957.5 [MJ/m* ], pouring temperature T
=1570"C, liquidus temperature 7, = 1505 ° C, solidus temperature
Ts=1470°C, heat transfer coefficient a = 250 [W/(m* K)], ambient
temperature T, = 600 " C. The domains has been divided into 20
internal cells, time step Ar=0.5s.

In Figure 1 the temperature distribution in the domain
considered for times 10, 20, ..., 100 s is shown.

1540 ——ﬁ-_‘lﬂs\
Tra |
1520 __ZEL ™~
————1..1119\\ \
S ]
1500 h___‘-&-u-__\: ‘M\‘N
e s E\ \
1460 1§\\\
1440
0 0002 0004 0006 0008 001 x[m]
Fig. 1. Temperature distribution
7.00E-01
U [m/W] T RN x=0.04m
5.00E-01 4— / s
3.00E-01 /
1.00E-01
_1.00E-01 x|=10.005 n
1.00E-01 \t______ﬁ_ e
-3.00E-01 {-.\;_; oy x?.?'? Ppra——
-5.00E-01
-7.00E-01
0 4 8 12 16 20t [s]

Fig. 2. Courses of sensitivity function U
(explicit approach - solid line, implicit approach - dotted line)
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Figure 2 illustrates the courses of function U = 97/d. at the
points x = 0 (axis of symmetry), x = 0.005 m and x = 0.01 m
(boundary) obtained by explicit and implicit differentiation method.
It is visible that these courses are similar but not identical.

8. Conclusions

Sensitivity analysis is the very effective tool in numerical
modelling of solidification problem. It allows to rebuilt the basic
solution on the solution concerning the other disturbed value of
parameter. In the paper the explicit and implicit approaches using
the boundary element method have been presented. From the
mathematical point of view the explicit approach is simpler, but the
implicit approach gives more exact results,
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Jawna i niejawna metoda analizy wrazliwo$ci w numerycznym modelowaniu
procesu Krzepnigcia

Streszczenie

W artykule przedstawiono jawne i niejawne podejscie analizy wrazliwosci z zastosowaniem metody elementow brzegowych.
W szczeg6lnosei rozpatrywano proces krzepnigeia. Zaburzenie parametru wejsciowego (np. wspolezynnika przewodzenia ciepla) powoduje
zmiany pola temperatury w rozwazanym obszarze. Metody analizy wrazliwosci pozwalaja w matematyczny sposob przedstawi¢ wzajemne
zaleznosci migdzy zaburzeniami parametrow a koncowymi wynikami. W pracy pokazano najwazniejsze aspekty algorytmow obliczeniowych

zwigzanych z jawng i nicjawng metody analizy wrazliwosci.
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