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Abstract 
 

In the paper the numerical solution of the inverse problem consisting in the identification of the heat flux on the continuous casting 
surface is presented. The additional information results from the measured surface or interior temperature histories. In particular the 
sequential function specification method using future time steps is applied. On the stage of numerical computations the 1st scheme of the 
boundary element method for parabolic equations is used. Because the problem is strongly non-linear the additional procedure 'linearizing' 
the task discussed is introduced. This procedure is called the artificial heat source method. In the final part of the paper the examples of 
computations are shown. 
 
Keywords: Application of information technology to the foundry industry, Solidification process, Numerical techniques, Inverse 
problems, Boundary element method 
 
 
 

1. Introduction 
 

The vertical, rectangular cast slab is considered (Figure 1). 
Neglecting the convection proceeding in the molten metal sub-
domain, the thermal processes in the continuous casting volume 
are described by the following equation [1] 

 

( ) ( ) ( ) ( ) ( )',
grad ', div grad ',

T x t
C T T x t T T x t

t
⎡∂ ⎤

+ ⋅ = ⎡λ ⎤⎢ ⎥ ⎣∂⎣ ⎦
w ⎦

 (1) 

where 1 2 3' { ', ', ' }.x x x x=  The casting shifts in axis x3′ direction 
and its pulling rate is equal to w (more precisely, the velocity field 
in domain considered: ). The same mathematical 
description can be used in a case of so-called radial plants, 

because a large radius of plant curvature (in comparison to the 
casting dimensions) allows to treat the radial installation as a 
vertical one.  

[0,0, ]w=w

On the upper surface of the casting (free surface of molten 
metal) the boundary condition of the 1st type (pouring 
temperature) can be taken into account. On the conventionally 
assumed bottom surface limiting the domain considered (it is a 

region of final cooling zone) we can put ,∂ ∂  this means 
the adiabatic condition. On the lateral surface the Neumann 
condition is assumed (the data concerning the boundary heat 
fluxes are collected in [2]). 

/ 0T n =

 
 
 
 
 



 
Fig. 1. Rectangular cast slab 

 
The initial condition resolves itself into the assumption, that a 

certain layer of molten metal directly over the starter bar has a 
pouring temperature. The starter bar allows to shut the continuous 
casting mould during the plant starting. 

The numerous experiments show that conductional 
component of heat transfer corresponding to the direction of 
casting displacement is very small (this component constitutes 
about 5% of the heat conducted from the axis to the lateral 

surfaces), this means that the component ( )div gradT T⎡λ ⎤⎣ ⎦  can 
be simplified to the form 

 

( ) ( ) ( )
1 1 2

div grad
' ' '

T TT T T T
2'x x x x

⎡ ⎤ ⎡∂ ∂ ∂ ∂
⎡λ ⎤ = λ + λ⎢ ⎥ ⎢⎣ ⎦ ∂ ∂ ∂ ∂⎣ ⎦ ⎣

⎤
⎥
⎦  (2) 

 
A pretty interesting and effective in numerical simulation 

variant of mathematical approach to the continuous casting 
problem was presented by the authors of this paper in [3, 4]. The 
algorithm has been called 'a wandering cross section method'. 

Let we rewrite the equation (2) in coordinate system 'tied' to a 
certain section Ω of shifting casting, namely 

1 1 2 2 3 3' , ' , ' .x x x x x x w t= = = −  We assume, as previously, that the 
heat conduction in x3′ direction can be neglected. It is easy to 
check up that we 'lose' in energy equation the component 

 gradw T⋅
 

( ) ( ) ( ) ( )1 2
1 1 2

, : T Tx x C T T T
t x x x x

⎡ ⎤ ⎡∂ ∂ ∂ ∂ ∂
∈Ω = λ + λ⎢ ⎥ ⎢∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ 2

T ⎤
⎥
⎦  (3) 

 
The last equation corresponds to typical thermal diffusion 
equation for a 2D object oriented in cartesian coordinate system 
(but finally we find the 3D solution). It should be solved for initial 
condition T (x1, x2, 0) = T0 (pouring temperature), while the 
boundary heat flux on the perimeter Γ of the section considered is 
the function of time. 

In the paper the 2D task concerning the continuous casting 
technology is discussed. On the basis of the knowledge of 
temperature history at the selected set of the points from the 
casting domain the boundary heat flux is identified [5, 6, 7]. The 
identification of the boundary heat flux in the primary cooling 

zone (continuous casting mould) has been done using sequential 
function specification method [6, 7]. The results of computations 
are presented in the final part of the paper. 
 
 

2. Identification of boundary heat flux 
 

In this chapter the sequential function specification method 
using future temperature information is presented [6, 7]. This 
method allows to estimate the boundary heat flux on the basis of 
temperature measurements in the casting domain.  

If we assume the constant value of thermal conductivity 
( )Tλ = λ

 (this assumption in the case of typical alloys is 
acceptable) then the problem discussed is of the form (c.f. 
equation (3)) 

 

( ) ( ) ( )

( ) ( )

( )

2

0

,
: ,

,
: ,

0 : ,

T x t
x C T T x t

t
T x t

x q x t
n

t T x t T

⎧ ∂
∈Ω = λ∇⎪ ∂⎪⎪

∂⎨ ∈Γ = −λ⎪ ∂⎪
⎪ = =⎩  (4) 

 
where x = {x1, x2} and  
 

( ) ( ) ( )2 2
2

2 2
1

, ,
,

T x t T x t
T x t

x x
∂ ∂

∇ = +
∂ ∂ 2  (5) 

 
We define the substitute thermal capacity C (T ) for T ∈ [TS , TL ] in 
the form of polynomial 
 
( ) 2 3

0 1 2 3 4C T c c T c T c T c T= + + + + 4

 (6) 
 
which fulfills the conditions:  
i.  For T = TS : C (TS ) = cS and for T = TL

 : C (TL
 ) = cL, where cS, cL 

are the volumetric specific heats of solid and liquid states, 
respectively. 
ii.  For T = TS and T = TL

 dC (T )/dT = 0. 
iii. The change of enthalpy connected with the solidification 
equals 
 

( ) ( )d
L

S

T

P L S
T

C T T L c T T= + −∫
 (7) 

where cp is the volumetric specific heat of mushy zone.  
For direct problems the boundary - initial conditions as well 

as the parameters λ and C (T ) are known and we determine the 
temperature distribution T (x, t). For the inverse boundary problem 
analyzed we assume that the heat flux q (x, t) on Γ is unknown. 
Additionally, measured temperature histories at the boundary or 
interior points x i for times t f, f = 1, 2, ..., F are given 
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( )1 2, , , 1, 2, ..., , 1, 2, ...,f i i f
d i dT T x x t i M f F= = =

 (8) 
 
where M is the number of sensors. 

In sequential function specification method [6, 7] it is 
assumed that the heat flux is known at the set of boundary points 

 j,jx ∈Γ  = 1, 2, ..., J for times t 1, t 2, ..., t f − 1, and we want to 

determine the heat flux 
( )1 2, ,f j j f

jq q x x t=
 at time .ft  

Additionally, the temperature values are known for R future 
intervals, namely (r = 1, 2, ..., R) 
 

( )1 1, , 1, 2, ...,f r i f r
d i dT T x t i+ − + −= = M

−

 (9) 
 
and we assume that the heat flux is constant over R future steps 
and equal to the heat flux at time t f 

1 1...f f f R
j j jq q q+ += = =

 (10) 
 
In order to solve the inverse problem, the least squares method is 
applied [5, 6, 8] 
 

( )21 1

1 1

M R
f r f r

i d i
i r

S T T+ − + −

= =

= −∑∑
 (11) 

 

Function  is expanded in a Taylor 

series about arbitrary but known value of heat flux 

( )1 1,f r i f r
iT T x T+ − + −=

* f
jq

 
 

( )
*

1
1 1* *

1 f f
j j

f rJ
f r f r fi

i i jf
j j q q

TT T q q
q

+ −
+ − + −

= =

∂
= + −

∂∑ f
j

 (12) 
 

where 
1* f r

iT + −

 denotes the calculated temperature at point x i for 

time 
1f r

it
+ −

 obtained under the assumption that for  

the heat fluxes equal 

1 1[ , ]f f rt t t− + −∈
1 1 *...f f f R f

j j jq q q q+ + −= = = = j  We introduce 
the sensitivity coefficients [3, 4] and then 
 

( )1 1 1* *
,

1

J
f r f r f r f

i i j t j
j

T T Z q q+ − + − + −

=

= + −∑ f
j

1
⎥
⎦

 (13) 
 
Putting (13) into (11) one has 

( )
2

1 1 **
,

1 1 1

M R J
f r f r f f f r

i j t j j d i
i r j

S T Z q q T+ − + − + −

= = =

⎡ ⎤
= + − −⎢

⎣
∑∑ ∑

 (14) 
 

Differentiating the criterion (14) with respect to the unknown 

heat fluxes 
f
jq

 and using the necessary condition of minimum, 
one obtains the following system of equations 

 

( )

( )

1 1 *
, ,

1 1 1

1 1 1*
,

1 1

M R J
f r f r f f

l i j i j j
i r j

M R
f r f r f r

l t d i i
i r

Z Z q q

Z T T

+ − + −

= = =

+ − + − + −

= =

− =

−

∑∑∑

∑∑
 (15) 

 
where l = 1, 2, ..., J. 

The system f equations (15) can be written in the matrix form 
 

( ) ( ) ( ) ( )T T T* *f f f f f f f f f
d= + −Z Z q Z Z q Z T T

 (16) 
 
where 

 
*

1 1
*

2 2*

*

,
... ...

f f

f f
f f

f f
J

q q
q q

q Jq

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= = ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

q q

⎦

1

1

1

 (17) 
and 
 

1,1 2,1 ,1

1 1
1,1 2,1 ,1

1,2 2,2 ,2

1 1
1,2 2,2 ,2

1, 2, ,

1 1
1, 2, ,

...
... ... ... ...

...

...
... ... ... ...

...

...
... ... ... ...

...

f f f
J

f R f R f R
J

f f f
J

f

f R f R f R
J

f f f
M M J M

f R f R f R
M M J M

Z Z Z

Z Z Z
Z Z Z

Z Z Z
Z Z Z

Z Z Z

+ − + − + −

+ − + − + −

+ − + − + −

⎡ ⎤
⎢
⎢
⎢
⎢
⎢
⎢= ⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣ ⎦

Z

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥  (18) 

 
while 
 

*
1 1

1 1*
1 1

*
2 2

*

1 1*
2 2

*

1 1*

... ...

... , ...

... ...

f f
d

f R f R
d d

f f
d

f f
d

f R f R
d

f f
d M M

f R f R
d M M

T T

T T
T T

T T
T T

T T

+ − + −

+ − + −

+ − + −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

T T

 (19) 
The system of equations (16) allows to find the values of heat 

fluxes 
f
jq

 at boundary nodes , 1, 2, ...,jx j = J  at time t f. 
The idea of the sequential function specification method using 

future temperature information for transition 
1f ft − → t  is shown 

in Figure 2. 
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( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1

1

1

*

0

*

0

* 1 *

0

1, , , , , d d

1 , , , , d d

1, , , , d , , , , d d

f

f

f

f

f

f

t
f f

t Γ

t
f

t

t
f f f

t

B F t F x t t J x t t
C

J x t t F x t t

F x t t F x t S x t F x t t t
C

−

−

−

Γ

−

ξ ξ + ξ Γ =

ξ Γ +
C

Ω Ω

ξ Ω + ξ Ω

∫ ∫

∫ ∫

∫∫ ∫

 
Fig. 2. Transition 

1f ft − → t using future time steps (R = 4) 
 

In the sequential function specification method the sensitivity 
coefficients are used (c.f. matrix (18)). In order to determine 
them, the governing equations (4) are differentiated with respect 

to the unknown heat flux 
( ),j

jq q x t=
 at boundary point 

and then [6, 8, 9, 10] ,jx ∈Γ

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

2,
,

:
d ,

,
d

, 1,
: ,

0,
0 : , 0

j
j

j

j
j

j j

j

Z x t
C T Z x t

tx
C T T x t

Z x t
T t

Z x t x x
x W x t

n x x
t Z x t

⎧ ∂
= λ∇⎪ ∂⎪ ∈Ω

⎪ ∂
−⎪⎪ ∂⎨

⎪ ∂ ⎧ =⎪⎪ ∈Γ = −λ = ⎨
∂⎪ ≠⎪⎩

⎪
= =⎪⎩  (20) 
 

where 
 

( ) ( ),
,j

j

T x t
Z x t

q
∂

=
∂

 (21) 
 

So, in the case considered the additional boundary-initial 
problems (20) for j =1, 2, ..., J should be solved. 

In equation (20) the derivative of substitute thermal capacity 
with respect to temperature, this means dC (T )/dT appears.  
 
 

3. Boundary element method 
 

The basic problem (4) for the arbitrary assumed value of 
boundary heat flux q (x, t) and the additional problems (20) 
associated with the sequential function specification method have 
been solved using the boundary element method for 2D parabolic 
equations. 

So, we consider the following equation 

( ) ( ) ( ) ( )2,
: , ,

F x t
x C T F x t R x t

t
∂

∈Ω = λ∇ +
∂  (22) 

where for primary problem (4): F (x, t) = T (x, t), R (x, t) = 0 and 
for    additional    problems    (20):    F (x, t) = Zj (x, t),    R (x, t) =  
dC (T )/dT Zj (x, t) ∂T (x, t)/∂t. 

 

It should be pointed out that taking into account the course of 
functions C (T ) and dC (T )/dT and the form of source functions 
appearing in additional problems, the equation (22) is strongly 
nonlinear. In order to solve it, the artificial heat source method 
has been applied [11, 12]. This method is a very effective 
supplementary algorithm first of all in a case of the BEM 
application for the non-linear problems solution.  

We express the function C (T ) as a sum of two components, 
this means a constant part C0 and a certain increment ΔC (T ) 
 
( ) ( )0C C CT T= + Δ  (23) 

 
The equation (22) can be written in the form 
 

( ) ( ) ( ) ( ) ( )2
0

, ,
, ,

F x t F x t
C F x t R C Tx t

t t
∂ ∂

= λ∇ + − Δ
∂ ∂  (24) 

or 
( ) ( ) ( )2

0

,
, ,

F x t
C F x t S x t

t
∂

= λ∇ +
∂  (25) 

where 

( ) ( ) ( ) ( ),
, ,

F x t
S x t R C Tx t

t
∂

= − Δ
∂  (26) 

 
is the artificial heat source term. The essential feature of equation 
(25) consists in a fact, that leaving out the last term we obtain the 
linear form of energy equation. Taking into account the 
possibilities of the boundary element method application in the 
range of non-steady problems modelling, this is a very convenient 
form of basic differential equation (a non-linearity appears only in 
the component determining the internal heat sources, and the 
function describing the fundamental solution for the problem 
considered is well known). The calculation of a source function 
requires, of course, the introduction of a certain iterative 
procedure [11, 12]. As was mentioned above, in order to solve the 
equation (25) the 1st scheme of boundary element method for 2D 
parabolic equations has been used. The boundary integral 
equation corresponding to the transition t f-1 → t f takes a form 
[13,14,15,16] 

 
 

 (27) 
 
 
 
 
 
 

where ( )1 2,ξ = ξ ξ
 is the observation point, ( ) 1B ξ =

 for ξ∈Ω  

and ( ) ( )0,1B ξ ∈
 for  is the fundamental 

solution [11, 12] 

( )*, , , ,fF x t tξ∈Γ ξ
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( ) ( ) ( )
2

* 1, , , exp
4 4

f
f f

rF x t t
a t t a t t

⎡ ⎤
⎢ ⎥ξ = −

π − −⎢ ⎥⎣ ⎦  (28) 
 

where r is the distance between the points �and x, 0/ ,a C= λ  

while ( ) ( ), , /J x t F x t n= −λ∂ ∂
 and 

( )* , , ,fJ x t tξ =
 

( )* , , , / .fF x t t n−λ ∂ ξ ∂
 

For constant elements with respect to time [13, 14], the 
equation (27) can be written in the form 
 
( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )* 1 1

, , , d

, , d

, , , , , , d

f f

f

f f f

B F t J x t g x

F x t h x

F x t t F x t S x t g x

Γ

Γ

− −

Ω

ξ ξ + ξ Γ =

ξ Γ +

⎡ ⎤ξ ξ⎣

∫

∫

∫ Ω⎦
 (29) 

 
where 
 

( ) ( )
1

*

0

1, , ,
f

f

t
f

t

h x J x t t
C −

ξ = ξ∫ , d t
 (30) 

 
and 
 

( ) ( )
1

*

0

1, , ,
f

f

t
f

t

, dg x F x t t
C −

ξ = ξ∫ t

j

 (31) 
In order to solve equation (29), the boundary Γ is divided into N 
constant boundary elements Γj, the interior Ω is divided into L 
constant internal cells Ωl and then we obtain the following system 
of algebraic equations (i =1, 2, ..., N ) 
 

( ) ( )

( ) ( )
1 1

1

1 1

, ,

, ,

N N
j f j f

i j i j
j j

L L
l f l f

i l i l
l l

G J x t H F x t

P F x t D S x t

= =

−

= =

= +

+

∑ ∑

∑ ∑
 (32) 

 
where 

( )
( ), d ,

, d and
1 / 2

j

j

i
j

i
i j j i j

h x i
G g x H

i j
Γ

Γ

⎧ ξ Γ ≠⎪= ξ Γ = ⎨
⎪− =⎩

∫
∫

 (33) 
 
while 
 

( )* 1, , , d
l

i f f
i l lP F x t t −

Ω

= ξ Ω∫
 (34) 

 
at the same time 
 

( ), d
l

i
i l lD g x

Ω

= ξ Ω∫∫
 (35) 

After determining the 'missing' boundary values (F (x j, t f ) or 
J (x j, t f )), the values of function F (x i, t f ) at internal nodes 

ix ∈Ω  for time t f are calculated using the formula (i = N+1, N+2, 
..., N+L) 

 

( ) ( ) ( )

( ) ( )
1

1

1

, ,

, ,

N
j f j f j f

i j i j
j

L
l f l f

i l i l
l

F x t H F x t G J x t

P F x t D S x t

=

−

=

,⎡ ⎤= − +⎣ ⎦

⎡ ⎤+⎣ ⎦

∑

∑
 (36) 

 
 

4. Results of computations 
 

The lateral section of steel ingot 0.1×0.1 [m] has been 
considered - c.f. Figure 1. The following input data have been 
assumed: thermal conductivity λ = 35 [W/mK], constant 
C0 = 54.243⋅10 6 [J/m3 K] (c.f. equation (25)), liquidus temperature 
TL = 1505 °C, solidus temperature TS = 1470 °C, pouring 
temperature T0 = 1550 °C, volumetric specific heats of liquid and 
solid states cL = 5.904⋅10 6 [J/m3 K], cS = 4.875⋅10 6 [J/m3 K], 
volumetric specific heat of mushy zone sub-domain 
cP = 0.5 (cL + cS), volumetric latent heat L = 1.9845⋅10 

9
 [J/m3], 

pulling rate w = 0.0183 [m/s]. 
In Figure 3 the discretization of the domain considered is 

shown. The boundary is divided into 40 constant boundary 
elements, while the interior is divided into 100 constant internal 
cells. Time step equals Δt = 0.25 [s]. 
 

 
Fig. 3. Discretization 

 
In order to estimate the course of boundary heat flux we 

assume, that the temperatures at the internal nodes A, B, C, D, E 
for successive cross sections x3 =f w Δt, f = 0, 1, ..., 14 of the cast 
slab (c.f. Figure 1) are known. In Figure 4 the values of 
temperature at these nodes are shown. The information 
concerning the temperature distribution has been obtained from 
the direct problem solution under the assumption that the 
boundary heat flux changes according the formula 
( ) 1 2 ,q t b b t= +

 where b1 = 2.7⋅10 
6 and b2 = − 3.35⋅10 

5. 
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