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Abstract 
 

In this paper an application of the interval boundary element method for solving problems with interval thermal parameters and 
interval source function in a system casting-mould is presented. The task is treated as a boundary-initial problem in which the 
crystallization model proposed by Mehl-Johnson-Avrami-Kolmogorov has been applied. The numerical solution of the problem discussed has 
been obtained on the basis of the interval boundary element method (IBEM). The interval Gauss elimination method with the decomposition 
procedure has been applied to solve the obtained interval system of equations. In the final part of the paper, results of numerical 
computations are shown. 
 
Keywords: Application of information technology to the foundry industry, Solidification process, Interval arithmetic, Interval boundary 
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1. Introduction 
 
The solidification process proceeding in the volume of pure 

metal or alloy can be analyzed as a macroscopic one [1, 2, 3] but the 
microscopic aspects of the phenomena considered, in particular the 
nucleation and the nuclei growth [4, 5, 6, 7, 8] must be taken into 
account. The energy equation contains the term called the source 
function proportional to the solidification rate determined by the 
changes of nuclei density and temporary grains dimensions. Such 
approach is widely known.  

The interval analysis of the typical tasks of the solidification 
process seems be more effective because experimental estimations 
of the grain density, the growth and the thermal parameters are 
difficult. These values are dependent on technological conditions, 
object geometry etc. So, it seems natural, that the parameters 
appearing in the mathematical model of solidification process 
should be treated as the interval values [9, 10]. This assumption is 
closer to the real physical conditions of the process considered.  

Let us consider the solidification process in heterogeneous domain 
1Ω = Ω ∪Ω  of the casting and mould (see Figure 1).  

 

 
 

Fig. 1. Domain considered 
 

The heat conduction process in the casting sub-domain 1Ω  is 
described by the following energy equation 
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where  is the interval volumetric specific heat for the casting 

sub-domain,  is the interval thermal conductivity,  is the 

interval source function, , x, t denote temperature, spatial co-
ordinates and time, respectively.  
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The temperature field in the mould sub-domain 2Ω  is 
determined by the energy equation 
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The above equations (1) and (2) must be supplemented by the 

boundary-initial conditions  
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and the continuity condition on the contact surface between the 
casting and mould 
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The interval source function  (see eq.1) is depended on 

the interval volumetric fraction of the solid state  at the 
neighborhood of the point considered  x  and takes  the following 
form 
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where  is the volumetric latent heat, crQ ω( , )x t%  is the interval 
function and for the spherical grains it is defined using the 
formula 
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where ( , )R x t%  is the temporary interval radius of the single grain, 

( , )N x t%  is the interval grain density. 
Denoting by  the interval solidification rate the temporary 
interval radius of the single grain can be written as follows 

( , )u x t%

0

( , ) ( , )d
t

R x t u x τ τ= ∫% %  (7) 

 
while the interval solidification rate is defined as 
 

2( , ) μ ( , )u x t T x t= Δ% %  (8) 
 
where μ~  is the interval value of the growth coefficient, ( , )T x tΔ  
is the undercooling below the solidification point T cr [6, 9]. 

Taking into account the interval value of the growth 

coefficient μμμ ,~ =  and the constant interval value of the 

grain density, NNN ,~ =  the interval source function  

can be expressed as follows 
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The interval source function  for the constant interval 

value of the grain density 

( , )Q x t%

NNN ,~ =  is defined using the 

following formula 
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This interval source function has to be calculated according to the 
rules of the interval arithmetic [9]. 
 
 

2. Interval arithmetic 
 

Let us consider an interval x% , which can be defined as a set 
of the following form [11] 
 

{ }, :x x x x x x x≡ = ∈ ≤ ≤% R  (11) 
 
where x  and x  denote the lower and the upper bounds, 
respectively. An interval is called thin if x x=  and thick if 
x x< . 

The sum of two intervals ,a a a=%  and ,b b b=%  can be 

written as 
 

,c a b a b a b= + = + +%% %  (12) 

 
The difference is of the form 
 

,c a b a b a b= − = − −%% %  (13) 

The product of the intervals is described by the following formula 
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The inversion of the interval  can be written as b%
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The quotient of two intervals can be expressed as 
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3. Interval boundary element method  
 

For simplification a 1D problem has been analysed. The heat 
conduction process in this case is described by the following energy 
equations 
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with the boundary-initial conditions of the form 
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where  identify the casting and mould sub-domains.  1, 2e =
The source function for the mould sub-domain is equal to zero 
( ). 2 ( , ) 0Q x t =%

In this paper the 1st scheme of the boundary element method 
is used [12, 13, 14, 15]. As first, the time grid must be introduced  
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with a constant time step 1f ft t t −Δ = − . 
 

Let us consider the constant elements with respect to time 
 

1 ( , ) ( , )
, :

( , ) ( , )

f
e ef f

f
e e

T x t T x t
t t t

q x t q x t
−

⎧ =⎪∈ ⎨ =⎪⎩

% %

% %
 (20) 

 
The boundary integral equation corresponding to the transition 
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where ξ is the observation point, 1 ( , )fq x t%  is the interval heat flux. 

The interval fundamental solution  has the  
form [11, 16] 
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where is the interval value of the diffusion coefficient.  1 1λ /a = %%

The heat flux resulting from the fundamental solution should be 
found in analytic way and then 
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The boundary integral equation corresponding to the transition 

1f ft t− →  for the mold sub-domain can be expressed as follows 
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where  is the interval fundamental solution for the 
mould sub-domain. 

*
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The numerical approximation of the equations (21) and (24) leads 
to the system of interval equations with the interval values of the 
elements of matrices G and H, this means 
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and 
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After determining the ’missing’ boundary values for the 

casting and the mould sub-domains the interval temperatures f
eT%  

at the internal points ξ i can be calculated using the formulas  
– for the casting sub-domain ( 1(0, )Lξ∈ ) 
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– for the mould sub-domain ( 1 2( , )L Lξ∈ ) 
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4. Interval Gauss elimination method 
 

The interval Gauss elimination method [10, 11, 16] has been 
used to solve the interval system of equations (25). The obtained 
system of equations can be written in the following form 
 

⋅ =A y B% %%  (33) 
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We use a decomposition to solve the linear system (33). The main 
matrix  must be written as a product of two matrices  and 

, where  is lower triangular and  is upper triangular, this 
means 
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and 
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where  (N is the dimension of the matrix). , 1, 2, ,i j N= K

The elements of the matrices L  and  are computed using the 
formulas according to the rules of the interval arithmetic, so 
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and then the system of equations (33) takes a form 
 

( )⋅ = ⋅ ⋅ =A y L U y B% % % %% %  (37) 
 
As first, we solve for the vector z such that 
 
⋅ =L z B% %  (38) 

 
and then we solve for the vector y the system as follows 
 

⋅ =U y z% % %  (39) 
 
 

5. Numerical examples 
 

In this paper two examples of 1D heat transient transfer in a 
casting-mould system of dimensions L 1 = 0.02 [m] (casting) and 
L 2 = 0.02 [m] (mould) are presented. On the both sides the 
boundary condition of the 2nd type q L = q R = 0 [W/m 2] have been 
assumed. The casting sub-domain and the mould sub-domain have 
been divided into 20 constant internal cells, respectively.  
The following input data have been introduced: λ 1 = 180 
[W/(m⋅K)], c1 = 3 [MJ/m3K], λ 2 = 2.6 [W/(m⋅K)], c2 = 1.75 
[MJ/m3K], pouring temperature T01 = 670 [°C], initial mould 
temperature T02 = 30 [°C], solidification point Tcr = 660 [°C], 
volumetric latent heat = 975 [MJ/mcrQ 3], time step Δt = 0.02 [s]. 

In the first example the interval source function with the 
interval values of the growth coefficient 

6μ 2.95 10 , 3.05 10−= ⋅ ⋅% 6−  [m/s⋅K2] and the grain density 
89.8 10 , 10.2 10N = ⋅ ⋅% 8  [1/m3] is assumed.  

Figure 2 presents the courses of the source function at nodes 10 
( 0.0095x = [m]) and 15 ( 0.0145x = [m]) from the casting sub-
domain, where SourceL and SourceR denote the first and the 
second endpoints of the source interval. 
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Fig. 2. The courses of the source function 

 
Figure 3 illustrate the temperature distribution in the casting-

mould domain obtained for the time 5[s] (TemL and TemR 
denote the first and the second endpoints of the temperature 
interval). 
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Fig. 3. The temperature distribution 

 
In the second example the volumetric specific heat of the 

mould sub-domain is assumed to be an interval value 
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