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Abstract 
 

In the paper the mathematical model, numerical algorithm and example of cylindrical casting solidification are presented. In particular the 
casting made from Cu-Zn alloy is considered. It is assumed that the temperature corresponding to the beginning of solidification is time-
dependent and it is a function of temporary alloy component concentration. The course of macrosegregation has been modelled using the mass 
balances in the set of control volumes resulting from a domain discretization. The balances have been constructed in different ways, in 
particular under the assumption of instant equalization of alloy chemical constitution (a lever arm rule), next the Scheil model (e.g. [1]) has 
been used and finally the broken line model [2] has been taken into account. On a stage of numerical algorithm construction the boundary 
element method has been used in the variant called BEM using discretization in time [3, 4, 5] supplemented by the alternating phase truncation 
procedure [6, 7]. 
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1. Governing equations 
 
In a casting domain, two changing with time sub-domains are 

distinguished. They correspond to liquid and solid phases. The 
moving boundary is identified by a temporary position of liquidus 
temperature ( )* LT z , where Lz  is a temporary concentration of 

alloy component of liquid state near a border surface (in a case of 
lever arm and Scheil models Lz  corresponds to concentration in the 
whole liquid part of casting domain). In the model proposed a 
presence of mushy zone is neglected and in a place of  one can 
introduce the so-called equivalent solidification point [7]. 

*T

A transient temperature field in domain considered (taking into 
account the cylindrical geometry of casting - 1D task) is determined 
by the following system of partial differential equations 
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In equations (1) c, ρ , λ  denote the specific heats, mass densities 
and thermal conductivities, T, r, t - are the temperature, geometrical 
co-ordinates and time. 
On a border surface the Stefan condition is given: 
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where VL  is a volumetric latent heat. 



On an external surface the following continuity condition is 
assumed 

 
( ) ( ): , , ar R q r t T r t Tα ⎡= = ⎣ ⎤− ⎦  (3) 

 
where α  is a substitute heat transfer coefficient,  is an ambient 

temperature. At the moment 
aT

( ) ( )00 : , 0 , , 0L Lt T r T z r= = 0z= , 

at the same time  is the pouring temperature,  - initial 
concentration of alloy component. 

0T 0z

The algorithm of numerical simulation bases on the alternating 
phase truncation procedure. This approach requires the application 
of enthalpy approach on a stage of governing equations 
construction. So, we introduce the following definition of physical 
enthalpy 
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The course of enthalpy function is shown in Figure 1. 

 

 
 

Fig. 1. Enthalpy diagram 
 
The system of equations (1) written using the enthalpy convention 
takes a form 
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where La  and  are the heat diffusion coefficients (Sa a cλ ρ= ). 
The Stefan boundary condition can be written as follows 
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where LA  and SA  are the right hand side and left hand side limits 

of enthalpy at the point  (see: Figure 1).  *T
The Robin boundary condition is of the form 

 

( ) ( ): , , ar R q r t H r t Hβ ⎡ ⎤= = −⎣ ⎦  (8) 
 
where a cβ ρ=  is a substitute heat transfer coefficient written 
using the enthalpy convention,  is the enthalpy corresponding to 

. The initial condition is also given: . 
aH

aT ( ) 00 : , 0t H r H= =

The adequate fragment of equilibrium diagram [8] of alloy 
considered (Zn < 30%) one can approximate by two sectors starting 
from the same point. In a such situation the partition coefficient 

constk =  and Sz k z L= . The formula determining the liquidus 

line is of the form * mT T m z L= + , where  is a solidification 
point of pure metal (Cu), while m - is a slope of straight line. 

mT

 
 

2. Mass balance under the assumption of 
lever arm model 

 
The mass balance of component alloy in domain of casting can 

be written in the form 
 

( ) ( ) ( ) ( )0 0 S S L Lm z m t z t m t z t= +  (9) 
 
where  denotes a mass of component. 0m

The domain considered is divided into control volumes 
(cylindrical rings) which altitude can be assumed in optional way 
(e.g. 1h = ). Internal radius of element jV  is denoted by 1jr − , 

while an external one by jr  - Figure 2. 
 

 
 

Fig. 2. Control volume jV  
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Solid state fraction in volume jV  at time t equals ( )jS t . A 
mass of metal in solid and liquid state results from equations 

or 
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Now, the time grid should be introduced 

(16)  
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After mathematical manipulations one obtains 

  
The local values of jS  result from the numerical model of 
solidification and they are defined in the following way 
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where ( )p p

j jS S t=  etc.  
while for the others enthalpy values the function jS  equals 0 and 1, 
correspondingly. 

Similarly, as in a case of previous model, the calculated value 
of ( )1f

Lz t +  determines a temporary temperature  and the 

border values 

*T

LA  and SA . Mass balance (9) written for time 1ft +  leads to the equation 
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4. Broken line model 
  

In the last equation the definition of partition coefficient k has been 
introduced. Finally 
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Macrosegregation process proceeding in the cylindrical casting 
domain is described by the system of diffusion equations in the 
form 
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A temporary value of alloy component concentration determines a 
new value of solidification point  and border values *T LA  and 

SA .  
where Lz ,  are the concentrations of alloy component for liquid 
and solid state sub-domains, 

Sz

LD ,  are the diffusion coefficients, 
r, t denote spatial co-ordinates and time. It is assumed that the 
diffusion coefficients of liquid and solid sub-domains are the 
constant values. 

SD
 
 

3. Mass balance under the assumption of 
Scheil model 

On the moving boundary between liquid and solid sub-domains 
the condition resulting from the mass balance is given  
[1, 5, 7] 

 
The Scheil model results from the assumption of limiting form 

of macrosegregation model determining the mass diffusion in a 
casting domain. Because the diffusion coefficient for solid state is 
essentially less than the same coefficient for molten metal and, from 
the other hand, the convection proceeding in a molten metal causes 
the equalization of chemical constitution in this domain, therefore it 
is assumed that , while  (D is a diffusion 
coefficient). So, the mass balance resulting from Scheil's 
assumptions takes a form 

0SD = LD →∞
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Introducing the partition coefficient k one obtains the other form of 
condition (19) 
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If the mass transfer in the solid body is neglected ( 0SD = ) 
 

A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  8 ,  I s s u e  4 / 2 0 0 8 ,  1 2 1 - 1 2 6  123



( ) ( ),
: L 1L L

z r t
r D k

r
η

∂
= =

∂
v z−  (21) 

 
where d dr tν =  denotes the solidification rate. 
On the outer surface of the system the no-flux condition should be 
assumed 
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For time ( ) 00 : , 0Lt z r= = z . 
 
The idea of broken line model is the following. The concentration 
field in molten metal is assumed in the form of broken line. In 
particular the first segment corresponds to a certain layer δ  while 
the second one to the other part of liquid state. The parameters of 
above distribution result from condition (20) and mass balance. The 
concentration in solid body results from partition coefficient k (see 
Fig.3). The details of this approach can be found in [9]. 
 

 
 

Fig. 3. The broken line model 
 
 

5. Alternating phase truncation method 
 
In this paper the classical variant of APTM presented by 

Rogers, Ciment and Berger (e.g. [6]) is used. Generalized form of 
the method can be found, among others, in [6, 7]. The algorithm of 
numerical solution of problem discussed (equations (6), (7) and 
(8)), this means the computations concerning the transition from 
time ft  to time 1ft +  is the following. Let us denote by f

jH  the 

discrete set of enthalpy values in the casting domain at time ft  and 
points jr . In the first stage of computations the casting domain is 

conventionally treated as a liquid one. At the points jr  for which 

enthalpy f
jH  is less than LA  one assumes the local value of 

enthalpy equal to LA , while for the others nodes the local value of 

enthalpy is invariable. So, the real enthalpy distribution is 
substituted by the following one 

 
{ }1 ( , ) max , ( )f f

j jV r t H A z= L L  (23) 

 
For homogeneous (molten metal) casting domain the enthalpy field 
for time 1ft +  is calculated (using the optional numerical method). 
The solution obtained we denote as  (parameter a in 

equations (6) corresponds to 

1
1 ( , )f

jV r t +′

La ). The first stage of algorithm goes 
to the end by substraction of previously added enthalpy, this means 
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j j jV r t V r t H V r t+ +′= + − f
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The second stage of computations concerning the transition 

1f ft t +→ , starts from the homogenization of casting domain to the 
solid state, in other words 
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j S L jV r t A z V r t += 1
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The enthalpy field 2 ( , )f

jV r t  is again calculated ( Sa a= ). The 

final solution concerning the time 1ft +  results from the formula 
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2 1 2( , ) ( , ) ( , )f f f

j j j j
fH V r t V r t V r t+ + +′= + −  (26) 

 
 

6. Boundary element method 
 
The numerical solution of equation 
 
( ) ( ) ( )2

2

, ,H r t H r t H r taa
t r r

∂ ∂ ∂
= +

∂ ∂ ∂
,

r
 (27) 

 
has been found using the boundary element method. Because the 
BEM algorithm for the objects oriented in cylindrical co-ordinate 
system is very complicated, the simpler approach is proposed. 
Equation (22) can be written in the form 
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2

, ,H r t H r t
a

t r
∂ ∂

Q= +
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where Q is the artificial source function and 

 
( ),

( , )
H r taQ r t

r r
∂

=
∂

 (29) 

 
In this way one obtains the energy equation corresponding to the 
objects oriented in cartesian co-ordinate system for which the BEM 
algorithm is simple and effective on a stage of numerical 
simulation.  
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7. Example of computations In the case of variant called the BEM using discretization in 
time, the derivative H t∂ ∂  for transition  is substituted 
by differential quotient and the equation (23) takes a form 

1f ft t +→  

 
( ) ( ) ( )1 2

2

, , ,f fH r t H r t H r t
a

t r

+ − ∂
=

Δ ∂
Q+  (30) 

We consider the solidification of cylindrical casting ( 8 cmR = ) 
made from Cu-Zn alloy (10% Zn). The following thermophysical 
parameters have been assumed 0.12 kW mKL Sλ λ λ= = = , 

33354 kJ m KL Sc c c= = = , 38600  kg mL Sρ ρ ρ= = = , 
6 31.634 10 kJ mVL = ⋅ , 0.855k = , * 1083 473.68 LT z= − ⋅ , 

8 23.5 10 m sLD −= ⋅ , 1.5 mmδ = , initial temperature 1070 oC. On 
the outer surface the Robin condition has been taken into account 
( 240 W m Kα = , ).  o30 CaT =

 
A basic BEM equation for the problem (24) results from the 
weighted residual method application and then one obtains 
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∫

0=

 (31) In Figures 4 and 5 the kinetics of casting solidification is 
shown, at the same time the different models of macrosegregation 
have been considered. The next Figure shows the cooling curves at 
the points from casting domain 

  
where ( ) ( )* , , 0,H r Rξ ξ ∈  is the fundamental solution. In the 
case considered it is a function of the form [3, 5] 
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After mathematical manipulations, the equation (28) takes a form 
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where ( )* , *q r a Hξ = − ∂ ∂ r , while 
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Fig. 4. Kinetics of solidification 

 
 

and 
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For 0 i Lξ ξ+ −→ →  one has 
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Values of matrices g, h, p, z coefficients result from equation (33).  
The capacity of artificial heat source can be found by substitution of 

H r∂ ∂  by the adequate differential quotient [2]. 
Fig. 5. Cooling curves (axis and r = 2  cm) 
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