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Abstract 
 
In the paper the cast iron latent heat in the form of three components corresponding to solidification of austenite and eutectic phases is 
identified. The basic information concerning the form of adequate functions approximation has been taken on the basis of cooling curve and 
temperature derivative courses found by means of the TDA technique. On the stage of inverse problem solution the gradient method has been 
used. The numerical computations have been done using the finite difference method. In the final part of the paper the example of latent heat 
identification is shown. 
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1. Introduction 
 

The inverse problems constitute a very effective tool for the 
analysis of thermal processes proceeding in the system casting-
mould-environment. In this paper the parametric inverse problem is 
discussed, this means the latent heats connected with the cast iron 
solidification are identified. The values of these parameters 
determine the course of substitute thermal capacity of metal. The 
substitute thermal capacity constitutes a very essential parameter 
appearing in the governing equation determining a casting 
solidification, in particular when the one domain approach is 
applied [1, 2, 3]. To identify the latent heats corresponding to 
austenite and eutectic phases the gradient methods have been used 
[4, 5, 6, 7, 8]. Additionally, knowledge of cooling (heating) curves 
at the points selected from casting (mould) domain is necessary to 
solve the problem considered and a such information (in this paper) 

results from the numerical solution of direct problem for real values 
of cast iron parameters. 

 
 

2. Cast iron substitute thermal capacity 
 

To determine the course of substitute thermal capacity of cast 
iron the experimental researches have been realized. The heat cast 
of hypo-eutectic grey cast iron of Zl200-Zl250 class has been 
prepared. The charge material has been choosen according to the 
rules concerning the smelting of cast iron in the induction furnace. 
In the central part of the sampling casting the thermocouple PtRh-Pt 
has been installed. The thermocouple has been connected to the 
registering apparatus. The thermal and derivative analysis (TDA) 
has been done in order to determine the characteristic temperatures 
associated with the change transition. So, the heat processes 
proceeding in the solidifying metal connected with the latent heat 
emission of successive phases have been registered taking into 



account the cooling curve  Td (t) = T (xd , t) and its time derivative 
∂Td (t)/∂t. Using the diagrams of the thermal and derivative analysis 
the values of temperature-dependent latent heat have been 
registered [9] (Fig. 1). 

Next, the substitute thermal capacity distribution for mushy 
zone containing the information about the austenite and eutectic 
phases has been described – Fig. 2. Of course, the physical 
condition in the form 
 

( )( )
L
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P L S
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C T dT c T T Q= − +∫  (1) 

 
must be fullfiled. In equation (1) Q = Qaus + Qeu is the cast iron 
latent heat, Qaus = Qaus1 + Qaus2, Qeu are the latent heats connected 
with the austenite and eutectic phases evolution. 
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Fig. 1. Distribution of cast iron latent heat 
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Fig. 2. Substitute thermal capacity of cast iron 

 
So, in the case of cast iron solidification the following 

approximation of substitute thermal capacity can be taken into 
account (Fig. 2) 
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where TL, TA, TE, TS correspond to the border temperatures, ak, bk, 
k = 1, 2, 3, 4, 5 are the coefficients and 
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where cP = 0.5(cL + cS). 

The coefficients ak, bk have been found on the basis of 
conditions assuring the continuity of C1 class and physical 
correctness of approximation, namely 
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and 
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After the mathematical manipulations one has 
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and 
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3. Governing equations 
 

The energy equation describing the casting solidification has 
the following form [1, 8, 9, 10] 
 

2( , ): ( ) λ ( , )T x tx C T T x t
t

∂
∈Ω = ∇

∂
 (8) 

 
where C (T ) is the substitute thermal capacity of cast iron (c.f. 
equation (2)), λ is the thermal conductivity, T, x, t denote the 
temperature, geometrical co-ordinates and time. 

The considered equation is supplemented by the equation 
concerning a mould sub-domain 
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where cm  is the mould volumetric specific heat, λm is the mould 
thermal conductivity. 

In the case of typical sand moulds on the contact surface 
between casting and mould the continuity condition in the form 
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can be accepted. 

On the external surface of the system the Robin condition 
 

0 : λ ( , ) α ( , )m mx T x t T x t T⎡ ⎤∈Γ − ⋅∇ = −⎣ ⎦n  (11) 

 
is given (α is the heat transfer coefficient, Ta is the ambient 
temperature). 

For time t = 0 the initial condition 
 

00 : ( , 0) ( ) , ( , 0) ( )m mt T x T x T x T x0= = =  (12) 
 
is also known. 

If the parameters appearing in governing equations are known 
then the direct problem is analyzed, while if part of them is 
unknown then the inverse problem should be considered [4, 6, 7, 8]. 
In the paper the cast iron latent heats Qaus1, Qaus2 and Qeu are 
identified. To solve the inverse problem the sensitivity coefficients 
should be determined [11, 12]. So, the additional boundary initial 
problems resulting from the differentiation of basic equations with 
respect to the unknown parameters must be formulated. 
 
 

4. Sensitivity coefficients 
 

To determine the sensitivity coefficients the governing 
equations (8) – (12) are differentiated with respect to p1 = Qaus1, 
p2 = Qaus2 and p3 = Qeu. So, the following additional problems 
should be solved 
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or 
 

2

2

0

( , ) ( ) ( , ): ( ) λ ( , )

( , )
: λ ( , )

λ ( , ) λ ( , )
:

( , ) ( , )

: λ ( , ) 0

0 : ( , 0) 0 , ( , 0) 0

e
e

e

m e
m m m m e

e m m e
c

e m e

m m e

e m e

Z x t C T T x tx C T Z x t
t p

Z x t
x c Z x t

t
Z x t Z x t

x
Z x t Z x t

x Z x t

t Z x Z x

∂ ∂
∈Ω = ∇ −

∂ ∂

∂
∈Ω = ∇

∂

− ⋅∇ = − ⋅∇⎧⎪∈Γ ⎨ =⎪⎩
∈Γ − ⋅∇ =

= = =

n n

n

t
∂

∂

 (14) 

 
where 
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and e = 1, 2, 3. 

Differentiation of substitute thermal capacity with respect to the 
parameters p1, p2, p3 leads to the following formulas 
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while 
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Taking into account the dependences (6), (7), the calculations of 
∂ak/∂p1 and ∂bk/∂p3 are very simple. 

The boundary initial problems (14) are coupled with the basic 
one (8) – (12), because in order to find their solutions, the time 
derivative ∂T (x, t)/∂t should be known. 

The basic problem for the assumed values of p1, p2, p3 and the 
additional ones connected with the sensitivity functions Ze 
computations have been solved using the explicit scheme of finite 
difference method [1]. 

5. Gradient method 
 

In order to solve the inverse problem the least squares criterion 
is applied [2, 4] 
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where Tdi

f and Ti
f = T (xi, t f ) are the measured and estimated 

temperatures, respectively. The estimated temperatures are obtained 
from the solution of the direct problem (c.f. chapter 3) by using the 
current available estimate for the unknown parameters. 

In the case of typical gradient method application [2, 4, 6, 8] the 
criterion (19) is differentiated with respect to the unknown 
parameters pe, e = 1, 2, 3 and next the necessary condition of 
optimum is used. Finally one obtains the following system of 
equations 
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where 
 

( )
k

e e

f
k if

i e
e p p

T
Z

p
=

∂
=
∂

 (21) 

 
are the sensitivity coefficients, k is the number of iteration, pe

0 are 
the arbitrary assumed values of pe, while pe

k for k > 0 result from 
the previous iteration. 

The coefficients (21) can be collected in the following matrix 
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Function Ti

f  is expanded in a Taylor series about known values 
of pl

k, this means 
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Putting (23) into (20) one obtains (e = 1, 2, 3) 
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The system of equations (24) can be written in the matrix form 
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and 
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This system of equations allows to find the values of pe

k+1 for 
e = 1, 2, 3. The iteration process is stopped when the assumed 
number of iterations K is achieved. 
 
 

6. Results of computations 
 

The casting-mould system shown in Figure 3 has been 
considered. At first, the direct problem has been solved. The 
following input data have been introduced: λ = 30 [W/(mK)], λm =1 
[W/(mK)], cL = 5.88 [MJ/(m3 K)], cS = 5.4 [MJ/(m3 K)], Qaus1 = 937.2 
[MJ/m3 ], Qaus2 = 397.6 [MJ/m3 ], Qeu = 582.2 [MJ/m3 ], cm =1.75 
[MJ/(m3 K)], pouring temperature T0 = 1300 o C, liquidus tempera-
ture TL = 1250 º C, border temperatures TA = 1200 º C, TE = 1130 º C, 
solidus temperature TS = 1110 º C  and  initial  mould  temperature 
Tm0 = 20 º C.  

The direct problem has been solved using the explicit scheme of 
FDM [1]. The regular mesh created by 25×15 nodes with constant 
step h = 0.002 [m] has been introduced, time step Δt = 0.1 [s]. 

 
Fig. 3. Casting-mould system 

 
In Figure 4 the cooling curves at the control points 1, 2, 3 from 

casting sub-domain (c.f. Fig. 3) are shown, while Figure 5 illustrates 
the courses of sensitivity functions Ze at the point 1. 
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Fig. 4. Cooling curves at the points 1, 2, 3 
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Fig. 5. Sensitivity functions at the point 1 
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7. Conclusions On the basis of knowledge of cooling curves shown in Figure 4 
the unknown parameters have been identified under the assumption 
that Qaus1

0 = Qaus2
0 = Qeu

0 = 0 – Fig. 6. It is visible that the iteration 
process for the assumed initial values is convergent and the exact 
solution is obtained after twenty iterations. Figure 7 illustrates the 
course of iteration process for one sensor (point 1 in Fig. 3) and the 
same initial values of parameters. 

 
The testing computations show that it is possible to identify the 

unknown parameters only on the basis of one cooling curve 
knowledge but it should be located at the central part of the casting 
domain. In this case for zero initial values of identified parameters 
the iterative process is convergent.   

This paper is a part of the project ”Progress and application of 
identification methods in moving boundary problems”. 
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