PRACE

Instytutu
 Másyly Matematycznych PAN

Praca A 4 (21)
SELECTIOH OF OPTIMAL VALUES OF HOMLINEAR CIRCUIT PARAMETERS BY MEAIS OF DIEITAL COMPUTERS
by Ryszard EUKASZEWICZ

PRACE
Instytutu Maszyn Matematycznyoh
Polakief Akademif Nauk

SELECTION OF OPNIMAL VALUES OF NONLINEAR CIRCUIT PARAMBTERS BY MEANS OF DIGITAL COMPUTERS by Ryszard LUKASZSHICZ

```
Copyright (0) 1964 - by Ingtytut Maszyn Matematyoznych, Warszawe Wezelke prawa zastrzezone
```

Komitot Rodakoyjny
Leon EUXASZBWICZ /redakt or/, Antoni MAZURKIEWICZ, Tomasz PIETRZYKOWSKI /z-ca redaktora/. Dorota FRAWDZIC, Zdziazaw WRZESZCZ
Redaktor dziazowys Andraej KOJEaSKI
Sokrotarz redakojis Romana XITKOWSKA
Adres redakej1: Warazawa, ul.Koszykowa 79, tel.28-37-29

P. $578 / 64$

SELBCTION OF OPTIMAL VALUES OF NOMLIMEAR CIRCUIT PARAMETRRS BY MRANS OF DIGITAL COMPUTERS by Ryazard £UKASZEWICZ
 Received December 1963

Abstract

In the following paper the choioe of optimal values of noalinear cirauit parameters is considered. The configuration of the oiroult is known and the criterion given. The problem is treated as a cortain stage of the designing procedure; evidence is given as to the offectiveness and economy of digital computers. A variant of the gradient method for finding optimum is discussed, providing a basis for writing an appropriate program for a digital computer. The proposed method of automatic selection of a step towards optimum increases the offectiveness of computations. Dependences, determining the direotion of the atep of the examirad point near the constraint surface, are given. The discussed scheme of data is the basis for computing optimal parameters of servomechanisms with the aid of a universal optimization program.

The method of nonlinear oircuit analysis, called a direot one, is presented in papers [1] and [2]. It oonsists of a desoription of oirouit operation using differential equations of the first order in a normal form, and of their direot solution on a digital oomputer. A method is given for obtaining differential equations
of the analyuad oirouit direotly in the required form. On the basis of the SAKO autocode $[3],[4]$ it is explained/in several examples/ how easily a program may be written for computing the examined linear or nonlinear oircuit, using standard subroutines.

It should be emphasized that digital computers enable the analysis prooess to be automatio. The constructor's work should be lessened with the purpose of its reduaing to writing only the subroutine that would oomprise oirouit differential equations as well as to choosing appropriate nonlinear subroutines from the subroutine library and the main program aocording to the oriterion of the analysis.

1. THE CHOICE OF THE METHOD FOR SELECTING OPTIMAL CIRCUIT PARAMETERS

The paper discusses problems conneoted with oirouit synthesis, 1.e. the choice of optimal parameters of oircuits;with a known oonfiguration according to the given oriterion.

The purpose is to find the process of designing which satisfies the following postulates [5], available means being taken into consideration.

Basio postulates for estimating the effeotiveness of the designing prooedure.

1. Selection of optimal parameters, aocording to the given criterion.
2. Aocuraoy - oirouit operation, determined as a result of designing, should correspond as olosely as possible to real circuit operation.
3. Effeotiveness in the sense of labor economy, costs and operating time.
4. Versatility - the applied method should include a possibly large olass of oirouit systems.

In the majority of oases a suocessire approximation is the Fay in which designing offioes and laboratories are proceeding [5].

In the first stage of designing, the oonstructor ohooses parameter values, taking advantage of h1s own experience and available methods of designing whioh generally are not very precise. Then, he makes the analysis of the oirouit operation and oompares the obtained charaoteristics with the assumed ones.

If assumptions are not satisfied, the oonstruotor uses differences obtained among the oharaoteristios and determines the ohanges of oircuit parameter values that should be introduoed in order to improve the oirouit operation. After a oertain number of iterations assumptions are satisfied and it usually is the end of the designing procedure which, however, is not synonymous with the obtaining of an optimal system. Suoh prooedure is rather far from satisfying the above-mentioned postulates of the desigaing process.
> ad. 1. The gain of an optimal system would demand a range of further iterations whioh is contradiotory to point 3.

ad. 2. An inorease of aocuraoy involves more time consuming oomputations, whioh is also oontradiotory to point 3.
ad. 4. If the general method is used, its adaptation to soparate problems 1sn't required, whioh inoreases the effectiveness of the method. This being direotly oonneoted with point 3.

The process of designing by the method of sucoessive approximations may be hastened by means of various computing machines. However, this concerns only computations. The deoision about the change of parameters is still to be taken in oxder to reaoh a more effective device operation. In the oase of more complex nonlinear oirouits, it is much more diffioult to ind the dependenoe that rould help to take this deoision. Those dependences should be formulated independently for various cirouit struotures, whioh makes it diffioult to satisfy oondition 3.

Digital oomputers, thanks to their properties of performing logioal operations, high operation speed and great oomputation acouracy, permit to automatize the prooess of designing. They simultaneousiy satisfy all above-mentioned postulates. The fulfillment of postulates points 2 and 3 results from the above-mentioned proper-
ties. Postulates 1 and 4 are realised on digital computers seleoting optimal parameters as follows.

The optimum /i.e. minimum or macimum/ of the funation

$$
P=P\left(x_{1}\right)
$$

Is to be found, where: funotion $P\left(x_{1}\right)$ is determined by the opt1mization criterion; x_{1} - values of seleoted parameters; $1=1,2$, 3,...,

It is assumed that oertain constraints are not overstepped. They are given in the form of inequality

$$
R_{s}\left(x_{1}\right) \geqslant 0
$$

where: $s=1,2,3, \ldots$,
$R_{8}\left(x_{1}\right)$ - oonstraint funotions brought about by the giren properties of the system, by subset charaoteristios and so on.

Functions $P\left(x_{1}\right)$ and $R_{s}\left(x_{1}\right)$ are in the majority of oases noninnear.

Gradient and random test methods are most often applied for solving the above problem.

The random test method is partioularly suitable to problems in whioh sereral minimums in the function $P\left(x_{1}\right)$ are expected in the space conoerned. This method enables to observe the behaviour of funotion P within the whole space.

When using the gradient method, the step is directed towards the steepest descent of the function leading to minimum. Thanks to this, the method is much faster than thet of the random test. On the other hand, when using it, after having reached the minimum, there is no indication whether the obtained optimum is local or absolute. Therefore, when choosing the gradient method to test a function which may heve several local minimums, the computations should be repeated starting succesaively from various points.

Further, the gradient method will be considered from the viewpoint of satisfying the demands for the designing process by means of digital oomputers. Let's assume that functions P and R_{s} are continual, their derivatives being partial in respect to all independent variables in the whole space of seeking for optimum.

A variant of the gradient method is given below for writing an appropriate program of computations determined by dependences /1/ and $/ 2 /$. Two basic stages are distinguished in it. The first concorns the seeking of optimum in an unconstrained space. In the case of function P being a convex one a new eoonomioal method is proposed of an automatic ohoioe of step directed by a gradient. In the seoond, stage the step being also chosen automatically, leads towards optimum along a tangent to the constrained surface.

2. AUTOMATIC SELECTION OF STEP IN THE DIRECTION DETERMINED BY A GRADIENT IN AN UNCONSTRAINED SPACE

Assume we start from point r inside the space determined by the dependence $R\left(x_{1}\right) \geqslant 0$.

The direction of the veotor gradient in this point is computed according to the dependence

$$
\begin{equation*}
\text { Grad } P=\sum_{1=0}^{n} \frac{\partial P}{\partial x_{1}} \bar{x}_{1} \approx \sum \frac{\Delta P}{\Delta x_{1}} \bar{x}_{1} \tag{131}
\end{equation*}
$$

where: \bar{x}_{1} - unitary vectors direoted along the coordinate axis $\frac{\partial P}{\partial x_{1}}$ - values of partial derivatives
$\frac{\Delta P}{\Delta x_{1}}$ - approximate values of partial derivatives for an appropriately small increment of parameters Δx_{1}
P - values $\Delta P=P_{x_{1, I}}+\Delta x_{1}-P_{x_{1, r}}$ - correspond-

Ing to inorements Δx_{i} are found by means of solving the system of equations desoribing the operation of the investigated system for values of parameters $x_{1, r}$ and $x_{1, r}+\Delta x_{1}$, and by means of the algorithm determined by the aocepted oriterion of optimization by oomputing ${ }^{{ }_{x}}{ }_{1, r}$ and $P_{x_{1, x}}+\Delta x_{1}$

A oertain step is made in the direction determined by the gradlent of function P, providing the greatest change of this function value in the neighbourhood of point r, acoording to the dependenoe

$$
x_{1, r+1}=x_{1, x}+h \frac{\Delta p}{\Delta x_{1}}
$$

The value of step h in a most general oase is selected autoratically by means of a control of the value of angle between gradlent veotors being determined successively [6]. If this angle is smaller than a certain aooepted value θ, the step h is doubled; if the angle is too large h is twioe reduced.

This is evidently an effioient method, as it ensures steps near the curve of the steepest desoent/or growth/ leading to optimum. However, for a certain olass of function P this method is not economioal. It requires most time consuming computation of gradient direotion every time when determining the angle between suooessive gradient veotors.

In the paper a more effioient method is presented of an automatic choioe of step b in the direotion determined by the gradient in the oase when the function P is oonvex, /1.e, Its seocnd derivatire does not ohange the sign/. This method is based upon an
 function P arguments $h \cdot \frac{\Delta P}{\Delta x_{1}}$, where $\Delta^{\prime} P$ is expressed by the dependence $\quad \Delta^{\prime} P=\sum_{1=0}^{n}\left(\frac{\Delta P}{\Delta x_{1}}\right)^{2} \cdot h$
and \triangle 'P is the inorement of the exsmined function P. Then, depending on the result, the value of step h is inoreased or reduced.

Pig. 1. Automatio solection of step while soelcing for optimum by the gradient method.

This method may be easily explained by the diagram/fig. 1/ showing the function $P(h)$, where h defines the increment of arguments in the direotion determined by the gradient, using the formula

$$
\Delta^{\prime} x_{1}=h \cdot \frac{\Delta p}{\Delta x_{1}}
$$

Let's aooept the initial value h. If it is too small, i.e. the relation $\left|\frac{\Delta^{\prime} P-\Delta^{\prime} P^{\prime}}{\Delta^{\prime} P}\right|$ is smaller than a certain constant δ whioh is smaller than unity /for instance $0,1-0,3 /$, the value h is to be doubled and the relation $\left|\frac{\Delta^{\prime} P-\Delta^{\prime \prime} P}{\Delta^{\prime} P}\right|$ examined once more. This is repeated till the moment when the inequality reaches $\left|\frac{\Delta^{\prime} P-\Delta^{\prime}{ }^{\prime} P}{\Delta^{\prime} P}\right| \geqslant \gamma$. In the oase when the initial value h is too great, one acts oonversely, i.e. the value h is being divided by half till the moment of satisfying the oondition $\left|\frac{\Delta^{\prime} P-\Delta^{\prime \prime} P}{\Delta^{\prime} P}\right|<r$.

This oonditions the value of step h to the bend of the run of funotion P appearing when realizing this step. Such a control of the shift of the examined point in the direotion determined by
the gradient, signifioantly lessens the appearance of undesirable effeots, as for instance, the entering the space where function P is not determined, or those oonneoted with its speoifio of oomputation.

Horeover, Fhen a successively determined ohange of the gradient direotion is oonneoted with the bend of the run of funotion P, the proposed method automatioally leads to point out the way of seeking for optimum. This way is near the ourve of the steepest desoent/or growth/. In the oase, when the examined funotion bend does not acoompany the ohange of the direotion of the gradient, the optimum $W i l l$ be similar to the one found by the method of the steepest desoent ${ }^{*}$) /or growth/ given by L. ${ }^{\text {F. Kantorowioz [7]. }}$

The method proposed by the elithor prorides a relatively quiok automatio ohoioe of the ralue of the step in the direotion determined by the gradient. Ihis is due to the faot that eaoh change of the step ralue 18 oonnected only with a single oomputing of the value of function P independent of the number of selected parameters.

The step towards optimum, as abore desoribed, is realized starting from suooessively determined points $r+1, r+2, \ldots$, , $\quad r o o r d-$ ing to the dependence / / / till the moment when:
a/ It is ascertained that the neighbourhood of minimum with the assumed aoouraoy of 13 reached. An adequate oriterion may be

$$
\begin{equation*}
P_{r+1}-P_{r}<\delta \tag{161}
\end{equation*}
$$

The fulfillment of this inequality is synonymous with the end of computation,
b/ it is asoertained that the constraint determined by the dependence $R\left(x_{1}\right) \geqslant 0$ has been orerstepped. In this oase one aots as below/sec. 3/.

[^0]3. CONSTRAIATS - STEPS ALONG THE TANGENT

If, while realizing a oertain suocessive step h in the direotion determined by the gradient, the spaca of oonstraint $R\left(x_{1}\right)=0$ Is overstepped, the step h should be lessened so as to be found on the surface of constraint $f\left(x_{1}\right)=0$ or near it. Let us consider the diagram $R(h)$ in Flg. 2, where h is determined by the dependence $/ 5 /$. Assume, that starting from point r_{1} the step h_{1} is made in the direction determined by Grad P, and point r_{2} is reaohed where $R\left(h_{1}\right)<0$. Then, one should return to point r_{1} and make a new step h_{2}, the value of whioh is to be found by means of a linear interpolation /or of higher order/ according to the dependence

$$
h_{2}=h_{1} \frac{R(0)}{R(0)-R\left(h_{1}\right)}
$$

Being on the surface of constraint/or near 1t/ the step is to be directed towards optimum along the tangent to this surface. Let us be in point $r\left(x_{1}\right)$ on the surface $R\left(x_{i}\right)=0$. Further sesking for optimum is performed by a step in the direction determined by the projeotion of vector Grad $P\left(x_{1, r}\right)$ on the plane tangent to the surface $R\left(X_{i}\right)=0$ in point r for to surface $R\left(x_{i}\right)=K$, near the surface $R\left(x_{1}\right)=0 /$.

Pig. 2. The diagras of the constrain't curve $R(h)$.

An appropriate Way of proceeding will be most easily explained using Fig. 3 presenting space $\left\{x_{n}\right\}$ in the case ${ }^{*} n=3$, ie. space $\left\{x_{1}, x_{2}, x_{3}\right\}$. Let us be in point \vec{r}, on the surface of constraint $R\left(x_{1}, x_{2}, x_{3}\right)=0$. In this point we define vector \vec{G}_{1} of the gradient function $P\left(x_{1}, x_{2}, x_{3}\right)$ and veotor $\left.\vec{N} * *\right)$ normal to the surface of constraint $R\left(x_{1}, x_{2}, x_{3}\right)=0$. Vector \vec{S}, being tangent to this surface, is found as follows:

First, components of the projection of vector \vec{G}_{1} against rector \vec{N} are computed according to the dependence

$$
\vec{G}_{1 N}=\frac{\left(\vec{G}_{1} \cdot \vec{N}\right)}{N^{2}} \cdot \vec{N}
$$

Then, point \vec{d} should be found, vector $\vec{G}_{1 N}=-\vec{G}_{1 N}$ being led out from point \vec{c}. Vector \vec{S} tangent to the surface of oonstradnt $R\left(x_{1}, x_{2}, x_{3}\right)=0$ is determined by the expression $\vec{S}=\vec{G}_{1}-\vec{G}_{1 N^{*}}$

Modulus value of vector \vec{S} is ohosen by means of its twofold increase or decrease depending on results of the examination of conditions ***)

$$
P\left(x_{1 d}, x_{2 d}, x_{3 d}\right)<P\left(x_{1 r}, x_{2 x}, x_{3 r}\right)
$$

and

$$
R\left(x_{1 d}, x_{2 d}, x_{3 d}\right) \leqslant M
$$

Further described way of proceeding holds true for any value n.
The direction of vector \vec{N} is simultaneously that of gradient of the function $R\left(x_{1}, x_{2}, x_{3}\right)$. The gradient is determined by the dependence

$$
\operatorname{Grad} R=\sum_{i=1}^{n} \frac{\partial R}{\partial x_{i}} \bar{x}_{i}
$$

Dependence /9/ ocnoerns the seeking for minimum of the function P. While seeking for maximum, character < should be placed instead of > .

Fig. 3. Defining tangent direotion to the limitation curve.
where M is a certain assumed value determining the toleranoe in which the value of function $R\left(x_{1}, x_{2}, x_{3}\right)$ should be included during computations.

When conditions $/ 9 /$ and $/ 10 /$ are satisfied the lenght of vector \vec{S} is doubled and the point \bar{d} reaohed. For this point oonditions /9/ and / $/ 10 /$ are examined anew $*$. Such prooeeding lasts till oonditions /9/ or /10/ are satisfied.

[^1]Assume the length of veotor $\overrightarrow{\mathrm{S}}$ to be found determining ooordinates of point \vec{d} '. The looalization of point \vec{r}_{1} near the oonstraint $R\left(x_{1}, x_{2}, x_{3}\right)=0$ is found by corrgoting the looalization of point d^{\prime} aooording to the dependenoe

$$
\stackrel{r}{r}_{1}=\mathbf{d}^{\prime}-\frac{R\left(\vec{d}^{\prime}\right)}{\mathrm{N}^{2}} \overline{17}
$$

The described cyole is repeated starting with point \dot{r}_{1} and so on, like for point \vec{F}.

Starting with step h from a oertain consecutive point \vec{r}_{n} the ohange of the sign of the projeotion of veotor \vec{G}_{n} of the gradlent of the examined function $P\left(x_{1 n}, x_{2 n}, x_{3 n}\right)=P_{n}$ on the tangent \vec{S}_{n-1}, defined in point \vec{r}_{n-1}, is ascertained. This is equivalent to the overstepping of the point nearest to the optimum. Then, one goes back to the previously defined point \vec{r}_{n-1} and tries the step $\frac{h}{2}$. This is repeated till the required approach with the aocuraoy E to the point nearest to the optimum on the surface of the constraint $R\left(x_{1}, x_{2}, x_{3}\right)$ is reaohed. The fulfilling of this condition, e.g. $\left|P_{n+1}-P_{n}\right|<E$ signalizes the end of the oomputation.
4. THE PROBLEM OF UNIVERSAL PROGRAM OPTIMIZATION

A program prepared for a digital computer and based on the gradient method ooncerns the problem of optimization whioh is generalIy formulated by dependences $/ 1 /$ and $/ 2 /$. If suoh a program is appropriately written, the construotor's task can be reduoed to adjoining the following subroutines: oomputation of the projeoted system operation, optimized funotion P, limitation of R, and the preparation of adequate numerioal data.

An exemplary universal program of servomeohanism parameter optimization has been developed. Minimal time regulation being ac-
oepted as oriterion, with the admissible error E and a given overregulation Iimitation /fig. $4 \mathrm{*} / /$.

Flg. 4. Outline of criterions of the servomechandem optimizer. 'RR - regulation time, G - admiseibio overregulation, E - admissible regulation error, W - input step signal, F - curve of the run of a temporary, Y - output signal of the servomeohandem.

The following soheme of input data was accepted.

NUNERICAL DATA:

Soale - soale of computation,
x_{1} - seleoted variable parameters of servomeohanism $/ 1=0,1$, 2, ... being the index of a conseoutive parameter/,
Δx_{1} - increments of servomeohanism parameter variables used for gradient computation/their values are estimated usually as 1% - 3 of the expected value of the appropriate parameter after the end of optimization/,

[^2]F_{k} - initial conditions of differential equation system that desoribe serromechanism operation,
NP - the number of seleoted parameters,
N - the numer of differential equations,
EPS - admissible regulation error,
M - tolerance of oonstraint oondition,
PIK - admissible overregulation /PIK ${ }^{2} \frac{G}{W}$; Pig. 4/,
H - the value of step in the direotion determined by the gradient/its initial value mas in prinoiple be arbitrary, horever, it influenoes the oomputation time/,
HRK - the value of numerical integration step,
E - assumed optimization oorreotness.

The rightness of assumptions of the discussed program realization has been tested on the digital oomputer ZAM-2, espeoially in reference to the proposed method of automatic choioe of step and shifting of the examined point near the space of oonstraint. MoreJver, it has been found that for solving the problem of universal program optimization, the oomputer should be a floating point one /the problem of ohoosing the oomputation soale would then be oanoelled/, with a larger operational storage and greater speed of operation than ZAM-2. Polish digital oomputers which satisfy the conditions required are $Z A M-3$ and $Z A M-41$, the latter being now under realization on the Institute of Mathematical Maohines of the Polish Aoademy of Scienoes.

Reforences

1. LUKASZESICZ R.: Direot Method of Circuit Analybie on Digital Computere, Prace ILM, Wargan 1962:2, A17.
2. 壬UKASZBiYCCZ R.s Analybia of Nonlinear Cirouita by the Aid of Digital Computers, Praoo Imar, Wareaw 1963:2, A 2/19/.
3. EUKASZBHICZ L.: SAKO - An Automatic Coding Syatem, Amual Review in Automatio Programoing, Porgamon Press, 1961 12, 161-176.
4. MAZURKIENICZ A.W.s Arithmetic Pormulae and the Use of Subroutines in SAKO, Pergamon Fress, 1961,2, 177-195.
5. BROHR R.R.z A Generalized Computer Hrooedure for the Design of Optimum Syatems, Communication and Bleotronios, July 1959.
6. DEIENIS J.B., NEASE R.F., SAUBDERS R.M. : Syetem Synthesis with the Aid of Digital Computers, AIES transaotion, November 1959.
7. Colleotive work edited by SOZODONNIKOV V.: Prixdenienjjo vyöielitelnoj teohniki dla avtomatizaoji proizvodstva, Hazgiz, Hoskva 1961.

[^0]: Tha method of the steopest descent consiste in deternining the grediont of function P, and in a step in the opposite direction till the mintmal value of function P is reachod. In this point a new gradient dirsotion is defined and analogous to the formar the aindmal value of funotion P is found, and so on.

[^1]: *hen doubling the lenght of vector \bar{S}, which results in reaching, for instance $\frac{1}{d}$ point \vec{d}, condition $/ 9 /$ concerns the value of function P in points $\frac{1}{d}$ and d and so on.

[^2]: * In principle any signal may be the input signal W, if its time function
 may bs computed by means of an approperiate subroutine.

