PRACE

 Instytutu
лпйти

P. 222466 Matemåtycznych PAN

ON PARITY CHECK OF ARITHMETIC OPERATIONS

by Leopold tabanowski
and Stanislaw MAIERSKI

PRACE

Instytutu Maszyn Matematyosayoh

```
Copyright (0) 1966 - by Instytut Maszyn Matematycznyoh, Warszawa
    Wazelicie prawa zastrzezone
```


PW 3 Tol 66 K○mitet Redakoyjny

Leon ŁUKASZEWICZ /rodaktor/, Antoni MAZURKIEWICZ, Tomasz PIETRZYKOFSKI /z-oa redaktora/, Dorote PRAWDZIC, Zdziakaw RRZESZCZ
Redaktor działowy: Andrzej KOJBLESKI Seloretarz redekcji: Romana NITKOWSKA
Adrea redakc j1: Varszawa, ul.Koszykowa 79, tel.28-37-29

ON PARITY CHECK OF ARITHMRTIC OPERATIONS

by Leopold EABADOMSKI
and Stanisをaw MAJKRSKI
Received DecGmber $1^{\text {st }}, 1964$

Abstract

The paper ooncerns the parity check of arithmetic operations in digital computers. The cheok methods presented in other papers, dealing with this problem, discuss the parity of a total sum of digits of arguments, of the operation result and of the carries occurrins during the operation. In this paper attention is drawn to the faot that every exror of a carry ocourring during the operation changes its result, so that a summarized error becomes undetectable in case of an additional carry circuit not being applied in chects ofrcuits. The analysis of the carry error is presented in an example of the addition of binary numbers.

In papers [4] and [5] methods of circuit checking of arithmetic operations ware disoussed. These methods are based on dependence appearing between the digits of arguments, digits of results of the arithmetic operations and values of carries occurring during the operation. The parity check of arithmetio operations is a partioular case of the modular weight check desoribed in the above-mentioned papers. It detects all such errors in which the total number of erroneous digits and carries, appearing during the operation, is odd. The purpose of this paper is to show that the above formulation does not permit to drav a oonslusion about the detection of every single error occurring during an arithmetic operation. It results, therefore, that every error of a carry causes such a ohange of the operation result that the summarized error becomes undetectable in oase an additional carry circuit is not applied. This additional carry circuit mas be treated as a part of the check cirouit.

The analysis of the carry errors is presented in an example of the addition of binary numbers. In order to simplify the oonsiderations we shall consider only the addition of absolute values of numbers

$$
\begin{align*}
& s=\sum_{i=0}^{n} a_{i} 2^{i} \\
& b=\sum_{i=0}^{H} b_{i} 2^{i} \tag{121}
\end{align*}
$$

the sum of which is

$$
\begin{equation*}
s=\sum_{i=0}^{\pi} s_{i} 2^{i} \tag{131}
\end{equation*}
$$

where a_{1}, b_{1}, s_{1} take values 0 and 1 .
Values of s_{1} bits are determined by the recurrent formula

$$
a_{i}+b_{i}+o_{i}-s_{i}+2 o_{i+1}
$$

where the carry c_{1} takes values 0 and 1 .
Assuming $c_{0}=0$ we obtain from / $/ 4$ the values s_{i} and c_{1+1} for $1=0,1, \ldots$. . F. From the assumption that the formula /3/ defines the sum 8 we obtain ${ }^{0} \mathrm{~N}+1=0$. /The assumptions $0_{0} \equiv 0$ and $0_{N+1}=0$ have been sooepted only to shorten the oonsiderations/.

Then summing up the sides of the equation $/ 4 /$ for 1 from 0 to N we obtain

$$
\sum_{i=0}^{N} a_{i}+\sum_{i=0}^{N} b_{i}+\sum_{i=0}^{N} c_{i}=\sum_{i=0}^{N} s_{i}+2 \sum_{i=0}^{N} c_{i+1}
$$

and, hence, for $0_{0}=0$ and $0^{0}+1=0$ we have

$$
\sum_{i=0}^{N} a_{i}+\sum_{i=0}^{N} b_{i}=\sum_{i=0}^{N} s_{i}+\sum_{i=0}^{N} a_{i}
$$

From $/ 6 /$ results the modular equation

$$
\left(\sum_{i=0}^{\mathbb{N}} a_{i}+\sum_{i=0}^{N} b_{i}+\sum_{i=0}^{N} s_{i}+\sum_{i=0}^{N} c_{i}\right) \operatorname{xod} 2=0
$$

This equation is a particular case of the modular equation /37/ from [4] page 36. This also results from the equation $/ 24 /$, paper [5] page 56. The appearance of pluses in parentheses on the left side of the equation /7/ instead of minuses is of no significance in Mod 2. The equation /7/ is the basic formula for the parity oreo of addition.

We shall assume that all the values $a_{1}, b_{1}, s_{1}, c_{1}(i=0,1, \ldots, N)$ may be choked, and that there exists in the oomputer a chook orout oheoking the formula /7/.

Let us assume that during the addition a carry error occurs and the erroneous carry o_{j} appears instead of the carry $c_{j}\left(c_{j} \neq c_{j}\right)$, where $0<j \leqslant N$.

Then, the equation

$$
a_{1}+b_{i}+c_{i}=s_{i}+2 c_{i+1} \quad \text { for } \quad 1=0,1, \ldots, j-2 \quad / 8 /
$$

does not change and instead of the equation

$$
a_{j-1}+b_{j-1}+a_{j-1}=a_{j-1}+2 o_{j}
$$

we obtain

$$
a_{j-1}+b_{j-1}+c_{j-1} \neq a_{j-1}+2 c_{j}^{\prime}
$$

and for $i=j, j+1, \ldots, N$ we obtain the equation

$$
a_{1}+b_{1}+o_{i}^{\prime}=a_{i}^{\prime}+2 c_{i+1}^{\prime}
$$

where values s_{i} and 0_{i+1} are assigned reoourrently for conseoutive integers 1. To simplify the considerations we assume $c_{N+1}=0$. This assumption is of no importance for the results of oonsiderations.

The difference between the right sides $/ 9 /$ and $/ 10 /$ is +2 or -2 , due to which we obtain instead of $/ 6 /$ the formula

$$
\sum_{i=0}^{N} a_{i}+\sum_{i=0}^{N} b_{i} \neq \sum_{i=0}^{j-1} s_{i}+\sum_{i=j}^{N} s_{i}^{\prime}+\sum_{i=0}^{j-1} c_{i}+\sum_{i=j}^{N} c_{i}^{\prime}
$$

where the difference between the left and right side is aiso +2 or -2. Because this difference is even, we obtain, instead of $/ 7 /$, the following equation

$$
\left(\sum_{i=0}^{N} a_{i}+\sum_{i=0}^{N} b_{i}+\sum_{i=0}^{j-1} s_{i}+\sum_{i=j}^{N} s_{i}^{\prime}+\sum_{i=0}^{j-1} c_{i}+\sum_{i=j}^{N} c_{j}^{\prime}\right) \operatorname{sod} 2=0 \quad / 13 /
$$

It results from $/ 7 /$ and $/ 13 /$ that the parity check circuit of the sum of digits of numbers a, b, s and of carries $c_{0}, 0_{1}, \ldots, 0_{N}$ does not detect the change of the carry c_{j} into the erroneous carry c_{j}. The conclusion may be drawn that such a circuit does not detect errors in the carry oircuit of an adder. However, it detects every odd number of all other erroneous bits occurring in the adder.

In order to detect every odd number of errors appearing in an adder, another independent carry circuit should be adjoined to the adder. The inputs of the above carry circuit should be connected parallel with those of the proper carry oircuit of the adder. The outputs of the additional carry circuit should be joined only to the cheok circuit.

In such a solution the cheok oircuit cheoks the states a_{1}, b_{i}, $s_{1}(1=0,1, \ldots, N)$ of the adder, and the states $c_{1}(1=0,1, \ldots, N)$ of the additional carry cirouit. The check oirouit, based on modular equation /7/ signalizes the appearance of every odd number of errors in the adder /including errors appearing in the carry oircuit/. Such a solution was applied in the ZAM 3 computer at the Institute of Mathematical Machines in Warsaw.

In an analogous way it may be easily proved that in the oase of subtraction, multiplication and division, the parity check circuit without an additional oarry circuit does not detect any carry errors.

References

1. WOEKOW E.A.: Odin sposob artomatičeskoge kontrola arifmetičeskogo ustroiatva posledovatelnogo diejetvia, Vycialitieinaja tieohndka, Izd. AN SSSR, 1958.
2. GARNER H.L.: Generalized parity checking, IRB Transactions on Electronic Computers, Vol. EC-7, Sept., 1958.
3. PBTERSON W.W.: On checking on adder, IBM Journal of Research and Development, Vol. 2 No 2, April, 1958.
4. MAJERSKI S.: Kontrola wagowa działań arytmetycznych w ezeregowych maszynach oyfrowych, Prace zaM PAN A7, 1960.
5. HAJERSKI S.: Weight check equations for arithmetic operations in digital computers, Buli. Aoad. Polon. Sci., Ser. Sci.Techn., $9 / 1961 /$, 53.
6. MAJRRSKI S.: On the cirouit check of digital oomputers. Bull. Acad. Sci. Ser. Sci.Techn. $7 / 1962 /$, 19.
(1)

$$
x=\operatorname{la}=
$$

$4+2=$

Cena 21 3.-

