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Abstract 
 
The methods of sensitivity analysis constitute a very effective tool on the stage of numerical modelling of casting solidification. It is possible, 
among others, to rebuilt the basic numerical solution on the solution concerning the others disturbed values of physical and geometrical 
parameters of the process. In this paper the problem of shape sensitivity analysis is discussed. The non-homogeneous casting-mould domain is 
considered and the perturbation of the solidification process due to the changes of geometrical dimensions is analyzed. From the mathematical 
point of view the sensitivity model is rather complex but its solution gives the interesting information concerning the mutual connections 
between the kinetics of casting solidification and its basic dimensions. In the final part of the paper the example of computations is shown. 
On the stage of numerical realization the finite difference method has been applied. 
 
Keywords: Solidification, Numerical modelling, Inverse problem, Parameter identification 
 
 
 

1. Introduction 
 
The thermal processes proceeding in the casting domain are 

described using the one domain approach [1, 2, 3, 4], in other 
words, the energy equation in which substitute thermal capacity of 
alloy is applied. The energy equation for casting domain is 
supplemented by the similar equation for mould sub-domain and 
boundary conditions determining the heat exchange between 
casting and mould and on the outer surface of the mould. 
The initial temperatures of sub-domains are also known.  

Formulated in this way boundary initial problem constitutes 
a basis for shape sensitivity model construction. The sensitivity 
equations are obtained using the direct approach [5, 6, 7] at the 
same time the material derivative is applied. 

 

2. Governing equations 
 
The casting-mould-environment system is considered. 

The transient temperature field in casting sub-domain is described 
by the following energy equation 
 

( ) ( ), : ( ) Tx y c T T T
t

∂ Q∈Ω = ∇⎡λ ∇⎣ ⎦∂
⎤ +  (1) 

 
where λ (T ) is the thermal conductivity, c (T ) is the volumetric 
specific heat, Q =Q (x, y, t) is the source function, T =T (x, y, t), 
(x, y), t denote temperature, spatial co-ordinates and time, 
respectively. 

As is well known, the source term Q (x, y, t) is proportional to 
the local solidification rate [1, 2, 3], this means 



SfQ L
t

∂
=

∂
  (2) 

 
where fS is the solid state fraction at the neighbourhood of the point 
considered from casting domain, L is the volumetric latent heat.  

If one assumes that fS is the known function of temperature 
(the scope of fS is from 0 to 1, of course) then 
 

d
d

S Sf f T
t T

∂ ∂
=

∂ ∂t
  (3) 

 
and 
 

( ) ( ), : ( ) Tx y C T T
t

∂
∈Ω = ∇⎡λ ∇ ⎤⎣∂

T ⎦  (4) 

 
where the parameter 
 

d( ) ( )
d

SfC T c T L
T

= −   (5) 

 
is called a substitute thermal capacity of mushy zone sub-domain 
[1, 2]. In the case of binary alloys the mushy zone sub-domain 
corresponds to the temperature interval [TS , TL ], where TS, TL are 
the border temperatures determining the end and the beginning of 
the solidification process.  

In literature a several hypothesis concerning the function 
describing a substitute thermal capacity of the mushy zone are 
discussed [1, 3, 4]. In this paper the substitute thermal capacity for 
cast steel is defined as follows (Figure 1) 
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where cL , cS are the constant volumetric specific heats of liquid and 
solid state, ce, e = 1, 2, ..., 5 are the coefficients. The coefficients ce 
have been found on the basis of conditions assuring the continuity 
of C1 class and physical correctness of approximation, namely 
 
( )L LC T c=  

( )S SC T c=  

( )d
0

d
LT T

C T
T

=

=   (7) 
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Because the solidification process proceeds in a rather small 

interval of temperature one can assume the constant value of 

thermal conductivity of cast steel and then the equation (4) takes 
a form 
 

( ) 2, : ( ) Tx y C T
t

∂ T∈Ω =
∂

λ∇   (8) 

 
A temperature field in mould sub-domain describes the 

equation of the form 
 

( ) ( )2,
: m

m m m m

T x t
,x c

t
∂

∈Ω = λ ∇
∂

T x t  (9) 

 
where λm and cm are the mould thermal conductivity and 
the volumetric specific heat, respectively. 
 

 
 

Fig. 1. Substitute thermal capacity 
 

On the contact surface between casting and mould 
the continuity condition  
 

( ), : m
c

m

T T
x y

T T
m−λ ⋅∇ = −λ ⋅∇⎧

∈Γ ⎨ =⎩

n n
 (10) 

 
is assumed.  

For the outer surface of the system the no-flux condition can be 
accepted 
 
( ) 0, : m mx y T 0∈Γ −λ ⋅∇ =n   (11) 
 

For the moment t = 0 the initial temperature distribution 
is known, namely 
 

0 00 : , m mt T T T T= = =   (12) 
 
 

3. Shape sensitivity analysis 
 

We assume that b is the shape design parameter. Using 
the concept of material derivative we can write [5, 6] 
 
D
D x y

T T T Tv
b b x y

∂ ∂ ∂
= + +
∂ ∂ ∂

v   (13) 
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where vx = vx (x, y, b) and vy = vy (x, y, b) are the velocity associated 
with design parameter b. 
Taking into account the definition (13) it can be proved that [8] 
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and 
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at the same time 
 

D
D D

T
b t t b
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So, for 2D domain oriented in Cartesian co-ordinate system 

one obtains 
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this means 
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It can be also proved that [5, 8] 
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where 
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If the direct approach of sensitivity analysis is applied [5, 6, 9, 
10], then the governing equations should be differentiated with 
respect to shape parameter b.  
The differentiation of equation (8) gives 
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where U = DT/Db and (c.f. Fig. 2) 
 

( ) ( ) ( )D d dD
D d D d
C T C T C TT U

b T b T
= =  (22) 

 
 

 
 

Fig. 2. Function dC (T )/dT [MJ/m3K2] 
 
In similar way the equation (9) is differentiated with respect to b 
and then 
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where Um = DTm /Db. 
Differentiation of continuity condition (10) leads to the formula 
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this means 
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The conditions (11), (12) are also differentiated with respect to b, 
namely 
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and 
 

0 : 0, 0mt U U= = =   (27) 
 
It should be pointed out that in order to solve the additional problem 
connected with sensitivity functions U and Um (equations (21)-
(27)), the values of vx, vy should be known. 
 
 

4. Shape design parameter 
 

The cross-section of casting-mould in the form of square of 
dimensions d×d has been considered. It is assumed that the shape 
parameter b corresponds to the half of square diagonal (c.f. Figure 
3) and vx =x/b, vy = y/b.  

In this case the equation (21) takes a form 
 

( ) ( )2 2 d2λλ
d

C TU TC T U T U
t b T

∂ ∂
= ∇ − ∇ −

∂ t∂
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or (c.f. equation (8)) 
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The equation (23) can be written as follows 
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∂
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or (c.f. equation (9)) 
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Because (c.f. formula (20)) 
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so the condition (25) has a form 
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or taking into account the dependence (10) 
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c

m

U U
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while the condition (26) can be expressed as 
 

( ) 0
1, : m m mx y U T
b

⎛ 0⎞∈Γ − λ ⋅∇ − ⋅∇ =⎜
⎝ ⎠
n n ⎟  (35) 

 
or (c.f. equation (11)) 
 
( ) 0, : m mx y U 0∈Γ − λ ⋅∇ =n   (36) 
 

It should be pointed out that the additional problem above 
presented is coupled with the basic problem because in order to 
solve it, the values of ∂T/∂t and ∂Tm /∂t should be known. 
 
 

5. Results of computations 
 

The casting-mould system shown in Figure 3 has been 
considered. The following input data have been introduced: λ = 30 
[W/(mK)], λm =1 [W/(mK)], cS  = 4.875 [MJ/m3 K], cL = 5.904 
[MJ/m3 K], cm =1.75 [MJ/m3], L =1984.5 [MJ/m3], pouring 
temperature T0 = 1550 o C, liquidus temperature TL = 1505 o C, 
solidus temperature TS = 1470 oC, initial mould temperature 
Tm0 = 20 o C. 

 

 
Fig. 3. Casting-mould system 

A R C H I V E S  o f  F O U N D R Y  E N G I N E E R I N G  V o l u m e  7 ,  I s s u e  4 / 2 0 0 7 ,  1 1 5 - 1 2 0  118 



The direct problem and additional one connected with 
the sensitivity function have been solved by means of the explicit 
scheme of finite difference method [1]. The regular mesh created by 
30×30 nodes with constant step h = 0.002 [m] has been introduced, 
time step Δt = 0.1 [s]. 

In Figures 4 and 5 the distribution of temperature and function 
U in casting sub-domain for time 60 and 180 [s] is shown. 
 

 
 

 
 

Fig. 4. Temperature distribution for time 60 and 180 [s] 
 

 
 

 
 

Fig. 5. Distribution of function U for time 60 and 180 [s] 

Figures 6 and 7 illustrate the cooling curves and the courses of 
function U at the points 1, 2, 3 from casting domain marked in 
Figure 3. 

 
Fig. 6. Cooling curves at the points 1, 2, 3 

 

 
Fig. 7. Courses of sensitivity function at the points 1, 2, 3 

 
In Figures 8 and 9 the courses of heating curves and function U 

at the points 4, 5, 6 from mould sub-domain marked in Figure 3 are 
shown. 

On the basis of the knowledge of temperature T and sensitivity 
function U for time t and shape parameter b, the temperature in 
the domain for b + Δb can be obtained using the Taylor formula 
 

( ) ( ) ( ), , , , , , , , ,T x y b b t T x y b t U x y b t b+ Δ = + Δ  (37) 
 

In Figures 10 and 11 the temperature courses at the points 
selected from casting and mould sub-domains for basic value of 
shape parameter and for b + Δb (Δb  = 0.05b) are shown. 

 
Fig. 8. Heating curves at the points 4, 5, 6 
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6. Conclusions 

 

 
Shape sensitivity analysis is the very effective tool in numerical 

modelling of solidification problem. It allows to rebuilt the basic 
solution on the solution concerning the other disturbed value of 
shape parameter. In the paper the direct approach has been 
presented but it is possible to use the adjoint method of shape 
sensitivity analysis. 
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