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Abstract

Let G∗ denote a nonprincipal ultrapower of a group G. In 1986
M. Boffa posed a question equivalent to the following one: if G does
not satisfy a positive law, does G∗ contain a free nonabelian subsemi-
group? We give the affirmative answer to this question in the large
class of groups, containing all residually finite and all soluble groups,
in fact all groups, considered in traditional textbooks on group the-
ory.

Preliminaries Let F be a free semigroup generated by x1, x2, . . .. We
say that an n-tuple of elements g1, ..., gn in a group G satisfies a nontrivial
positive relation u(x1, ..., xn) = v(x1, ..., xn), if u, v are different words in
F and the equality u(g1, ..., gn) = v(g1, ..., gn) holds. A group G satisfies
the law u = v if the equality holds under each substitution of elements in
G for generators xi. We note that every n-variable positive law implies a
nontrivial two-variable positive law if we replace each variable xi by xyi.
Notation
We say that G is an F -group (respectively an F∗-group) if G (resp. G∗)
contains a free nonabelian subsemigroup;
We say that G is a noF -group (resp. a noF∗-group) if G (resp. G∗) does
not contain a free nonabelian subsemigroup.

Since G∗ is the image of a cartesian power Gω under the congruence defined
by a nonprincipal ultrafilter, the group G is embedded into G∗ via diag Gω.
Hence every F -group is an F∗-group. To see that the class of F∗-groups is
wider, we note that in a noF∗-group G every pair of elements satisfies a two-
variable relation from some finite set {ui = vi, i = 1, 2, ..., n } (see Lemma
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2 below), and hence G satisfies a nontrivial (left-normed) commutator law
[u1v

−1
1 , u2v

−1
2 , ..., unv

−1
n ]. So infinite residually finite torsion groups which by

[12], IV.2.6, do not satisfy any law, are F∗-groups.

Question (Q) [1] suggests the following

Boffa alternative: A group either satisfies a positive law or is an
F∗-group.

Since nilpotent groups satisfy a positive law [7], every nilpotent-by-(finite
exponent) also does, hence trivially satisfies the Boffa alternative. So finitely
generated soluble groups ([8], Thms. 4.7, 4.12), elementary amenable groups
[3], finitely generated linear groups over any field [10] satisfy the Boffa alter-
native. Every relatively free group satisfies Boffa alternative because every
positive relation on free generators provides a positive law.
It is not known whether every group satisfies the alternative. In this paper
we present a large class of groups satisfying the Boffa alternative. We need
the following

Notation Let Nc denote the variety of all nilpotent groups of nilpotency
class c, Sn the variety of all soluble groups of solubility class n, and Bk

the restricted Burnside variety of exponent k, that is, the variety generated
by all finite groups of exponent k. It follows from the positive solution of
the Restricted Burnside Problem (see [11]) that all groups in Bk are locally
finite of exponent dividing k.

To recall the definition of the class C introduced in [2], we denote by ∆1 the
class of groups contained in all finite products V1V2...Vm, where Vi is either
Sn or Bk for various n, k. Now we define inductively: ∆n+1 = {groups,
locally in ∆n} ∪ {groups, residually in ∆n}.

The class C is defined as the union: C = ∪n∆n.

Among all laws satisfied in G ∈ NcBk there is a two-variable positive law
of the form uc(x, y) = uc(y, x), where u1(x, y) = xkyk, and uc(x, y) =
uc−1(x, y)uc−1(y, x) (cf. [7]). For groups with certain properties the pa-
rameters c, k can be bounded as functions of some n. The we denote such
a law by Mck(n). We need the following

Lemma 1 (cf. [9], p.52, Thms. A′, B) Let G be a two-generator residually
finite group, and let there exist n such that for every n-element subset S ⊆ G,
the unequality |Sn| < nn holds. Then G satisfies the law Mck(n), where c, k
depend on n only. 2
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Properties of noF∗-groups
By [1], Thm. 3, G is a noF∗-group if and only if then there exists a finite
set A of nontrivial two-variable positive relations such that every pair of
elements in G satisfies at least one of them.
We denote by Ln the set of all nontrivial two-variable positive relations of
the length n, that is:

Ln = {u(x, y) = v(x, y); |u(x, y)| = |v(x, y)| = n},
where |u(x, y)| is the length of the word u(x, y).
The following is clear: a relation u = v implies both uv = vu and xu = xv;
a relation uvw = w implies uv = vu. Now it can be easily shown that for
any finite set A of nontrivial two-variable positive relations there exists n
such that: if every pair of elements in G satisfies at least one relation in A,
then every pair of elements in G satisfies at least one relation in Ln. So we
obtain

Lemma 2 (cf. [1], Thm. 3) A group G is a noF∗-group if and only if there
exists n such that every pair of elements in G satisfies at least one relation
in Ln. 2

From the above Lemma it follows that for N /H ⊆ G, every pair of elements
in H/N also satisfies at least one relation in Ln and hence H/N is a noF∗-
group.

Now we need to show that if every pair of elements in G satisfies at least
one relation in Ln, then every residually finite subgroup in G and every
residually finite quotient of G satisfy the positive law Mck(n), where the
parameters c, k depend on n only.

Lemma 3 Let G be a noF∗-group and N / H ⊆ G. If H/N is locally
residually finite, then there exists n such that H/N satisfies the law Mck(n).

Proof If h1, h2 are elements in H/N , then by assumption, the subgroup
gp(h1, h2) is residually finite. By Lemma 2, there exists n such that every
pair of elements in G, and hence in H/N , satisfies a relation in Ln. We
consider any set S = {s1, ..., sn} in gp(h1, h2). Elements s1, s2 satisfy some
relation u(x, y) = v(x, y) in Ln, so the words u(s1, s2) and v(s1, s2) are in
Sn, and are equal. Thus we have |Sn| < nn, and by Lemma 1, the group
gp(h1, h2) satisfies the law Mck(n). So the whole section H/N satisfies the
law Mck(n), as required. 2
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Corollary 1 If G is a noF∗-group, then there exists n such that every sol-
uble subgroup H in G satisfies the law Mck(n).

Proof By Lemma 2, there exists n such that every pair of elements in G
(and hence in H) satisfies a relation in Ln. Let h1, h2 be in H. Then
the subgroup gp(h1, h2) is a finitely generated, soluble noF -group. Now by
Thms. 4.7 and 4.12 in [8], gp(h1, h2) is an extension of a nilpotent group
by a finite group, and hence by [4], is residually finite. So by Lemma 3, the
elements h1, h2 satisfy Mck(n). Since the same is true for any h1, h2 in H,
we conclude that H satisfies the law Mck(n). 2

The Main Result
To show that every group in the class C satisfies the Boffa alternative, it
is enough to prove that every noF∗-group in the class C satisfies a positive
law.
We start with a noF∗-group in a product of a restricted Burnside variety
and a soluble variety.

Lemma 4 If G is a noF∗-group in BeSd, then G satisfies a positive law,
and G ∈ NcBk for some c, k

Proof By Lemma 2, there exists n such that every pair of elements in G
satisfies a relation in Ln. We show that G satisfies the law Mck(n). If
H is a finitely generated subgroup in G, then H is a noF -group and by
([6], Corollary 3), all its derived subgroups are finitely generated. Since by
assumption H ∈ BeSd, we get H(d) ∈ Be. So H(d) is a finitely generated
group in Be and hence is finite. The centralizer Z of the finite subgroup
H(d) in H must have a finite index in H ([5], 3.1.4), and hence is finitely
generated ([5], 14.3.2). Moreover, Z is soluble, because 1 = [H(d), Z] ⊇
[Z(d), Z(d)] = Z(d+1).
The finitely generated soluble noF -group Z is, by [8], nilpotent-by-finite.
So H, as a finite extension of Z, is also nilpotent-by-finite. Now G locally is
nilpotent-by-finite and hence by [4], locally residually finite. So by Lemma
3, G satisfies the positive law Mck(n). By Theorem B in [2] it follows that
G is in NcBk for some c, k, as required. 2

Theorem 1 If G is in the class C, then either G satisfies a positive law or
G is an F∗-group.
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Proof It is enough to show that if G ∈ C is a noF∗-group then G satisfies
a positive law. By Lemma 2 we assume that there exists n such that every
pair of elements in G ∈ C satisfies a relation in Ln. We shall prove that G
satisfies the law Mck(n).
Let our group G be in ∆1. Then G ∈ V1V2 . . .Vm, where each variety Vi is
either Sd or Be for some d, e. Since the product of varieties is associative,
we replace, by Lemma 4, (starting from the right) every pair of the type
BS by some pair of the type NB, and find that G belongs to a soluble-
by-restricted Burnside variety SkBe for some k, e. Then G is a locally
soluble-by-finite noF -group and by [8], locally is nilpotent-by-finite. Hence
G locally is residually finite and then by Lemma 3, satisfies the law Mck(n).

So: if in G ∈ ∆1 every pair of elements satisfies a relation in |calLn,
then G satisfies the law Mck(n).

We now consider a group G in ∆2. Since ∆2 = {groups, locally in ∆1} ∪
{groups, residually in ∆1}, there are two cases.

(i) If G is locally in ∆1, and if K is a finitely generated subgroup in G, then
K ∈ ∆1 and hence, as we have proved above, satisfies the law Mck(n). Since
the same is true for every finitely generated subgroup K ⊆ G, we conclude
that G satisfies the positive law Mck(n).

(ii) If G is residually in ∆1, then G is a subcartesian product of its finite
quotients G/N ∈ ∆1. By assumption G and hence G/N are noF∗-groups.
Hence, as we have proved, each G/N satisfies the law Mck(n). So G, as a
subcartesian product of G/N ’s, satisfies the same law.

It follows that every noF∗-group G in ∆2 satisfies a positive law. Then by
Theorem B in [2], there exist s, t such that G ∈ NsBt, and hence G is in
∆1, which ends the induction. So if G is an F∗-group in the class C, then
G is in ∆1 and as we have proved, satisfies a positive law. 2

By Theorem B in [2] it follows that every group G ∈ C either is in NcBk

for some c, k or is an F∗-group.
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