Collapsing groups and positive laws

Olga Macedońska

September 11, 2013

Abstract

The paper concerns the question of A. Shalev: is it true that every collapsing group satisfies a positive law? We give a positive answer for groups in a large class C, including all soluble and residually finite groups.

Let u(x, y), v(x, y) be some words in a free canellation semigroup \mathcal{F}_2 , generated by x, y. We say that elements g, h in a group G satisfy a positive relation u(x, y) = v(x, y) if the equality u(g, h) = v(g, h) holds. A group G satisfies a binary positive law u(x, y) = v(x, y) if every pair of elements in G satisfies the relation u(x, y) = v(x, y). We recall that every *n*-variable positive law implies a binary positive law [7].

We say that the relation u(x, y) = v(x, y) is of degree n, if it is cancelled (the first (and the last) letters in u and v are different), balanced (the exponent sum of x (and of y) is the same in u and v) and the length of u (equal to the length of v) is n.

In a group G without a free nonabelian subsemigroup any two elements satisfy some positive relation. If all these relations have a restricted degree $\leq n$, then G is called *n*-collapsing group (cf. [13]).

There is an inclusion for classes of groups with the following properties: satisfying positive laws, collapsing, and groups without free nonabelian subsemigroups.

$$\{\text{positive law}\} \subseteq \{\text{collapsing}\} \subset \{\text{without } \mathcal{F}_2\}.$$
 (1)

1991 AMS Subject Classification 20F19

The second inclusion in (1) is strict. Indeed, if G is the direct product of nilpotent groups of classes i = 1, 2, 3, ..., then G has no free subsemigroup, but is not collapsing, because the degree of relations depends on the class of nilpotency [9]. Finitely generated examples give the Shmidt group by Ol'shanskii [10], and the infinite torsion groups without laws [3], [4], because collapsing groups satisfy some commutator law [14].

It is an open problem: whether the first inclusion in (1) is strict. The question was posed by A.Shalev in [14] as:

Question Is it true that every collapsing group satisfies a positive law?

For residually finite groups the positive answer was given in [14]. Our main result answers the question affirmatively for groups in a large class C, including soluble and residually finite groups. The class C was introduced in [2].

It was known since 1953 [9], that groups, which are nilpotent-by-finite exponent, satisfy a positive law. Till 1996 all known examples of groups satisfying positive laws were nilpotent-by-finite exponent.

We recall the known inclusions for smaller classes of groups:

$$\left\{ \begin{array}{c} \text{nilpotent-by-} \\ \text{locally finite of} \\ \text{finite exponent} \end{array} \right\} \subset \left\{ \begin{array}{c} \text{nilpotent-} \\ \text{by-finite} \\ \text{exponent} \end{array} \right\} \subset \left\{ \begin{array}{c} \text{positive} \\ \text{law} \end{array} \right\} \subseteq \{\text{collapsing}\}$$

The first inclusion is strict because the groups F/F^n for n odd, ≥ 665 are not locally finite [1]. The second inclusion is also strict because of the group of Ol'shanskii and Storozhev [11].

In [2] we introduced the large class C, where every group of a finite exponent is locally finite.

To recall the definition we denote by \mathfrak{B}_e so called restricted Burnside variety of exponent e, i.e. the variety generated by all finite groups of exponent e. All groups in \mathfrak{B}_e are locally finite of exponent e. The existence of such varieties for each positive integer e follows from the positive solution of the Restricted Burnside Problem (Kostrikin [6], Zelmanov [15], [16]).

We define an *SB-group* to be one lying in some product of finitely many varieties each of which is either soluble or a \mathfrak{B}_e (for varying *e*). It follows from the definition, that the class of *SB*-groups, is closed for extensions.

The class \mathcal{C} is obtained from the class of all *SB*-groups by repeated applications of the operations *L*, *R* and *E*, where for any group-theoretic class \mathcal{X} of groups (see [12]), $L\mathcal{X}$ denotes the class of all groups locally in \mathcal{X} , $R\mathcal{X}$ the class of groups residually in \mathcal{X} and $E\mathcal{X}$ the class of extensions of groups in \mathcal{X} . In particular residually finite and residually soluble groups are in \mathcal{C} . Every group of a finite exponent in \mathcal{C} is locally finite. The class \mathcal{C} contains all soluble varieties, all restricted Burnside varieties and the semigroup of varieties they generate.

Note: The class C is obtained from the class of all finite and soluble groups by repeated applications of the operations L, R and E. In [2], in the definition of the class C the operator E is missing. All results are valid for the extended definition.

In [2] we proved that the class C cuts out the nilpotent - by - locally finite of finite exponent groups from the class of groups with positive laws:

$$\left\{\begin{array}{c} \text{nilpotent-by-locally finite} \\ \text{of finite exponent} \end{array}\right\} = \left\{\begin{array}{c} \text{positive} \\ \text{law} \end{array}\right\} \ \cap \ \mathbf{C}$$

Our result in this paper says that every collapsing group in the class C is nilpotent-by-locally finite of finite exponent, that is

 $\left\{\begin{array}{l} \text{nilpotent-by-locally finite} \\ \text{of finite exponent} \end{array}\right\} = \{\text{collapsing}\} \cap \mathbf{C}.$

Our proof is based on the two known Theorems.

Theorem 1 (cf. Theorem B, [14]) There exist functions f, g such that any finite n-collapsing group G has a normal subgroup N such that exp(G/N) divides f(n) and every 2-generator subgroup of N is nilpotent of a class at most g(n).

Theorem 2 [2] If a group G in the class C satisfies a positive law of degree k, then G is an extension of a nilpotent group of class $\leq c'(k)$ by a locally finite group of exponent dividing e'(k):

$$G \in \mathfrak{N}_{c'(k)}\mathfrak{B}_{e'(k)},$$

where the integers c'(k), e'(k) depend on k only.

The following Lemma extends Theorem A [14].

Lemma 1 If G is any residually finite n-collapsing group then there exist functions c and e such that

$$G \in \mathfrak{N}_{c(n)}\mathfrak{B}_{e(n)},$$

where the integers c(n), e(n) depend on n only.

Proof Since G is residually finite there is a chain

$$G \ge N_1 \ge N_2 \ge \dots$$

of normal subgroups of G such that $|G: N_i| < \infty$ and $\cap_i N_i = \{1\}$.

Since G/N_i is finite *n*-collapsing, then by Theorem 1, it contains a normal subgroup, every 2-generator subgroup of which is nilpotent of a class at most g(n). Then by A. Malcev [9], this normal subgroup satisfies a positive law $P_g(x, y) = Q_g(x, y)$. Again by Theorem 1, the quotient has exponent dividing f(n), which implies that G/N_i satisfies the binary positive law $P_g(x^f, y^f) = Q_g(x^f, y^f)$ of a degree k = k(n), say, which depends on *n* only. Since *G* is a subcartesian product of the G/N_i , it satisfies the same law.

Now by Theorem 2 there exist functions c' and e' such that the residually finite group G satisfying a positive law of degree k belongs to $\mathfrak{N}_{c'(k)}\mathfrak{B}_{e'(k)}$. Since k is a function of n only, we put c(n) = c'(k) and e(n) = e'(k), which finishes the proof.

Lemma 2 Any n-collapsing group G in a product $\mathfrak{B}_{e_1}\mathfrak{S}_d$ of a restricted Burnside variety and a soluble variety satisfies

$$G \in \mathfrak{N}_{c(n)}\mathfrak{B}_{e(n)},$$

for c(n), e(n) as in Lemma 1.

Proof Let H be a finitely generated subgroup in the group G. As a collapsing group, H does not contain a free non-abelian subsemigroup, and by [8, Corollary 3], all its derived subgroups are finitely generated. Since by assumption $H^{(d)}$ is in \mathfrak{B}_{e_1} , it is finite. Let Z denotes the centralizer of $H^{(d)}$ in H, which then has a finite index in H. Then Z is finitely generated (because H is finitely generated). Moreover, Z is soluble, because $1 = [H^{(d)}, Z] \supseteq [Z^{(d)}, Z] \supseteq Z^{(d+1)}$.

The finitely generated soluble group Z without free non-abelian subsemigroups is, by [12, Theorems 4.7, 4.12], nilpotent-by-finite and hence residually finite. So H, as a finite extension of Z, is residually finite and by Lemma 1 $H \in \mathfrak{N}_{c(n)}\mathfrak{B}_{e(n)}$. Since the same is true for every finitely generated subgroup H in G, we obtain $G \in \mathfrak{N}_{c(n)}\mathfrak{B}_{e(n)}$, as required.

Theorem 3 Collapsing groups in the class C are nilpotent-by-locally finite of finite exponent and hence satisfy a positive law.

Proof We show first that every *n*-collapsing *SB*-group belongs to $\mathfrak{N}_{c(n)}\mathfrak{B}_{e(n)}$ for c(n), e(n) as in Lemma 1.

Let G be an n-collapsing SB-group, i.e. $G \in \mathfrak{V}_1\mathfrak{V}_2\ldots\mathfrak{V}_t$, where each variety \mathfrak{V}_i is either soluble or a \mathfrak{B}_e for some e. The product of varieties is associative. By Lemma 2, we exchange (starting from the right) every pair of the type $\mathfrak{B}\mathfrak{S}$ for some pair of the type $\mathfrak{N}\mathfrak{B}$, and obtain that G belongs to a soluble-by-restricted Burnside variety. We shall see that G is residually finite. Let H be a finitely generated subgroup in the n-collapsing group $G \in \mathfrak{S}_{c_1}\mathfrak{B}_{e_1}$. Then H is a finite extension of a soluble normal subgroup N, say. Being soluble without free non-abelian subsemigroups, N is then locally: nilpotent-by-finite [12], and hence residually finite. So H, as a finite extension of N, is residually finite and by Lemma 1, $H \in \mathfrak{N}_{c(n)}\mathfrak{B}_{e(n)}$. Since the same is true for every finitely generated subgroup H in G, we obtain $G \in \mathfrak{N}_{c(n)}\mathfrak{B}_{e(n)}$.

Let now G be an n-collapsing group in the class \mathcal{C} . The dependence of the above parameters c(n) and e(n) on n only, implies that if in the group G each finitely generated subgroup is in $\mathfrak{N}_{c(n)}\mathfrak{B}_{e(n)}$, then $G \in \mathfrak{N}_{c(n)}\mathfrak{B}_{e(n)}$. Similarly, if G is a subcartesian product of n-collapsing groups in $\mathfrak{N}_{c(n)}\mathfrak{B}_{e(n)}$, then again $G \in \mathfrak{N}_{c(n)}\mathfrak{B}_{e(n)}$. Finaly, if an n-collapsing group G is an extension of a group in $\mathfrak{N}_{c(n)}\mathfrak{B}_{e(n)}$ by another group in $\mathfrak{N}_{c(n)}\mathfrak{B}_{e(n)}$, then G is an SB-group and hence is in $\mathfrak{N}_{c(n)}\mathfrak{B}_{e(n)}$, which finishes the proof.

References

 S.I.Adian, The problem of Burnside and identities in groups, Nauka, Moscow, 1975. (Russian) (see also, trans. J.Lennox and J.Wiegold, Ergebnisse der Mathematik und ihrer Grenzgebiete 92, Springer-Verlag, Berlin, 1979)

- [2] Robert G.Burns, Olga Macedońska, Yuri Medvedev, Groups Satisfying Semigroup Laws, and Nilpotent-by-Burnside Varieties, *Journal of Alge*bra 195 (1997), 510-525.
- [3] R.I.Grigorchuk, On the growth degrees of *p*-groups and torsion-free groups, *Math. Sb.* **126** (1985), 194-214.
- [4] N.Gupta and S.Sidki, Some infinite p-groups, Algebra i Logika 22 (1983), 584-589.
- [5] P.Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc. 9(1959), 595-622.
- [6] A.I.Kostrikin, On Burnside problem, Izv. AN SSSR 23, (1959), 3-34.
- [7] Jacques Lewin and Tekla Lewin, Semigroup laws in varieties of soluble groups, Proc. Camb. Phil. Soc. 65 (1969),1-9.
- [8] P.Longobardi, M.Maj and A.H.Rhemtulla, Groups with no free subsemigroups, Trans. Amer. Math. Soc., 347, 4, (1995), 1419-1427).
- [9] A.I.Mal'cev, Nilpotent semigroups, Uchen. Zap. Ivanovsk. Ped. Inst. 4 (1953), 107-111.
- [10] A.Yu.Ol'shanskii, An infinite group with subgroups of finite orders, Izv. AN SSSR, Mat, 44, 2, (1980), 309-321.
- [11] A.Yu.Ol'shanskii and A.Storozhev, A group variety defined by a semigroup law, J. Austral. Math. Soc. (Series A), 60, (1996), 255-259.
- [12] J.M.Rosenblatt, Invariant measures and growth conditions, Trans. Am. Math. Soc. 193, (1974), 33-53.
- [13] J.F.Semple and A.Shalev, Combinatorial conditions in residually finite groups, I, J.Algebra 157 (1993), 43-50.
- [14] A.Shalev, Combinatorial conditions in residually finite groups, II, J.Algebra 157 (1993), 51-62.
- [15] E.I.Zelmanov, The solution of the restricted Burnside problem for groups of odd exponent, Math. USSR-Izv. 36 (1991), 41-60.

[16] E.I.Zelmanov, The solution of the restricted Burnside problem for 2groups, Mat. Sb. 182 (1991), 568-592.

> Institute of Mathematics, Silesian Technical University, ul. Kaszubska 23, 44-100 Gliwice, Poland e-mail: olga@zeus.polsl.gliwice.pl