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Abstract

The paper concerns the question of A. Shalev: is it true that every
collapsing group satisfies a positive law? We give a positive answer
for groups in a large class C, including all soluble and residually finite
groups.

Let u(x, y), v(x, y) be some words in a free canellation semigroup F2,
generated by x, y. We say that elements g, h in a group G satisfy a positive
relation u(x, y) = v(x, y) if the equality u(g, h) = v(g, h) holds. A group
G satisfies a binary positive law u(x, y) = v(x, y) if every pair of elements
in G satisfies the relation u(x, y) = v(x, y). We recall that every n-variable
positive law implies a binary positive law [7].

We say that the relation u(x, y) = v(x, y) is of degree n, if it is cancelled
(the first (and the last) letters in u and v are different), balanced (the expo-
nent sum of x (and of y) is the same in u and v) and the length of u (equal
to the length of v) is n.

In a group G without a free nonabelian subsemigroup any two elements
satisfy some positive relation. If all these relations have a restricted degree
≤ n, then G is called n-collapsing group (cf. [13]).

There is an inclusion for classes of groups with the following properties:
satisfying positive laws, collapsing, and groups without free nonabelian sub-
semigroups.

{positive law} ⊆ {collapsing} ⊂ {without F2}. (1)

1991 AMS Subject Classification 20F19

1



The second inclusion in (1) is strict. Indeed, if G is the direct product of
nilpotent groups of classes i = 1, 2, 3, ..., then G has no free subsemigroup,
but is not collapsing, because the degree of relations depends on the class
of nilpotency [9]. Finitely generated examples give the Shmidt group by
Ol’shanskii [10], and the infinite torsion groups without laws [3], [4], because
collapsing groups satisfy some commutator law [14].

It is an open problem: whether the first inclusion in (1) is strict. The question
was posed by A.Shalev in [14] as:

Question Is it true that every collapsing group satisfies a positive law?

For residually finite groups the positive answer was given in [14]. Our main
result answers the question affirmatively for groups in a large class C, in-
cluding soluble and residually finite groups. The class C was introduced in
[2].
It was known since 1953 [9], that groups, which are nilpotent-by-finite expo-
nent, satisfy a positive law. Till 1996 all known examples of groups satisfying
positive laws were nilpotent-by-finite exponent.

We recall the known inclusions for smaller classes of groups:


nilpotent-by-

locally finite of

finite exponent

 ⊂


nilpotent-

by-finite

exponent

 ⊂
{

positive

law

}
⊆ {collapsing}

The first inclusion is strict because the groups F/F n for n odd, ≥ 665 are
not locally finite [1]. The second inclusion is also strict because of the group
of Ol’shanskii and Storozhev [11].

In [2] we introduced the large class C, where every group of a finite expo-
nent is locally finite.

To recall the definition we denote by Be so called restricted Burnside variety
of exponent e, i.e. the variety generated by all finite groups of exponent
e. All groups in Be are locally finite of exponent e. The existence of such
varieties for each positive integer e follows from the positive solution of the
Restricted Burnside Problem (Kostrikin [6], Zelmanov [15], [16]).

We define an SB-group to be one lying in some product of finitely many
varieties each of which is either soluble or a Be (for varying e). It follows
from the definition, that the class of SB-groups, is closed for extensions.
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The class C is obtained from the class of all SB-groups by repeated ap-
plications of the operations L, R and E, where for any group-theoretic class
X of groups (see [12]), LX denotes the class of all groups locally in X , RX
the class of groups residually in X and EX the class of extensions of groups
in X by groups in X . In particular residually finite and residually soluble
groups are in C. Every group of a finite exponent in C is locally finite. The
class C contains all soluble varieties, all restricted Burnside varieties and the
semigroup of varieties they generate.

Note: The class C is obtained from the class of all finite and soluble
groups by repeated applications of the operations L, R and E. In [2], in the
definition of the class C the operator E is missing. All results are valid for
the extended definition.

In [2] we proved that the class C cuts out the nilpotent - by - locally finite
of finite exponent groups from the class of groups with positive laws:{

nilpotent-by-locally finite

of finite exponent

}
=

{
positive

law

}
∩ C.

Our result in this paper says that every collapsing group in the class C is
nilpotent-by-locally finite of finite exponent, that is{

nilpotent-by-locally finite

of finite exponent

}
= {collapsing} ∩ C.

Our proof is based on the two known Theorems.

Theorem 1 (cf. Theorem B, [14]) There exist functions f, g such that any
finite n-collapsing group G has a normal subgroup N such that exp(G/N)
divides f(n) and every 2-generator subgroup of N is nilpotent of a class at
most g(n).

Theorem 2 [2] If a group G in the class C satisfies a positive law of degree
k, then G is an extension of a nilpotent group of class ≤ c′(k) by a locally
finite group of exponent dividing e′(k):

G ∈ Nc′(k)Be′(k),

where the integers c′(k), e′(k) depend on k only.
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The following Lemma extends Theorem A [14].

Lemma 1 If G is any residually finite n-collapsing group then there exist
functions c and e such that

G ∈ Nc(n)Be(n),

where the integers c(n), e(n) depend on n only.

Proof Since G is residually finite there is a chain

G ≥ N1 ≥ N2 ≥ . . .

of normal subgroups of G such that |G : Ni| <∞ and ∩iNi = {1}.
Since G/Ni is finite n-collapsing, then by Theorem 1, it contains a normal

subgroup, every 2-generator subgroup of which is nilpotent of a class at most
g(n). Then by A. Malcev [9], this normal subgroup satisfies a positive law
Pg(x, y) = Qg(x, y). Again by Theorem 1, the quotient has exponent dividing
f(n), which implies that G/Ni satisfies the binary positive law Pg(x

f , yf ) =
Qg(x

f , yf ) of a degree k = k(n), say, which depends on n only. Since G is a
subcartesian product of the G/Ni, it satisfies the same law.

Now by Theorem 2 there exist functions c′ and e′ such that the residually
finite group G satisfying a positive law of degree k belongs to Nc′(k)Be′(k).
Since k is a function of n only, we put c(n) = c′(k) and e(n) = e′(k), which
finishes the proof.

Lemma 2 Any n-collapsing group G in a product Be1Sd of a restricted
Burnside variety and a soluble variety satisfies

G ∈ Nc(n)Be(n),

for c(n), e(n) as in Lemma 1.

Proof Let H be a finitely generated subgroup in the group G. As a col-
lapsing group, H does not contain a free non-abelian subsemigroup, and
by [8, Corollary 3], all its derived subgroups are finitely generated. Since
by assumption H(d) is in Be1 , it is finite. Let Z denotes the centralizer
of H(d) in H, which then has a finite index in H. Then Z is finitely gen-
erated (because H is finitely generated). Moreover, Z is soluble, because
1 = [H(d), Z] ⊇ [Z(d), Z] ⊇ Z(d+1).

4



The finitely generated soluble group Z without free non-abelian subsemi-
groups is, by [12, Theorems 4.7, 4.12], nilpotent-by-finite and hence residually
finite. So H, as a finite extension of Z, is residually finite and by Lemma 1
H ∈ Nc(n)Be(n). Since the same is true for every finitely generated subgroup
H in G, we obtain G ∈ Nc(n)Be(n), as required.

Theorem 3 Collapsing groups in the class C are nilpotent-by-locally finite
of finite exponent and hence satisfy a positive law.

Proof We show first that every n-collapsing SB-group belongs to Nc(n)Be(n)

for c(n), e(n) as in Lemma 1.
Let G be an n-collapsing SB-group, i.e. G ∈ V1V2 . . .Vt, where each

variety Vi is either soluble or a Be for some e. The product of varieties is
associative. By Lemma 2, we exchange (starting from the right) every pair
of the type BS for some pair of the type NB, and obtain that G belongs
to a soluble-by-restricted Burnside variety. We shall see that G is residually
finite. Let H be a finitely generated subgroup in the n-collapsing group
G ∈ Sc1Be1 . Then H is a finite extension of a soluble normal subgroup
N , say. Being soluble without free non-abelian subsemigroups, N is then
locally: nilpotent-by-finite [12], and hence residually finite. So H, as a finite
extension of N , is residually finite and by Lemma 1, H ∈ Nc(n)Be(n). Since
the same is true for every finitely generated subgroup H in G, we obtain
G ∈ Nc(n)Be(n).

Let now G be an n-collapsing group in the class C. The dependence of the
above parameters c(n) and e(n) on n only, implies that if in the group G each
finitely generated subgroup is in Nc(n)Be(n), then G ∈ Nc(n)Be(n). Similarly,
if G is a subcartesian product of n-collapsing groups in Nc(n)Be(n), then again
G ∈ Nc(n)Be(n). Finaly, if an n-collapsing group G is an extension of a group
in Nc(n)Be(n) by another group in Nc(n)Be(n), then G is an SB-group and
hence is in Nc(n)Be(n), which finishes the proof.
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