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Abstract

The paper is inspired by the question of A.Shalev about possible
coincidence of the class of collapsing groups and groups satisfying pos-
itive laws. We split the class of collapsing groups for subclasses, corre-
sponding to different functions on natural numbers and give a positive
answer for some of them.

1 Introduction

Let F2 be a free semigroup generated by x, y and let u(x, y), v(x, y) ∈ F2.
By a (positive) law of degree n we mean here a binary expression

u(x, y) = v(x, y), (1)

where x (and y) has the same exponent sum on both sides; the first (and the
last) letters in u and v are different; the length of u (equal to the length of
v) is n. From now on by a pair of elements we mean an ordered one. We

say that a pair g, h of elements in a group satisfies a law (1) if the equality
u(g, h) = v(g, h) holds. A subset satisfies a law (1) if every pair of elements
in the subset does.

Many authors considered properties of groups, which do not contain non-
abelian free subsemigroups or, which is the same, groups with no free 2-
generator subsemigroups [1], [2], [3], [7], [9]. We call groups of such type
(noF2)-groups.
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The notion of a collapsing group was introduced in [10] as (n,m)-collapsing.
This definition is equivalent ([10], Lemma 2.2) to the following: a group G is
called collapsing if and only if there exists n, such that G is (n, 2)-collapsing
for some n, that is for any 2-element subset A in G, the inequality |An| < |A|n
holds.

Positive laws defining nilpotent groups were found in 1953 by Mal’cev
[5]. Till 1996 [8] every known group satisfying positive laws was an extension
of a nilpotent group by a group of a finite exponent. There still are many
problems concerning positive laws.

We compare the above classes of groups. In (noF2)-groups every pair of
elements satisfies some law (1), while for groups with a positive law there
exists a common law for all pairs. A collapsing group is (noF2)-group with
a restriction on degrees of the laws. So there are inclusions{

(noF2)-
groups

}
≥

{
collapsing
groups

}
≥

{
positive
law

}
. (2)

In [11] A. Shalev posed the question: does every collapsing group satisfy
a positive law?

A positive answer was found for residually finite groups ([11], Corollary
C) and for finitely generated soluble groups ([10], Theorem 4.2). We can
extend the second result to all soluble groups.

Theorem 1 Every soluble collapsing group G satisfies a positive law.

Proof Let G be a (n, 2)-collapsing group, then G is a (noF2)-group. Let
H denote any finitely generated subgroup in G. Obviously H is also (n, 2)-
collapsing. By Theorems 4.7, 4.12 [9], every finitely generated soluble (noF2)-
group is nilpotent-by-finite and hence residually finite. So H is residually
finite. It follows from Theorem B [11], that every finitely generated residu-
ally finite (n, 2)-collapsing group satisfies some positive law Mc,i, where c, i
depends on n only. Thus we conclude that every finitely generated subgroup
in G satisfies the same law Mc,i, and hence G satisfies the positive law, as
required. 2

Since, in general, the problem may have a negative answer we suggest
another approach to the question. We show that a group G is collapsing if
and only if for all m, every m-element subset Am in G satisfies a positive
law of degree ≤ ϕ(m), where ϕ(m) depends on m only (Theorem 2). So we
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obtain a refinement of the problem: For which ϕ(m): if every m-element
subset in G satisfies a positive law of degree ϕ(m), then G has to
satisfy a positive law?

To simplify futher studies we need the following criterion for a group to be
collapsing.

Lemma 1 A group G is collapsing if and only if there exists k such that
every 2-element subset in G satisfies a law of degree ≤ k.

Proof Let every pair of elements in G satisfy a law of degree ≤ k. If A =
{g, h} and a pair g, h satisfies a law s(x, y) = t(x, y) of degree d ≤ k, then
in the set Ak two products coincide: gk−ds(g, h) = gk−dt(g, h). So we have
|Ak| < |A|k which implies that G is collapsing.

If a group G is collapsing then it is (n, 2)-collapsing for some n and for
any subset A = {g, h} the inequality |An| < |A|n holds. Then at least two
products in An coincide, that is s(g, h) = t(g, h), say. So we have that every
pair g, h of elements inG satisfies a law of a length n, which implies a balanced
law s(g, h)t(g, h) = t(g, h)s(g, h) of degree k ≤ 2n (after cancellation). 2

Notations:

• Let m be a fixed natural.
(Am ∈ L)-group is a group in which every m-element subset satisfies
some law (1) (depending on the subset). We write (Am ∈ Ld) if the
length of these laws is bounded by d.

• (A ∈ L)-group is a group which is (Am ∈ L)-group for every m. We
write (A∈Ld) if the length of all laws is bounded by d.

• Let ϕ = ϕ(m) be a natural function of m.
(A∈Lϕ)-group is a group G such that for every m, G is (Am∈Lϕ(m))-
group. If the function ϕ is bounded we write (A∈Lbound)

It is clear that the class of (A∈Ld)-groups contains all groups which satisfy
a positive law. The class of (A∈L)-groups contains all groups which locally
satisfy positive laws.
We show that collapsing groups are (A∈Lϕ)-groups.

For every (A∈Lϕ)-group G we introduce the following minimal function

Definition 1 f(m) is the minimal number such that every m-element subset
in G satisfies a positive law of degree ≤ f(m).
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So every (A∈Lϕ)-group is (A∈Lf )-group.

Theorem 2 A group G is collapsing if and only if it is (A ∈ Lf )-group,
where ∀m, f(m) ≤ [f(2)]m

2−m.

Proof By Lemma 1 there exists k such that every 2-element subset in G
satisfies a law of degree ≤ k, so every pair of elements also does. We assume
k minimal with this property. So in terms of the function f, k = f(2).
We show that any m-element subset Am in G satisfies a law of degree
≤ km

2−m. Since every reflexive pair (a, a) satisfies any balanced law (1),
we need to find a common law only for m2 − m pairs in Am. These pairs
we put in some order a, b; c, d; e, f ; ... There exists a law u1(x, y) = v1(x, y)
of degree ≤ k such that u1(a, b) = v1(a, b). We assume that u1(c, d) and
v1(c, d) are different. However there exists a law u2(x, y) = v2(x, y) of de-
gree ≤ k, such that: u2(u1(c, d), v1(c, d)) = v2(u1(c, d), v1(c, d)). Since the
law u2(x, y) = v2(x, y) is balanced, it is also satisfied by the pair of equal
elements u1(a, b), v1(a, b). So the common law for two pairs a, b and c, d is
u2(u1(x, y), v1(x, y)) = v2(u1(x, y), v1(x, y)), of degree ≤ k2.

Assume that for i − 1 pairs in Am a common law a(x, y) = b(x, y) of
degree ≤ ki−1 is found and that the i-th pair g, h does not satisfy it. We
consider elements a(g, h) and b(g, h). There exists a law u3(x, y) = v3(x, y)
of degree ≤ k such that u3(a(g, h), b(g, h)) = v3(a(g, h), b(g, h)). Then the
common law for all i pairs is u3(a(x, y), b(x, y)) = v3(a(x, y), b(x, y)) of degree
≤ ki. By adding new pairs and repeating the step we find the law for Am
of degree ≤ km

2−m = [f(2)]m
2−m. So f(m) ≤ [f(2)]m

2−m and the group is
(A∈Lf )-group, as required.

Conversely, in (A ∈ Lf )-group every 2-element subset satisfies a law of
degree ≤ f(2) and by Lemma 1, G is collapsing. 2

Theorem 3 A group G satisfies a law of degree ≤ d if and only if G is a
(A2D∈Ld)-group, where D is the number of laws of degrees ≤ d.

We assume that the laws are ordered. Let Pi ∈ G × G be a subset of pairs
which do not satisfy the i-th law of degree ≤ d. If G does not satisfy a
positive law, then no Pi is empty. We take a pair from every Pi and get a
subset of 2D elements which does not satisfy a law of degree ≤ d. Hence G is
not a (A2D∈Ld)-group, which is a contradiction. The converse is obvious.2

Corollary 1 G satisfies a law if and only if G is (A∈Lbound)-group.
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Proof The first implication is clear. Conversely, let f(m) ≤ d,m ∈ N , for
some fixed d. Then f(2D) ≤ d, where D is the number of laws of degree
≤ d. So G is (A2D∈Ld)-group and hence by Theorem 3, G satisfies a law.2

Theorem 4 The chain of classes (2) coincides with{
(A∈L)-
groups

}
>

{
(A∈Lf(m))-
groups

}
≥

{
(A∈Lbound)-
groups

}
, (3)

or more precisely

{
(∀m,Am∈L)-

groups

}
>

{
(∀m,Am∈Lf(m))-

groups

}
≥

{
(∃d,∀m,Am∈Ld)-

groups

}
.

Proof In (noF2)-group every pair of elements satisfies some law. It is shown
in the proof of Theorem 2, that for a finite number of such pairs ai, bi there
exists a common law, so G is a (noF2)-group if and only if for every m it is
an (Am ∈L)-group. Because of Theorem 2 and Corollary 1 we need to see
only that the first inequality is strict. We consider an infinite direct product∏

of free nilpotent groups of increasing nilpotency classes. Since
∏

is locally
nilpotent then by [5],

∏
locally satisfies positive laws and so for every m,

∏
is an (Am∈L)-group.

If assume that
∏

is (A∈Lf )-group then, as a consequence, every pair of
elements satisfies some law of degree ≤ f(2). These laws form a finite subset
{ui(x, y) = vi(x, y), i = 1, 2, ..., D}. So as in [11] we conclude that

∏
has to

satisfy the commutator law

[[...[[u1v
−1
1 , u2v

−1
2 ], u3v

−1
3 ], ...], uDv

−1
D ] = 1.

Since
∏

does not satisfy any law, we have a contradiction and hence
∏

is not
(A∈Lf )-group, which finishes the proof. 2

Remark The above law does not imply a positive law, because it is satisfied
in a free metabelian group which does not satisfy a positive law [5].

2 When (A∈Lf)-group satisfies a positive law

We can give the following properties of the function f , defined in the previous
section.
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Lemma 2 (i) f is not a decreasing function, (ii) if m ≥ n and M are some
fixed naturals, then every (Am∈LM)-group is (An∈LM)-group. (iii) if for a
group G, ∀m ≥ 16, f(m) ≤ log4m, then G satisfies a law of degree ≤ log4m.

Proof Properties (i) and (ii) follow from the definition. To prove (iii) we
denote d = log4m (for m < 16 it does not make any sense) then the condition
f(m) ≤ log4m gives f(4d) ≤ d and hence by property (ii), G is (A4d ∈Ld)-
group. We use a rough calculation to get D (the number of laws of degree
≤ d. The number of all words of the length d is 2d and the number of laws
of degree ≤ d is D ≤ 2d(2d − 1)/2 < 22d−1. So 2D < 4d. By property (ii)
(A4d∈Ld)-group is (A2D∈Ld)-group and hence, by Theorem 3, G satisfies a
law of degree ≤ d = log4m as required.2

Remark The above calculation is too rough not only because we obtained
many times (after cancellation) the same law, but also: (1) the fact that
pairs a, b and b, a are always in the same Am, implies that the laws u(x, y) =
v(x, y) and u(y, x) = v(y, x) are simultaneously satisfied and hence one can
be removed, (ii) some law can be a consequence of another for the same pair
g, h ∈ G, for example a pair of commuting elements satisfies any balanced
law.

In [4] there was introduced a definition of a minimal set of laws. For a
given d we denote by M(d) a minimal set of laws of degree ≤ d such that if
a subset A satisfies a law of degree ≤ d, then it satisfies a law inM(d). Now
if denote µ(d) = 2|M(d)| it follows from the proof of Theorem 3

Corollary 2 Every (Aµ(d)∈Ld)-group satisfies a law of degree ≤ d.

It is clear that if one of the four laws

u(x, y) = v(x, y), v(x, y) = u(x, y), u(y, x) = v(y, x), v(y, x) = u(y, x)

is satisfied in some subset, then the other three are also satisfied and hence
only one belongs to M(d). We say that a law u(x, y) = v(x, y) of degree n
is of the type XkY l if the first letter in u is x, the exponent sum of x’s is k
and the exponent sum of y’s is l, k + l = n. The law of the type XkY l is
called standard if k ≤ l and u(x, y) is lexicographically less than, or equal
to v(y, x).

So the set M(d) consists of standard laws. For example M(2) consists
of one abelian law. If a set satisfies an abelian law then ii satisfies any other
law )1). So M(3) also contains only one law xy2 = y2x and we get
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Corollary 3 (A2∈L2)-group satisfies a positive law of degree 2. (A2∈L3)-
group satisfies a positive law of degree ≤ 3.

Since both xy = yx and xy2 = y2x imply x2y2 = y2x2, we get

M(4) ⊆ {(xy)2 = (yx)2, (xy)2 = y2x2, xy3 = y3x, xy2x = yx2y, x2y2 = y2x2}

So |M(4)| ≤ 5, and then by Corollary 2 we get: if every 10-element subset
in a group satisfies some law of degree ≤ 4, then the group satisfies a law of
degree ≤ 4 and we can write it as

Corollary 4 (A10∈L4)-group satisfies a positive law of degree ≤ 4.

Moreover by [4], such a group has to satisfy one of the following three laws:

xy3 = y3x, xy2x = yx2y, x2y2 = y2x2,

which are minimal (as consequences) in the poset of laws of degree ≤ 4.

As it is shown in [4], there are 13 standard laws of degree 5. Since the
law xy3 = y3x implies x2y3 = y3x2, we have |M(5)| ≤ |M(4)|+ 13− 1 = 17.

Corollary 5 Every (A34∈L5)-group satisfies a positive law of degree ≤ 5.

Using Lemma 2 and Corollaries 3,4,5 we prove

Theorem 5 If there exists at least one m such that the point (m, f(m)) is
in the area Ω (see figure 1 below) then (A∈Lf )-group has a positive law.

Proof The construction is as follows. The horizontal axe m denotes the
number of elements in the set. The vertical axe k denotes degree of the law.
We mark the point (M,K) if every M -element subset satisfies a law of degree
≤ K. The point (M,K) is called PL if when f(M) ≤ K then (A∈Lf )-group
has positive law. We give the list of PL points:

1. By corollaries 3,4,5, (2, 2), (2, 3), (10, 4), (34, 5) are PL.

2. By (iii) in Lemma 2 for M ≥ 16, 2 ≤ K ≤ log4M, (M,K) are PL.

3. By (ii) in Lemma 2 if (M,K) is PL then (M + S,K) is PL. So from
the above it follows that every point which is ”on the right” of the PL
point is PL itself.
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Figure 1: Ω area

We construct an area Ω, which consist of PL points. Note that we consider
only points with integer coordinates. It follows from the definition that if at
least one point (m, f(m)), m ∈ N belongs to Ω then (A∈Lf )-group has to
satisfy a positive law, as required. 2

Remark For k = 5 from 1. and 2. in Theorem 5 we get different minimal m,
for which the point (m, k) belongs to Ω, namely 34 and 1024, respectively.
So the latter one gives us much worse result. However for k ≥ 6 the only
we have is m ≥ 4096. The result can be improved if we know the number of
elements inM(d) for d > 5, so it seems to be an open area for futher studies.
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[4] O. Macedońska, M. Żabka, On equivalence of semigroup identities
Matematica Scandinavica, to appear.

[5] A.I.Mal’cev, Nilpotent semigroups, Uchen. Zap. Ivanovsk. Ped. Inst. 4
(1953), 107-111.

8



[6] B. H. Neumann, T. Taylor, Subsemigroups of nilpotent groups, Proc.
Roy. Soc. Ser. A 274 (1963), 1-4.
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