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Abstract

Motivated by Andrews-Curtis [1], we consider the question as to
how in a given n-generator group G, a given set of n “annihilators” of
G, i.e. with normal closure all of G, can be transformed by standard
moves into a generating n-tuple. The recalcitrance of G is defined to
be the least number of elementary standard moves (“elementary M-
transformations”) by means of which every annihilating n-tuple of G

can be transformed into a generating n-tuple. We show that in the
classes of finite and soluble groups, having zero recalcitrance is equiva-
lent to nilpotence, and that a large class of 2-generator soluble groups
has recalcitrance ≤ 3. Some examples and remarks are included.

1. Introduction

We shall understand an n-generator group to be a group that can be
generated by n elements, but not fewer, and an n-annihilator group to be
one that is the normal closure of n elements, but not fewer. We shall call a
set {r1, ..., rn} of elements of a group G whose normal closure is the whole of
G an annihilating n-tuple for G, and write 〈r1, ..., rn〉

G = G. These include,
of course, generating n-tuples {g1, ..., gn}, for which we write 〈g1, ..., gn〉 = G.
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We are interested here in the question as to whether, and if so then with
what degree of difficulty, an annihilating n-tuple {r1, ..., rn} of a given group
G can be transformed via natural elementary moves into a generating n-
tuple. The “elementary moves” as defined by Andrews and Curtis in [1] are
Nielsen transformations supplemented by the transformations replacing an
ri by a conjugate ri

g. In [2, Proposition 1] it was shown essentially that
the result of any finite sequence of such transformations can be achieved by
means of a sequence of transformations of the form

{r1, ..., rn} −→ {r1, ..., riw, ..., rn}, w ∈ 〈r1, ..., ri−1, ri+1, ..., rn〉
G,

called elementary M-transformations (M for “modulo” since ri is replaced by
any element congruent to it modulo the other rjs), and conversely. For some
purposes – see [2] and the remarks below – the latter transformations are
more convenient than those of Andrews and Curtis, and it is these that we
shall take as our “elementary moves” here.

Let G be an n-generator, n-annihilator group. We define the recalcitrance

of an annihilating n-tuple for G to be the least number of elementary M-
transformations required to transform that n-tuple into a generating n-tuple.
(If it is not possible to so transform the given annihilating n-tuple, we say
that its recalcitrance is infinite.) We then define the recalcitrance of the group

G to be the largest of the recalcitrances of all of its annihilating n-tuples.
Our main results are as follows. In Section 2 we consider groups of recal-

citrance zero, showing that at least in the classes of finite and soluble groups
having zero recalcitrance is equivalent to nilpotence. In Section 2, by way
of giving examples we examine the recalcitrance of two particular groups,
namely the infinite dihedral group Z2 × Z2 and the wreath product Z ≀ Z.
Finally, in Section 3, we prove that a great many 2-generator, 2-annihilator
soluble groups, including all free soluble groups of rank 2, have recalcitrance
at most 3.

Remarks. 1. The concept of recalcitrance has its origin in the paper
[1] of Andrews and Curtis, which contains the by now well-known conjec-
ture that in the free group Fn of rank n every annihilating n-tuple has finite
recalcitrance. Some candidates for counterexamples, i.e. for having infinite
recalcitrance, are given in [2]. One formerly hopeful such candidate (not in
[2]), namely the annihilating pair {xyxy−1x−1y−1, x2y−3} for F2, the free
group on x, y, has recently been shown by computer to have finite recalci-
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trance after all [3]. Question: What is the exact recalcitrance of this pair?
This seems hard.

2. In [2] the term “complexity” was used to mean something very close
to recalcitrance. The present version of the concept seems preferable, in
particular since it avoids negative numbers. Thus in terms of recalcitrance,
Theorem 1 of [2] asserts that the annihilating pair {x3y−1x−2y, y3x−1y−2x}
for F2 has recalcitrance ≥ 3.

3. The concept of an elementary M-transformation lends itself to the
formulation of an analogue of the concept of recalcitrance – and hence also
of the Andrews-Curtis conjecture – for Lie rings. Thus if L denotes the
free Lie ring on x1, ..., xn, and the ideal generated by r1, ..., rn is all of L,
an elementary M-transformation of {r1, ..., rn} changes this to an n-tuple of
the form {r1, ..., ri + w, ..., rn} where w belongs to the ideal generated by
{r1, ..., ri−1, ri+1, ..., rn}. The recalcitrance of such an n-tuple {r1, ..., rn} ⊂
L is now defined as before. Question: Is there a connection between the
original Andrews-Curtis conjecture for Fn and its analogue for the Lie ring
constructed from the lower central series of Fn in the usual way?

4. The concept of recalcitrance might be extended to arbitrary n-generator
groups (i.e. not necessarily n-annihilator) by considering ordered rather
than unordered annihilating n-tuples. We have assumed our groups are n-
annihilator as well as n-generator chiefly for the sake of simplicity.

2. Zero recalcitrance

Most of the material of this section amounts to a paraphrase of known
facts.

For an n-generator, n-annihilator group to have zero recalcitrance simply
means that every set of n elements whose normal closure is G, actually gen-
erates G. It is well known – and not too difficult to prove by induction on
the nilpotency class – that nilpotent groups have this property:

Proposition. Every finitely generated nilpotent group has zero recalci-

trance.

We shall now show that, at least among finite and soluble groups, zero
recalcitrance in fact characterizes nilpotence. The following result is also
probably known in one form or another.
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Theorem 1. Let G be an n-generator, n-annihilator group. Then G
has zero recalcitrance if and only if the Frattini subgroup Φ(G) contains the

commutator subgroup [G,G] of G.

Corollary. An n-generator, n-annihilator finite or soluble group has

recalcitrance zero if and only if it is nilpotent. In the finite case this follows

via Wielandt’s result that a finite group G is nilpotent if and only if [G,G] ≤
Φ(G) (see e.g.[4, p.132]). For the soluble case, see [4, p.460, Ex.3]. Proof

of Theorem 1. Assume first that Φ(G) ≥ [G,G], and let {a1, ..., an} be
any annihilating n-tuple for G. We shall show that such an n-tuple actually
generates G.

Since the cosets a1[G,G], a2[G,G], ..., an[G,G] generate G/[G,G] and G is
finitely generated, there is a generating set for G of the form {a1c1, ..., ancn, cn+1, ..., cn+k},
where c1, ..., cn+k ∈ [G,G]. Hence certainly

〈a1, a2, ..., an, c1, c2, ..., cn+k〉 = G.

However since we are assuming that Φ(G) ≥ [G,G], and since, as is well
known, Φ(G) consists of the elements of G omissible from every generating
set for G, it follows that 〈a1, ..., an〉 = G.

For the converse suppose that in G we always have

〈a1, ..., an〉
G = G =⇒ 〈a1, ..., an〉 = G.

Let {g1, ..., gm} be any generating n-tuple for G. We first show that for
any elements c1, ..., cn ∈ [G,G] the set {g1c1, ..., gncn} also generates G. For
this it suffices to show that for an arbitrary element c1 of [G,G] we have
〈g1c1, ..., gn〉 = G; the desired conclusion then follows via n iterations. Now
since G/〈g2, ..., gn〉

G is cyclic, and therefore certainly abelian, we must have
c1 ∈ 〈g2, ..., gn〉

G. Hence

〈g1c1, g2, ..., gn〉
G ≥ 〈g1, g2, ..., gn〉 = G,

whence by our assumption 〈g1c1, g2, ..., gn〉 = G.
Now let c be any element of [G,G], and let X be any subset of G such

that 〈X, c〉 = G. Since X generates G modulo [G,G], there exist elements
x1, ..., xn ∈ 〈X〉 and d1, ..., dn ∈ [G,G] such that g1 = x1d1, ..., gn = xndn, i.e.
x1 = g1d

−1
1 , ..., xn = gnd

−1
n . Hence by our earlier argument 〈x1, ..., xn〉 = G,

so that certainly 〈X〉 = G. Thus every element c ∈ [G,G] is omissible,
whence [G,G] ≤ Φ(G).
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3. Two examples

3.1. The infinite dihedral group Z2 ∗Z2 has recalcitrance 1. Presented by
D := 〈a, b | a2 = b2 = 1〉, the infinite dihedral group may be considered as
consisting of all finite strings of alternating a’s and b’s. Since D/[D,D] ∼=
Z2 × Z2, generated by a[D,D] and b[D,D], any annihilating pair must have
one of the forms

{ac, bd}, {ac, abd}, or {bc, abd},

for some c, d ∈ [D,D] = 〈(ab)2〉. Since each element of the form ac or bc is a
member of a generating pair, namely {ac, ab} or {bc, ab}, it follows that one
elementary M-transformation suffices to transform each of the three types of
annihilating pairs into a generating pair.

3.2. The wreath product Z ≀ Z. It is not difficult to verify that this group
has recalcitrance ≥ 2, e.g. by observing that if x generates the top group
and y a coordinate subgroup, then the pair {x2y3, x3y4} is annihilating, but
neither of its elements is a member of any generating pair (since setting either
of them equal to 1 results in a non-cyclic quotient of the wreath product).
On the other hand by our main theorem below, Z ≀ Z has recalcitrance ≤ 3.
Thus its recalcitrance is either 2 or 3. We leave it to the reader to decide
which.

4. Soluble groups

We show here that a great many 2-generator soluble groups, including
all rank-2 free soluble groups, have recalcitrance ≤ 3. (This puts paid to the
suggestion made in [2, Remark 6] that as a possible approach to disproving
the Andrews-Curtis conjecture one might try to show that the recalcitrance
of some annihilating pair of the rank-2 free soluble group goes to ∞ with the
solubility length.)

Theorem 2. Let G be a 2-generator soluble group with commutator quo-

tient G/[G,G] free abelian of rank 2 ( i.e. ∼= Z×Z).Then G has recalcitrance

≤ 3.

Remark. At the expense of some combinatorial complexity, our method
of proof can certainly be extended to yield a bound for the recalcitrance of
an n-generator soluble group with commutator quotient free abelian of rank

5



n. On the other hand, we have not been able to dispense with the condition
on the commutator quotient, although it seems unlikely that this is at all
germane.

Corollary. The free soluble groups of rank 2 (i.e. F2/F
(k)
2 , where F

(k)
2

is the kth commutator subgroup of F2) have recalcitrance ≤ 3 (i.e. indepen-

dently of k).

Proof of the theorem. Let {r, s} be any annihilating pair for G.
The assumption that G/[G,G] be free abelian of rank 2 ensures that there
exists a generating pair {a, b} for G and elements u, v ∈ [G,G] such that

r = au, s = bv. (1)

This can be established by means of the following well-known argument. Let
f : F2 → G be any epimorphism, and let ρ, σ be preimages under f of r, s
respectively. Let {x, y} be any free basis for F2, and write x̄ := x[F2, F2], ȳ :=
y[F2, F2]. For some integers k, l,m, n we have

ρ ≡ xkylmod[F2, F2], σ ≡ xmynmod[F2, F2].

Since the cosets ρ[F2, F2], σ[F2, F2] generate F2/[F2, F2], there is a Nielsen
transformation taking (x̄, ȳ) to (x̄kȳl, x̄mȳn). Lifting this Nielsen transfor-
mation to F2 yields an automorphism of F2 taking (x, y) to a pair (α, β) of
free generators of F2, satisfying α ≡ ρ mod[F2, F2], β ≡ σ mod[F2, F2].
Applying f to these congruences then yields the desired result (1) with
a := f(α), b := f(β).

We define in the usual way “commutators of weight w in a and b” by
induction on w. For w = 1 these are taken to be just a±1, b±1. A commutator

of weight w > 1 in a and b is then defined to be an element of G expressible
as [c1, c2](:= c−1

1 c−1
2 c1c2) where c1, c2 are respectively commutators of weights

w1, w2 < w in a and b, such that w1 + w2 = w. It is well-known, and not
difficult to prove using the standard group identities

xy = yx[x, y], [x, y]−1 = [y, x],

[xy, z] = [x, z][[x, z], y][y, z], (2)

[x, yz] = [x, z][x, y][[x, y], z],

that every element of [G,G] can be expressed as a product of finitely many
commutators of weights ≥ 2 in a and b. Thus in particular in (1) u and v
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can be so expressed, say

u = c1c2...cm, v = d1d2...dn. (3)

Now suppose that G has solubility length k; this means simply that com-
mutators of weight k commute with each other. If c(a, b) is any commutator
of weight w ≥ 2 in a and b, then c(a, b) ≡ c(u−1, b)mod〈au〉G, i.e. the relation
c(a, b) = c(u−1, b) is a consequence of the relation au = 1. (Here c(u−1, b) is
intended to denote the result of replacing each entry a±1 in the commutator
c(a, b) by u∓1.) Using the identities (2) we can now expand c(u−1, b) as a
product of commutators of weights strictly greater than the weight of the
original commutator c(a, b). Executing this substitution for each of c1, ..., cm

in (3), we obtain an element ac′1c
′
2...c

′
l ≡ 1 mod〈r〉G, where

min
1≤i≤m

{weight ci} < min
i≤j≤l

{weight c′j}.

Iteration of this procedure will eventually yield an element

aû = aĉ1...ĉp ≡ 1 mod〈r〉G,

where ĉ1, ..., ĉp are commutators in a and b, all of weight ≥ k + 2.
Suppose that some ĉi = ĉi(a, b) is such that as a commutator in a and

b at least two of its entries are a±1. Then on replacing all such entries by
û∓1, we shall obtain the identity element: ĉ(û−1, b) = 1 since commutators
of weights ≥ k commute in G. Hence

ĉi(a, b) ≡ 1 mod〈r〉G.

Performing this substititution for all ĉi with at least two entries a±1, and
leaving the others as they are, we obtain

aũ = ac̃1...c̃q ≡ 1 mod〈r〉G, (4)

where c̃1, ..., c̃q are expressible as commutators of weights ≥ k + 2 in a and
b, all of which have just one entry of the form a±1. Since their weights are
≥ k + 2, they must then each have at least two entries of the form b±1.

We are now ready to apply our first elementary M-transformation to the
given annihilating pair {r, s} = {au, bv}. In bv = bd1...dn, we replace each
commutator di(a, b) by di(ũ

−1, b); in view of (3) these are congruent to each
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other modulo 〈r〉G. As before, any di(a, b) with two or more entries equal to
a±1 will under this substitution yield the identity element. It follows that
this elementary M-transformation transforms {r, s} into {r, bṽ} where ṽ has

the form ṽ = d̃1...d̃t with each d̃j expressible as a commutator in a and b of
weight ≥ k + 2 with at least two entries of the form b±1. Replacement of
such entries by ṽ∓1 will then result in

bd̃1(a, ṽ−1)d̃2(a, ṽ−1)...d̃t(a, ṽ−1) ≡ 1 mod〈bṽ〉G.

However since each d̃j(a, ṽ−1) = 1, we infer that in fact b ∈ 〈bṽ〉G. For the
second elementary M-transformation, applied now to {r, bṽ}, we replace b by
1 everywhere in r = au(a, b) (as we may since b ∈ 〈bṽ〉G), thereby obtaining
the pair {a, bṽ}. As the third and final elementary M-transformation we
replace a by 1 in bṽ(a, b), obtaining {a, b}.

References

[1] J.J.Andrews and M.L.Curtis, ‘Extended Nielsen operations in free groups’,
Amer. Math. Monthly 73 (1966) 21-28.

[2] R.G.Burns and Olga Macedonska, ‘Balanced presentations of the trivial group’,
Bull. London Math. Soc. 25 (1993) 513-526.

[3] Alexei D. Miasnikov, ‘Genetic algorithms and the Andrews-Curtis conjecture’,
preprint.

[4] D.J.S.Robinson, A course in the theory of groups (Springer, Berlin, 1982).

Dept. of Math. and Stats. Inst. für Angew. Math. Kwi Shing Estate

York University Technische Universität New Territories

Toronto A-1040 Vienna Hong Kong

Canada M3J 1P3 Austria China

Inst. of Math. Dept. of Math.

Silesian Techn. Univ. Univ. of Brasilia

44-100 Gliwice 70910-900 Brasilia-DF

Poland Brazil

8


