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Varieties of t-groups

O. MACEDOŃSKA, A. STOROZHEV

A test for checking whether a group variety is a variety of t-groups is estab-

lished and it is shown that any variety of t-groups is pseudoabelian whereas

there exists a non-abelian torsion-free variety of t-groups. Also conditions

under which all groups in a pseudoabelian variety are t-groups are discussed.

A group G is called a t-group if for any two subgroups A and B the fact that
A is normal in G and B is normal in A implies that B is normal in G. A wide
range of t-groups that satisfy extra conditions are studied in a number of works;
for example, see [1] and [8]. Here we shall deal with varieties of t-groups.

A group variety is a variety of t-groups if all its groups are t-groups. A variety
is called pseudoabelian if it is nonabelian but all its finite groups are abelian.
Answering a question of H. Neumann (problem 5 of [5]), A. Yu. Ol’shanskii [6]
proved the existence of pseudoabelian varieties of groups. In [4], the following
question was raised: is it true that all groups in a pseudobelian variety are t-
groups? In this paper we set up a test for checking whether a variety consists of t-
groups only. This enables us to show that any variety of t-groups is pseudoabelian,
and that there exists a non-abelian torsion-free variety of t-groups. Quite a while
ago, L. G. Kovacs and P. M. Neumann independently obtained the following result
(unpublished, see [4]): if an element of a squarefree order fails to normalize a
subnormal subgroup of a group G, then G has a metabelian, nonabelian factor
and so cannot belong to any pseudoabelian variety. In this paper we give a proof
of a more general result. However, the question as to whether all groups in a
pseudoabelian variety are t-groups is still open.

Given two elements x and y of a group, let X and Y stand for the cyclic
subgroups generated by x and y respectively. We shall also use the notation [a, b]
for aba−1b−1.

LEMMA. Let x and y be any two elements of an arbitrary group. Then
[[X,Y ], Y ] and [[Y,X], X] are normal subgroups of [X,Y ].
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PROOF. Clearly, [[X,Y ], Y ] and [[Y,X], X] are subgroups of [X,Y ]. Let f
and g be elements of [X,Y ]. Then [yk, fg] = [yk, f ]f [yk, g]f−1 for any integer k.
Hence for any f , g, the element f [yk, g]f−1 belongs to [[X,Y ], Y ] which proves the
lemma.

THEOREM 1. A group variety is a variety of t-groups if and only if it satisfies
a law of the form

[x, y] = u(x, y),

where u(x, y) belongs to [[X,Y ], Y ].

PROOF. First, we assume that H is a group satisfying a law of the form
[x, y] = u(x, y) where u(x, y) belongs to [[X,Y ], Y ]. Let F be a normal subgroup
of G and G a normal subgroup of H. Also let f be an element of F and h an
element of H. Then [h, f ] = u(h, f) where u(h, f) belongs to [[H,F ], F ]. Since F
is a subgroup of G and G is a normal subgroup of H, [H,F ] is a subgroup of G.
Hence [[H,F ], F ] is a subgroup of F as F is a normal subgroup of G. Therefore
[h, f ] belongs to F which means that F is a normal subgroup of H. Thus H is a
t-group.

Next we assume that Q is a relatively free group of infinite rank in a variety of
t-groups. Let x and y be in Q and let P denote the subgroup of Q that is generated
by x and y. Then [[X,Y ], Y ] is a normal subgroup of [X,Y ] by the Lemma.
Therefore Y [[X,Y ], Y ] is a normal subgroup of Y [X,Y ]. Hence Y [[X,Y ], Y ] is a
normal subgroup of P as Y [X,Y ] is a normal subgroup of P , and Q is in a variety
of t-groups. Hence Y [[X,Y ], Y ] contains [x, y] and therefore [x, y] = ykv(x, y)
where k is an integer and v(x, y) belongs to [[X,Y ], Y ]. Since Q is relatively free,
we can consider the equation [x, y] = ykv(x, y) when x = 1 and obtain yk = 1.
Thus [x, y] = v(x, y) in Q.

COROLLARY 1. A variety of t-groups is pseudoabelian, that is, all its finite
groups are abelian.

PROOF. The fact that any variety of t-groups is pseudoabelian can be proved
by using the arguments in the proofs of Theorem 3.1 of [2] and Lemma 29.1 of [7].
It is well known (for example, see Corollary 6.1 of [7]) that if a varietyM of t-groups
contains a nonabelian finite group, then it contains a metabelian nonabelian group.
But according to the Theorem, M satisfies [x, y] = u(x, y) where u(x, y) belongs
to [[X,Y ], Y ]. Therefore by substituting [y, z] for y in the equation [x, y] = u(x, y),
we obtain that all metabelian groups in M are nilpotent of class at most 2. Hence
we arrive at a contradiction since all nilpotent groups of class at most 2 in M are
abelian in view of [x, y] = u(x, y).

COROLLARY 2. There exists a nonabelian torsion-free variety of t-groups.
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PROOF. To prove the existence of a nonabelian torsion-free variety of t-groups,
we shall consider the variety which is studied in Chapter 9 of [7]. So let

v(x, y) = [[xd, yd]d, [yd, x−d]d]

u(x, y) = v(y, x)n[y, x]ε1v(y, x)n+1[y, x]ε2v(y, x)n+2 · · · [y, x]εh−1v(y, x)n+h−1,

where h ≡ 1 (mod 10), ε10k+1 = ε10k+2 = ε10k+3 = ε10k+5 = ε10k+6 = 1 ,
ε10k+4 = ε10k+7 = ε10k+8 = ε10k+9 = ε10k+10 = −1 , k = 0, 1, · · · , (h− 1)/10 and
d, n, h are sufficiently large natural numbers chosen with respect to the restrictions
that are introduced in Chapter 7 of [7]. Note that ε1 + · · ·+ εh−1 = 0.

Let M denote the variety defined by the law [x, y] = u(x, y). It is proved in
[7] that M is nonabelian and torsion-free. Since

[[yd, xd]d, [xd, y−d]d] = [yd[xd, y−d]dy−d, [xd, y−d]d]

= [[yd, [xd, y−d]d][xd, y−d]d, [xd, y−d]d],

we can see that v(x, y) belongs to [[X,Y ], Y ] by the Lemma. Therefore u(x, y)
belongs to [[X,Y ]Y, ] in view of the Lemma and the equation ε1 + · · ·+ εh−1 = 0.
Hence M is a variety of t-groups by the Theorem.

The following theorem will help us to find conditions under which a pseudoa-
belian variety consists of t-groups only.

THEOREM 2. Let a group G contain an element g of finite order n such that
the exponents of the odd prime divisors in the prime decomposition of n are at
most 1. Then if g fails to normalize a subnormal subgroup of a group G, then G
has a metabelian factor.

PROOF. LetH be a normal subgroup of G and F a normal subgroup ofH such
that g−1Fg ̸= F . Without loss of generality we can assume that G is generated
by g and H. Let F0 = F , F1 = g−1F0g, F2 = g−1F1g, . . ., Fn−1 = g−1Fn−2g.
We shall call a group P an intersection of weight k if P is the intersection of
k distinct subgroups from the list F0, F1, . . . , Fn−1. It is clear that F0 ∩ F1 ∩
. . . ∩ Fn−1 is a normal subgroup of G. Hence there exists a subgroup Q such
that Q is an intersection of certain weight which is not normal in G but any
intersection of bigger weight is normal in G. Therefore considering Q instead of
H and taking the quotient of G by the product of all the intersections of weight
bigger than the weight of Q, we can assume without loss of generality that in the
set F0, F1, . . . , Fn−1 any two groups either coincide or intersect trivially.

If n is a prime, then all F0, F1, . . . , Fn−1 are distinct and therefore
F0F1 . . . Fn−1 = F0 × F1 × . . . × Fn−1. Hence if a is a non-trivial element of
F0, then the group generated by g and a is a nonabelian metabelian group.

Now let n = 2m where m > 1. Consider a non-trivial element a from F0 such
that g−2iag2

i

= a and i is the smallest positive integer with the property that
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g2
i

stabilizes at least one non-trivial element from F0 when conjugating by g2
i

.
Let h = g2

i−1

, then h−1(h−1ah)h = a. Hence h−1bh = b−1 where b = ah−1a−1h.
If h−1ah is not from F0, then the group generated by h and a is a nonabelian
metabelian group. If h−1ah is from F0, then it follows from the definition of i
that b cannot be equal to b−1. Therefore the group generated by h and b is a
nonabelian metabelian group.

It remains to observe that the last two paragraphs prove the theorem.

COROLLARY 3. Let M be a pseudoabelian variety of exponent n such that the
exponents of the odd prime divisors in the prime decomposition of n are at most
1. Then M is a variety of t− groups.

PROOF. It follows immediately from Theorem 2.

In conclusion, we would like to mention here the fact that according to [3]
and [9], there are plenty of examples of pseudoabelian varieties of finite exponent
that satisfy the conditions of Corollary 3.

REFERENCES
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