
Automated Identification of
Breaking Changes in Continuous

Integration Systems Using
Under Uncertainty Reasoning

mgr inż. Stanis law Świerc

Silesian University of Technology

Faculty Of Automatic Control, Electronics
And Computer Science

Institute of Computer Science

Supervisor:
Dr hab. inż. Krzysztof Cyran, prof. nzw. w Pol. Śl.

July 7, 2015

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

The theory of probabilities is at bottom nothing but common sense reduced to
calculus; it enables us to appreciate with exactness that which accurate minds
feel with a sort of instinct for which ofttimes they are unable to account.

Pierre Simon Laplace, 1819

Contents

1 Introduction 1
1.1 Problem statement . 2
1.2 Dissertation organization 2

2 Continuous Integration 5
2.1 Principles and practices . 6
2.2 Elements . 12
2.3 Integration build . 14
2.4 Benefits . 16
2.5 Broken build management 18

2.5.1 Related work . 19
2.5.2 Strategies . 22

2.6 Challenges of large-scale CI systems 25
2.7 Summary . 28

3 Reasoning under uncertainty 31
3.1 Previous work . 32
3.2 Representation . 34

3.2.1 Bayesian network representation 34
3.2.2 Local probabilistic models 36
3.2.3 Template-based representation 39

3.3 Inference . 40
3.4 Learning . 41
3.5 Bayesian troubleshooters . 41
3.6 Summary . 42

4 Data set 45
4.1 Format . 45

4.1.1 Build configuration 46
4.1.2 Build logs . 47

iii

Contents

4.1.3 Build trace . 47

4.1.4 Changes . 48

4.1.5 Causes . 51

4.2 Collection scenarios . 52

4.2.1 Forward fix scenario 52

4.2.2 Backward fix scenario 53

4.2.3 Ambiguous backward fix scenario 54

4.3 Quality improvement . 56

4.3.1 Initial quality assessment 56

4.3.2 Outliers analysis . 60

4.4 Summary . 63

5 Diagnosis model 65

5.1 Requirements . 65

5.1.1 Machine Learning solution 65

5.1.2 Incorporation of the existing expert knowledge . . . 66

5.1.3 Interpretable results 66

5.1.4 Scalability with the number of distinctive defects . . 66

5.2 Diagnosis procedure . 67

5.2.1 Create a build graph from logs and build trace . . . 68

5.2.2 Find the set of leading-failed build targets 71

5.2.3 Extract the information regarding errors from log files 72

5.2.4 Reduce the set of leading-failed build targets 73

5.2.5 Build Bayesian network describing the problem . . . 76

5.2.6 Observe basic evidence 82

5.2.7 Execute inference procedure 82

5.2.8 Observe complex evidence 83

5.2.9 Collect results . 83

5.3 Training procedure . 84

5.3.1 Expert elicitation . 85

5.3.2 Offline training . 86

5.3.3 Online training . 88

5.4 Practical considerations . 89

5.5 Summary . 90

iv

Contents

6 Study of the effectiveness 93
6.1 Data set used in the research 93

6.1.1 Programming languages 94
6.1.2 Expert elicitation . 94

6.2 Research approach . 95
6.2.1 Prior expert knowledge 95
6.2.2 Complex evidence 95
6.2.3 Noise parameters . 96
6.2.4 Cross-Validation . 97

6.3 Network size sensitivity analysis 98
6.3.1 Baseline analysis . 99
6.3.2 General defect types 110
6.3.3 Specific defect types 116
6.3.4 Combined model . 120

6.4 The impact of prior expert knowledge 123
6.5 Summary . 127

7 Conclusions 129

Bibliography 133

Notation Index 141

Index 142

v

List of Figures

2.1 Elements of a Continuous Integration system 13

3.1 Simple Bayesian network with six random variables 35

3.2 Example of a template-based representation 39

4.1 Forward fix sequence diagram 52

4.2 Backward fix sequence diagram 53

4.3 Sequence diagram with ambiguous data set collection scenario 55

4.4 ROC chart for naive diagnosis model 56

4.5 Concurrent failures of builds for two different platforms . . 58

4.6 Sequence diagram with a voluntary revert scenario 59

4.7 ROC chart created after training set was pruned 60

4.8 Boxplots for the number of changes committed and reverted
for two types of builds . 63

5.1 Example of a build graph with failed targets 72

5.2 Build graph where topological reduction is applicable 75

5.3 Plate model of the Bayesian network used for diagnosis . . 77

6.1 Programming languages distribution in the data set 94

6.2 Example of data set division into uneven folds 99

6.3 Plate schema for the baseline model 101

6.4 Outcome rates for baseline model 105

6.5 Precision and recall plots for baseline model 107

6.6 Histogram of culprit positions for baseline model 108

6.7 Cumulative distribution of culprit positions for baseline model109

6.8 Plate model of network supporting two defect types 111

6.9 Outcome rates for model with general defect types 113

6.10 Precision and recall plots for model with general defect types114

vii

List of Figures

6.11 Cumulative distribution plot of culprit positions for model
with general defect types . 115

6.12 Outcome rates for model with specific defect types 117
6.13 Precision and recall plots for model with specific defect types118
6.14 Cumulative distribution plot of culprit positions for model

with specific defect types 119
6.15 Outcome rates for combined model with both types of defects120
6.16 Cumulative distribution plot of culprit positions for com-

bined model . 121
6.17 Precision and recall plots for combined model 122
6.18 Outcome rates for model with prior expert knowledge . . . 124
6.19 Cumulative distribution plot of culprit positions for model

with prior expert knowledge 125
6.20 Precision and recall plots for models which make use of the

prior expert knowledge . 126

viii

List of Tables

3.1 Example of tabular conditional probability distribution . . . 36

4.1 Changesets characteristics summary for the gcc project . . 51

5.1 Counts of errors and warnings returned by selected tools . . 67

6.1 Supported defect types counts in analyzed cases 112
6.2 Selected cases for prior expert knowledge analysis 123

ix

1 Introduction

Many software engineering Researches have argued for more use of data
and data mining algorithms in Software Engineering [BZ14; HX10; BZ10].
One of the obvious benefits is the opportunity to make more informative
decisions about the project during its development phase. However, the
data can also be used to enhance the capabilities of tools used every day by
all contributors. In particular, advanced automation and decision support
systems can take the burden of many manual tasks and let people focus
on though-provoking, creative and more valuable work.

One of the most popular software development practice is Continuous
Integration. It became almost a standard in the industry worldwide. At its
core it encourages developers to integrate their changes often, even several
times a day. Each change can be considered as integrated only after the
product is successfully rebuilt and it passes a set of predefined tests. In
order to help people follow these guidelines many supporting software tools
have been created. They automate many steps in the integration process,
which would have to otherwise be performed by the developer. However,
there are some tasks that even today still have to be done manually.

When integration builds fail they are typically diagnosed by developers
who know the project source code well enough to find defects and fix them.
This task is very challenging to automate because of a few reasons. First,
the diagnosis requires good understanding of the project structure and
the technologies it uses. Second, the fix might involve modifying source
code to a level only a human can handle. There are other strategies for
managing broken builds which do not suffer from these problems, but they
have their own limitations.

Once a project reaches a certain size and the integration builds start
getting long, with compilation phase reaching more than several hours on
modern hardware, CI becomes very challenging to practice. It gets even
more problematic if teams are distributed geographically in different time
zones and all require both the CI system to be available and the project

1

CHAPTER 1. INTRODUCTION

source code to be in a healthy state. One solution to this problem is
to follow a post-integration verification strategy with backward-fix policy
as described in detail in the following chapters. It assumes that changes
are checked in batches and if the subsequent integration build fails due
to some detects then culprit changes get reverted from the main Version
Control System. This task can be handled by designated developers or by
a dedicated team depending on the project size.

1.1 Problem statement

By analyzing different strategies for managing broken builds in large-scale
Continuous Integration systems we identified certain manual tasks which
can be avoided by delegating them to a dedicated expert system. We
recognized that the task of fault diagnosis can be automated. Additionally,
with backward-fix policy it is possible not only to find the problem but
also take some actions to automatically resolve it.

In this dissertation we argue that:

It is possible to create an autonomous software agent capable of
diagnosing faults in integration builds and automatically fixing
them by reverting changesets which have introduced defects to
the project source code.

We also state that this thesis can be proved by designing an autonomous
software agent with the listed capabilities, enabling it in a commercial Con-
tinuous Integration system, and showing its utility in that environment.

1.2 Dissertation organization

This dissertation described interdisciplinary research on Software Engi-
neering and Bayesian modelling of reasoning systems, and it is reflected in
its structure. Chapter 2 introduces the practice of Continuous Integration
and explains the associated concepts. It lists all the core elements and
extensions that have been proposed over the last years. Then, it focuses
on different strategies for managing broken builds because this part is of
special interest to this research.

2

1.2. DISSERTATION ORGANIZATION

A completely different subject is started in Chapter 3. It is about build-
ing systems for reasoning under uncertainty and Bayesian networks in par-
ticular. It covers in details different representations and local probability
models, which are later used to describe the design of the diagnosis model
proposed in this dissertation. The remaining part provides an overview of
inference procedures and Bayesian learning, subjects too broad to cover
well in this short book.

Chapter 4 begins the part of the dissertation which presents contribu-
tions of the research. It contains novel design of sample format capable of
storing enough information about failures in Continuous Integration sys-
tems to build a data set which can be used to train and evaluate diagnosis
models. Then, it lists several real-world scenarios and shows how they can
be modified to enable manual and fully automated data collection process.
Finally, it proposes several steps to improve data set quality.

Chapter 5 describes the most important contributions. It starts with
a list of requirements for the successful fault diagnosis system. Then, it
covers each step of the diagnosis procedure with a strong focus on the
structure of the Bayesian network used to calculate probability distribu-
tions for random variables of special interest. Its last but one section it
assumes fixed model structure and lists different options to train the model
from the available data.

Usefulness and the overall efficiency of the proposed model is discussed
in Chapter 6. In the first section there is information about where the
data set used in the research is coming from and about its basic charac-
teristics. Because the proposed diagnosis agent and the data set itself have
some unique properties it was necessary to plan the research carefully to
make sure estimated quality measures are not strongly biased. With well
defined approach the remaining part of this chapter contains many quality
measurement plots.

Finally, Chapter 7 mentions significant discoveries of the research and
gathers all of the main contributions in a single place. It ends with the
final conclusions from the research.

3

2 Continuous Integration

There have always been many different software development method-
ologies. In 1999 Kent Beck, who at the time was working as a project
leader, collected practices that he found particularly helpful and pub-
lished them in his thought provoking book “Extreme Programming Ex-
plained” [BA99]. The Extreme Programming methodology (XP) that he
introduced was designed to help teams develop software in the face of
vague or rapidly changing requirements. The word “extreme” in the name
refers to the amplification to extreme levels of what the author considers
“commonsense principles and practices”.

There are several elements of the methodology but despite the promise
of synergy not all of them were broadly adopted by the industry. By
far the most popular practice is the Continuous Integration [DMG07]. It
originates from nightly builds which has been considered as a best practice
for many years [CS98]. According to the author he decided to extend it
after making the following observations:

• Integration testing is important and should be done frequently,

• Costs of integrating source code are growing with time.

In order to solve these problems Beck formulated and published the
following rules [BA99]:

No code sits unintegrated for more than a couple of hours. At
the end of every development episode, the code is integrated
with the latest release and all the tests must run at 100%.

It is critical to understand that the term “continuous” is used in some-
what misleading way. Continuous typically implies that something starts
and never stops. This suggest that the process is constantly integrating
which is not the case here. On the contrary the integration process is
triggered every time a development episode is completed. In that sense

5

CHAPTER 2. CONTINUOUS INTEGRATION

the process could be better described as “continual integration”, but that
term never became a standard.

Another important aspect is the presence of the integration tests in the
process. It is not enough for a change in source code to compile to be
considered correct. It has to also result in a product that passes a set
of predefined tests. Otherwise, there is a clear indication that either the
feature implementation or the tests do not follow the specification. In
both scenarios the problem should be surfaced to the development team
and fixed.

Since it was introduced for the first time Continuous Integration has
been evolving. There was a lot of research made to evaluate the im-
pact the CI has on the organizations that practice it [Mor+10; Kim+08;
DPH12] as well as on improving the model [Rob04; Sto08; GS12]. More-
over, many Independent Software Vendors (ISV) created custom solutions
and systems that support this practice [Rog03; Sto07].

2.1 Principles and practices

In order for CI to work effectively on a project, developers must change
their habits and follow some of the practices. In his work, Kent explained
the core principles of the methodology [BA99], which were then broadened
by the subsequent authors. Fowler and Foemmel [FF06] in their article
described extended set of rules that led to the higher productivity in the
projects they studied. Later, Duvall, Matyas, and Glover [DMG07] gath-
ered them all again in the fist book focused exclusively on CI systems,
where they explain in details every single one of them.

There are ten practices that are considered to make up an effective CI
environment. They are described in the following sections.

Maintain a single source repository

Software projects can involve a lot of input files that are used to build a
product. In order to keep track of all the changes that are happening in
the project, teams typically use a Version Control System (VSC). It is a
system whose main responsibility is to store files together with all their
previous versions. Because most of the interactions with such system
are related to storing and retrieving files, they are typically referred to

6

2.1. PRINCIPLES AND PRACTICES

as repositories, a term will be used interchangeably with version control
system further on. A unit of change in the repository is often called
a changeset because it groups a set of changes to multiple files and save
them time together as an unit with additional metadata such as the author
identifier, timestamps and comments.

Although many teams use repositories a common mistake is that not all
the files that are required to build the product are kept there [FF06]. Not
only does it include source files but also test scripts, configuration files,
database schemas, install scripts and other scripts related to the project.
They should all be stored in a single place. Doing so makes it easy to
setup a new development environment and avoids problems related to the
product building successfully on one machine and failing on another.

Automate the build

The goal of CI system is to encourage frequent integrations of the changes
in the project. One of the most important steps of this process is a build,
which is much more than a compilation. A build may consists of the
compilation, testing, code inspection, deployment and any other tasks
required to consider a change as correctly integrated. Typically this is a
complicated process which consists of multiple tasks.

Although the automation is not required, writing automated build scripts
can reduce the number of manual, repetitive and error-prone tasks per-
formed on a software project and is strongly encouraged. There are some
dedicated scripting languages available for defining the build integration
process [FF06; Rog03].

Make the build self-testing

CI was introduced to increase the frequency of the integration tests run
in the project. Naturally tests should be executed as part of the pro-
cess. There can be different types of tests included: unit tests, component
integration tests, system integration tests.

There are many different ways to organize tests. Duvall, Matyas, and
Glover [DMG07] recommends grouping and ordering tests by the time it
takes to execute them. This gives developers flexibility of selecting the
scope of testing they want to perform locally during development.

7

CHAPTER 2. CONTINUOUS INTEGRATION

Czerwonka et al. [Cze+11] on the other hand discussed the advantages
of failure prediction models for test prioritization. By running tests that
are most likely to be effective in finding defects in the changed code it is
possible to decrease the resource utilization, thus decreasing the overall
costs.

Everyone commits to the mainline frequently

Contemporary version control systems allow to create multiple branches
to handle different, concurrent streams of development. Although helpful,
this feature can be overused. There is non-negligible cost associated with
maintaining branches and moving code between them.

Fowler and Foemmel [FF06] recommends using single mainline branch
which represents the current state of the project under development. De-
velopers should work of it most of the time. The only reasonable branches
other than the mainline can be created for maintenance of prior version of
the project, features which are disruptive to the rest of the product and
require extra isolation or temporary experiments.

This practice encourages developers to communicate with each other
about the change they are working on. Prior to the integration they are
forced to update their working copy to match the mainline, resolve any
conflicts and execute local build. If the build is successful they are free to
commit to the mainline. By repeating this process frequently developers
are able to detect conflicts quickly and fix them before they grow to a
point when they are hard to resolve.

Every changeset should build the mainline on an integration machine

When many developers are working directly of the mainline branch it has
to be maintained in an eventually correct state. Changesets which fail
to integrate are inherent part of the process. However they should be
fixed in a timely fashion before somebody updates the working copy to a
bad version and loses time diagnosing integration problems introduced by
someone else [FF06].

There are many possible reasons for the integration to fail. Develop-
ers can forget to update working copy and execute local build prior to
committing changes. Some integration tests may be nondeterministic and

8

2.1. PRINCIPLES AND PRACTICES

failing in a random fashion. Finally, there may be some environmental
differences between developer’s machines.

The last problem can be solved by introducing a dedicated integration
machine. Such machine should not be used for any development. Its sole
purpose should be running integration builds. Only changesets that pass
such build should be considered as correctly integrated.

Although it is not a requirement, the process can be improved with a
Continuous Integration Server [Rog03]. This is a software that monitors
the version control system for new changes. Once they are detected it
initiates a new build on an integration machine. When the build is done
it notifies authors about the outcome.

Keep the build fast

An important aspect of the CI is that it provides a rapid feedback mech-
anism. The rate of this feedback depends on the time it takes to execute
an integration build. The longer it takes to complete the build the longer
developers have to wait not knowing if their changes are correct or not.
This can significantly reduce their ability to practice CI. Therefore, it is
crucial to keep the build time reasonably short.

Rasmusson [Ras04] describes the negative impact of long running build
on the team morale, productivity and consequently the project return of
investment. He pointed out that when developers are waiting for a result of
integration build they are distracted and cannot reach their full potential.
Moreover, even if they start working on the new functionality they may
be using code that has not been verified, thus increasing the amount of
integration to be done later.

Rogers [Rog04] points out that long builds are typically caused by in-
cluding too many verification tasks. It is common to include tasks such as
compilation, unit tests, acceptance tests and building deployment pack-
ages. They all should be executed these frequently, however, not necessary
at the same time. Instead of having one serial integration process it can be
split into a set of independent consecutive or concurrent processes which
can run with at different frequency. This solution is typically referred to
as staged builds.

When grouping tasks, it is important to consider different parties that
rely on the integration build and their individual requirements. For de-

9

CHAPTER 2. CONTINUOUS INTEGRATION

velopers it is essential to have the code base that can be compiled and a
suite of unit tests that are passing all the time. A dedicated build pro-
cess consisting of only these tasks can be much shorter, thus encouraging
developers to integrate their code more often.

On the other hand, feedback on acceptance tests, although also impor-
tant, are not critical for a day to day work. They can be included in a
different type of build triggered less often.

Test in clone of the production environment

The core reasons why CI was created was to increase the frequency of
integration testing. To make the tests outcome trustworthy they should
be executed in an environment similar to the production environment.
Every difference results in a higher risk of missing a faults sensitive to the
setup.

Fowler and Foemmel [FF06] explained that the goal should be to test
in an environment which is an exact clone of the production environ-
ment. They admit that sometimes the costs of full duplication can be
prohibitively high. Then, it is necessary to introduce some differences and
acknowledge the risk they entail.

Stolberg [Sto09] in his case-study talks about the advantages of execut-
ing tests on a virtual machines (VM). In his setup he introduced a test
controller which launches tests in a clean VM with an environment simi-
lar to production. This mitigates the problem of files left from a previous
installation of the project interfering with the new files and makes the
process more deterministic.

Make latest artifacts easily accessible

Apart from an information about the state of the project integration builds
can also produce artifacts. Depending on the project type they can be
executable, installers that can be run for demonstrations or exploratory
testing, but also detailed reports regarding the code base like coding style
violations. Because of the great diversity in the functions of artifacts
produced it is critical to make them easily accessible to people involved in
the project.

This practice ties nicely into the iterative approach for the software

10

2.1. PRINCIPLES AND PRACTICES

development, where at the end of each phase the project despite having
incomplete functionality can be demonstrated to stakeholders [Sch04]. In
order to make this possible the artifacts from the last integration build
in the phase should be saved in a distinctive location and be marked
accordingly.

Keep the process transparent

With CI the integration status of the project is updated regularly. This in-
formation together should be easily accessible to everyone in the team. It
is particularly important for developers to be aware of this status, so that
any problems in the code base can be fixed in a timely fashion. Moreover,
there is also behavioral aspect. If the integration builds are successful
people experience positive reinforcement which encourages them to sus-
tain this situation. Strength of this stimulus depends on the notification
mechanism used in the project.

Ablett et al. [Abl+08] studied the effectiveness of different types of
mechanism of notifying developers about successful and unsuccessful inte-
gration builds. They compared e-mail based solutions, ambient awareness
devices and a robotic device in an academic environment. Their results
indicate that the most effective solution is a combination of openly vis-
ible, but unobtrusive ambient device with a virtual communication such
as e-mail.

Similar experiment was repeated by Downs, Plimmer, and Hosking
[DPH12], but this time it was performed in an industrial environment
with a bigger team. Contrary to Ablett, they focused on checking differ-
ent hypotheses regarding project development metrics. They showed that
the proportion of failed builds which were fixed the same day increased
substantially above the baseline measured prior to the experiment. The
transparent process gave the team members sense of awareness and re-
sponsibility for the failed builds.

Automate deployment

If the tests are being executed in an environment similar to the production
environment there are probably some scripts which automatically install
the software. A natural progression is to make them flexible enough to

11

CHAPTER 2. CONTINUOUS INTEGRATION

deploy to any environment including production.

Of course the product should reach a certain quality bar before it is pre-
sented to users, but having automation can make the deployment process
cheaper, thus allows the team to do it more often. Moreover, since all the
steps are well defined in the script there is lower risk of errors related to
some steps being executed in different order and the whole process become
more repetitive.

As with any deployment there can be some hard to predict issues.
Therefore, it is also recommended to prepare a set of scripts that can
revert to the last known good state. This reduces a lot of tension of
the deployment and encourages people to do it more often, thus deliver
business value quicker [HF10].

2.2 Elements

Continuous Integration is a software development practice. It is all about
how people behave and not what tools they are using. Nevertheless, there
is a broad range of software solutions that can help developers follow the
guidelines and make them more successful.

There are different variations of CI systems designed to work well in
projects of different types and scales. The most popular environment is
depicted in the Figure 2.1. It consists of just a handful of elements.

Developers work on the functionality on their workstations. When they
complete a task they update their working copy to match the mainline
and resolve any conflicts detected by the version control system. At this
stage only conflicts between overlapping textual regions in the same source
file are detected, but not between concurrent changes to different files. To
make sure that there are no obvious issues they perform local build which is
much faster than full integration build but still contains some verification
steps.

If the local build is successful they commit changes to the Version Con-
trol Repository. It is a place where all the changes to the source code and
other software assets such as documentation are stored together with the
metadata, which describes the circumstances of when they were added.
Although single repository can keep track of concurrent development ef-
forts in branches there is one mainline branch which represents the current

12

2.2. ELEMENTS

state of the project.

Change to mainline is what triggers full integration build in the Con-
tinuous Integration Server. There can be different strategies for detecting
changes. The most popular is simple polling. Server periodically connects
to the repository and checks if there are any new changes. When they are
detected it fetches them and triggers a full integration build.

On the completion of the build the results are published and communi-
cated back to the developers through a feedback mechanism. There can
be different solutions used, e-mail being one of them.

Developer

Developer

Developer Version Control
Repository

Feedback
Mechanism

Continuous
Integration

Server

sync

publish

commit

poll

notify

Figure 2.1 Elements of a Continuous Integration system

13

CHAPTER 2. CONTINUOUS INTEGRATION

2.3 Integration build

Integration build is the most important element of the whole system. It
is a process of transforming source code and other software assets into
components, combining them into a software system, verifying that it is
coherent and possibly deploying. It is much more than just a compilation
or its dynamic language variations.

The build consists of multiple interconnected activities. Depending on
the project they may vary but typically they can be grouped into the
following phases.

Preparation

Preparation is the first phase of the process. Its goal is to acquire re-
sources necessary for a build and make sure they are in the correct, clean
state. The definition of what it means may vary depending on the project,
but there are some common tasks. In particular, the integration machine
should be reserved and its working copy of the project should be updated
to match the mainline. Additionally, the intermediate and output loca-
tions used during the build should be cleared.

Compilation

Continuous source code compilation is one of the most basic and common
features of CI systems. In this phase source files and other assets are trans-
formed to create an executable. Other than producing artifacts the tools
that are executed also perform basic verification and inspection. Compil-
ers check if the source code adheres to the rules of a selected programming
language and can also report warnings related to some constructs known
to be problematic.

Verification

Once the executable files are available it is possible to use them to verify
that the system matches expectations. This phase contains all the steps
that are required to pass before the change is considered as correctly in-
tegrated. Typically this is a time when the automated tests are being

14

2.3. INTEGRATION BUILD

executed. There is no single right answer to what is the appropriate scope
of testing, but it is recommended to run at least unit and integration tests.

Some projects require special verification steps. Lier, Schulz, and Lütke-
bohle [LSL12] proposed a CI system for verification of simulated robot
models. In their work they presented a pipeline where correctness of each
change was checked by deploying it both to simulation environment and
to a real robot for comparison.

Inspection

The inspection phase focuses on the Quality of Code (QoC) which is de-
fined as a compliance of the set of source code construct to pre-defined
design and coding rules [FP98]. In contrast to the quality of product,
which is the compliance of existing functionality with the specification,
QoC is not clearly visible characteristic of the system. It is typically hid-
den and may become visible much later, after the system is deployed and
when the project enters maintenance stage [Mis05]. By including inspec-
tion in the integration build the metrics not only become visible but the
trends become available, thus the quality can be managed better.

Although it is possible to configure the system to fail the integration
build if the change violates any of the coding rules, it is more productive
to have a thresholds on the quality metrics instead [Bug09]. The reason
is that most of the fixes to coding rule violations are small, thus it makes
sense to make them in batches.

Design rule violations are more complicated and may require refactor-
ing, which is the process of restructuring existing computer code without
changing its external behavior [Fow99]. Since changing design may be
expensive, not only should it be justified with quality metrics but also
planned. This is another reason why the integration build should not fail
immediately during inspection.

The outputs of this phase are detailed reports regarding the Quality of
Code metrics. They should be stored either with other build artifacts or
in external systems, and should be available to development team as well
as to the stakeholders.

15

CHAPTER 2. CONTINUOUS INTEGRATION

Deployment

The last phase focuses on the deployment aspects of the software. Its goal
is to generate the bundled software artifacts with the latest changes and
make them available to a staging environment. The format of the bundle
depends on the target environment.

The deployment process can be included in the integration build, but
that is rare practice. Typically Quality Assurance team will coordinate
carefully where and when the software is being installed not to interfere
with any ongoing test efforts in the staging environment. Whereas the
deployment to production should be controlled to minimize the impact on
the users.

2.4 Benefits

Setting up a continuous integration system can be expensive in terms of
the hardware required to run the builds and the time it takes to configure
everything. However the following benefits typically outweigh these costs.

Integration costs reduction

The most obvious benefit and the one which was a core motivation behind
CI practice is the reduction of integration costs. They are growing in time
so the best way to keep them low is to encourage developers to integrate
their changes often.

Risk reduction

Because integration tests can run many times a day defects are discovered
when they are introduced instead of during late-cycle testing or even after
the project is deployed. Moreover, for most of the problems the sooner
they are detected the easier it is to fix them, and the lower the costs of
making the fix is [SE04].

By executing all the builds on a separate integration machine the pro-
cess becomes more reproducible. The risk of not being able to rebuild
the project due to missing third-party libraries or special environmental
variables practically goes away.

16

2.4. BENEFITS

Repetitive process reduction

Practicing CI encourages to improve automation used in the system and
eliminate repetitive tasks which would otherwise be expensive in terms of
time, effort and possible errors. This frees people to do more thought-
provoking and valuable work. With the solid base of existing automation
scripts it is much easier to extend them to cover more tasks as the oppor-
tunities emerge.

Availability of deployable software

This is the most important benefit from a perspective of clients or users.
With CI system in place the product is always in a state where it can be
deployed. When there are any problems reported, they can be fixed almost
immediately and delivered to users. In projects where the integration is a
separate phase in the development process it might be underestimated in
time and even delay the release of the product [HF10].

Improved project visibility

Integration builds which include inspection steps constantly produce in-
formation about the health of the project and make them visible both to
the team members and project owners. This data is always related to a
specific version of the project fixed in time so it is possible to notice trends
and respond to them. This also creates a natural setup for experimenta-
tion on the project because there is available data which can be used to
check if a change to the process had the desired outcome.

Increased project quality

Improved project visibility has additional advantage that deserves to be
listed out separately. When developers are aware that Quality of Code
measures are monitored with every change they make, they put more
effort into adhering to coding and design standards. Bugayenko [Bug09]
in a case study of five commercial projects observed that the post-delivery
defects rate, which is the relation between the number of defects discovered
during the twelve months after project completion to the total number of

17

CHAPTER 2. CONTINUOUS INTEGRATION

defects discovered, was much lower in projects where Quality of Code was
monitored and sustained at a high level.

Greater product confidence

With every successful integration build the team and project owners know
that the product, although incomplete, is in a healthy state. This gives
them confidence to make even risky changes because they know that if
something goes wrong they will immediately know about it and they will
be able to resolve all the issues.

2.5 Broken build management

Integration builds are used to detect issues in the code base and notify
development team about it. The most severe type of notification is a failed
build which is commonly referred to as broken build. The set of issues that
might be considered as breakage can be different for different projects but
it usually covers compilation errors and integration test failures.

When a break happens it is important to get it resolved in a timely
fashion. Otherwise it might negatively impact all the developers who are
working on the common code base. That is because when the project’s
state is invalid it is hard or even impossible to detect new problems. There-
fore, what typically happens is that developers are prohibited to check in
new code until the correct state is restored. This interferes with their
regular workflow and impedes productivity.

Moreover, there is also a risk of pulling down broken code from the
repository. Developers might learn about it after the fact when they are
unable to rebuild the code locally and spend time diagnosing defects in-
troduced by someone else. This can be avoided by checking the state at
the integration server before updating local workspace, however when de-
velopers really need to work with the latest version of the project it no
longer is an option.

Based on the last two paragraphs one could infer that broken builds
are so harmful that they should be avoided at all costs. However, that is
the kind of feedback the CI systems were created for in the first place. It
needs to be acceptable to break a build. What makes a difference between

18

2.5. BROKEN BUILD MANAGEMENT

a bad system and the one which is delightful to work with, is how often
builds fail and what happens when they do.

Several different strategies have been proposed to solve the problem
of a broken build management and they have been shown to work well
in different environments. They range from behavioral patterns to more
systematic approaches supported by the integration servers. The rest of
this section explores them and discusses their strengths and weaknesses.

2.5.1 Related work

Continuous Integration systems have been studied by many researchers
and practitioners in the last years. This section gathers some of the pub-
lications that were explicitly dealing with broken build management.

Duvall, Matyas, and Glover [DMG07] point out that it is dangerous
to assume that everyone knows not to commit the code that does not
work to the version control system. In order to foster good behaviors
there should be well-factored scripts that developers can run locally to
verify their changes before they reach the mainline branch of the project.
Of course this practice does not eliminate broken integration builds com-
pletely. Therefore it is also important for the project culture to convey
that fixing broken build is a top priority.

Fowler and Foemmel [FF06] explain that when developers commit to the
mainline they become responsible for the next integration build. They
should monitor the process for any failures and fix them immediately.
They even suggest a policy that no one should leave the workplace after
committing changes until all of them are proved to be correct in the next
integration build.

Humble and Farley [HF10, p. 68] also recommend behavioral pattern
mentioned above. This discipline is said to be particularly important in
projects that are distributed geographically, where a team in a one time
zone can be completely blocked if they discover that they do not have
the expertise to fix a defect left by a developer in another time zone.
This problem can be mitigated by introducing a dedicated team of build
engineers, who look after the process.

Martin [Mar11, p. 111] stresses the importance of keeping CI tests run-
ning at all times. He suggests that when they fail the whole team should
stop what they are doing and focus on getting the broken tests to pass

19

CHAPTER 2. CONTINUOUS INTEGRATION

again. A broken build in should be viewed as an emergency, a “stop the
process” event that everyone responds to. This of course is applicable to
small projects where the coordination is not an issue.

Downs, Plimmer, and Hosking [DPH12] in their case study observed
that developers sometimes are unable to immediately forward-fix all the
issues observed in the system due to high complexity of the task or because
the problem is outside of the area their control. Therefore it is necessary
to either accept the fact that the project will stay in the unintegrated
state for longer or implement backward-fix solution.

Miller [Mil08] studied a project run by Microsoft Patterns & Practices
group during its nine month development cycle. The goal of his research
was to estimate the time spent by the team on tasks related to project
integration. The conclusion he came up with was that teams moving to
CI driven process can expect at least 40% reduction of time it takes to
commit and verify a change. Moreover, he noticed that 20% of time spent
on maintaining the CI system was devoted to diagnosing and fixing broken
integration builds.

Ablett et al. [Abl+08] studied the effectiveness of different types of
mechanisms used to notify developers about successful and unsuccessful
integration builds. The motivation of their research was to find the best
notification device to make the developers aware of the issues so that they
can fix them shortly after they are detected. They also highlight that the
cost of fixing integration problems grows with time.

Rogers [Rog03] described the design of CruiseControl CI server devel-
oped by ThoughtWorks. This system solved the problem of broken integra-
tion diagnosis by allowing only single developer to trigger the integration
build at a time. Although very simple, this solution is said to work well
in small projects. It is always clear who is responsible for a defect, thus
developers are discouraged from adopting practices that are likely to cause
the integration build to fail. If a developer does not fix the problem in a
timely fashion the whole team is repeatedly notified about it so that other
people can react and help to solve it.

In his next article Rogers [Rog04] talked about the need to accept cer-
tain failure rate because when developers avoid breaking the build at all
costs they decrease the frequency of integration, what makes it harder and
more error prone process. In order to decrease the cost of a failure one
can modularize the code base and organize developers into small, focused

20

2.5. BROKEN BUILD MANAGEMENT

teams. With this level of isolation it is much easier to find the defect
because instead of analyzing the whole project one can focus on a single
module.

Rasmusson [Ras04] in his long build trouble shooting guide talked about
the impact of a long running builds on the team morale, productivity
and presented some steps to overcome this problem. He admitted that
sometimes the duration of an integration cannot go down. Then, the
efforts should be focused on decreasing the failure rate of the build. Author
presented a serialized commit process as a solution where only one person
is allowed to commit code at a time. It can be enforced by the system or
be a part of the project culture. The drawback of this solution is that it
decreases the development velocity of the project, but is said to outweighs
the loss of time spend diagnosing and fixing broken builds.

Similar solution was presented by Lacoste [Lac09] who described the
development process used for Launchpad project run by Canonical. Ini-
tially the team was using the “feature branch” model where each developer
worked on a bug in a separate branch which was merged with the main-
line branch only after the test suit passed. This is a variation of the
pre-integration verification described in the next section. This model led
to a behavior where a lot of developers were submitting branches to be
merged at the end of the development phase. When this was happening
the integration queue was congesting making the system effectively unus-
able. This problem was solved by deferring execution of long running tests
to the time when more branches are merged, thus batching the revisions
to be tested. Additionally a policy enforced by the system was established
to prevent anyone from committing the code other than a fix on top of a
broken integration build.

Brooks [Bro08] discussed the effect of the time of the integration build
and its failure rate on team’s behavior. He compared two projects devel-
oped in similar technologies but with completely different scope of manda-
tory verification and consequently with different build times. He observed
that with long builds there was a spike in the number of changes commit-
ted shortly after the first successful build. Unfortunately this tendency led
to higher failure rate because instead of waiting for the code to have the
right quality developers were committing code earlier to make it before
the integration is broken again. Once a team found itself in this situation
it was challenging to get back to the normal workflow. In a project with

21

CHAPTER 2. CONTINUOUS INTEGRATION

a short build time developers did not need to rush, thus their error rate
was much lower.

Holck and Jørgensen [HJ07] carried out a case study of two large-scale
open source projects: FreeBSD and Mozilla. They pointed out that build
break management is an important aspect. In general, failures are kept
in the mainline branch and are fixed there to keep contributors engaged.
When a change is reverted it is uncertain if author it going to fix and
submit it again. This is particularly important for changes which succeed
on one platform and fail on another. Contributors may not have access to
all the platforms targeted by the project. In practice, Mozilla in general
accepts a large part of the responsibility for correcting this type of failures
to keep the parity between the supported platforms.

2.5.2 Strategies

Most systematic strategies of managing broken builds fall into two main
categories. They can either deal in issues after they are discovered in the
mainline in the code that has just been modified (post-integration verifi-
cation) or they might try to detect problems in source code even before
the changes are applied to the mainline (pre-integration verification). The
latter category can be further divided depending on who is responsible for
executing quality checks and where they are running.

Post-integration verification

One of the most natural way of dealing with problems in CI systems
is post-integration verification. From developers’ perspective it does not
change their workflow in a significant way. Everyone can integrate changes
into mainline branch whenever they are ready. These changes are then
verified in an integration build and are considered correct only if it passes.
However, if the build fails it means that the project got into a bad state
and it has to be diagnosed.

While the bad state persists, developers are advised not to check-in
new changes as they might make it harder to find the root cause of the
problem. Depending on the size of the project the task of diagnosing
broken build can be handled by people who made the most recent changes
or by a dedicated team of build engineers, who are responsible for the

22

2.5. BROKEN BUILD MANAGEMENT

health of the whole CI system. Whoever starts investigation has to know
programming languages and technologies used in the project to understand
the relations between different components, find the one which has a defect
and correlate it back to the recent changes in the source code.

Once the problem is identified there are two main options of how to
resolve it. It might be fixed forward with a new changeset checked-in on
top of the mainline branch. Alternatively the culprit can be completely
reverted from the repository, which is commonly referred to as a backward
fix because the project is reset back to the known good state.

Both actions lead to a positive outcome because the mainline branch
is correct again and the subsequent integration build will most likely suc-
ceed, but they have slightly different characteristics and implications. In
order to forward-fix an issue it is necessary to understand the source code
around the part of the project that failed. Therefore, it is only feasible if
developers are looking after their own builds. If the system is managed by
a dedicated team who might lack the expertise required to make changes
in the source code then backward-fix solution is preferred. It is easier to
find a defect than to fix it.

One factor that also needs to be taken into consideration is the time
it takes to resolve a problem. In backward-fix scenario the resolution is
almost instantaneous because version control systems have great support
for resetting projects to a previous state. When issues are forward-fixed
it takes considerably more time because the change, which is supposed to
fix the problem, not only has to be prepared but also tested before it is
applied to the mainline branch. Without local testing there is a risk that
developers responsible for creating a fix will try to verify it in the main
CI system and effectively hijack it as their private test environment while
everyone else is waiting for the project to be correct again.

Local pre-integration verification

One of the main critique of post-integration verification is that mistake
of one developer can negatively impact many people who are working on
the same project. A great way to mitigate this problem it to enforce some
quality gates each change has to meet before it can be applied to the
mainline branch.

This scenario is commonly referred to as pre-integration verification or

23

CHAPTER 2. CONTINUOUS INTEGRATION

gated builds and there are two main variations depending on where the
verification procedure is run: local and remote. Developers might be
responsible for executing it on their local machines prior to checking in
their changes or sending requests to a remote server to get their changes
automatically integrated only after they are confirmed to be correct.

The scope of verification included in the quality gate can vary between
projects. On the one extreme it might be necessary only to compile
sources, whereas on the other the process can match exactly what is run-
ning in full integration builds. In practice one of the most popular solution
is to find a balance where people are asked to compile the project and exe-
cute basic suite of very fast unit tests. Then, they can check-in the changes
for the CI system to pick them up and execute integration tests.

When developers are making trivial changes they might be tempted to
skip the verification and check them in directly. Although most of the
time they might be successful, the fraction where they are not can have
severe impact because in contrary to post-integration verification people
do not expect the project to be in a broken state. Therefore, it is best to
enforce the policy to make sure all changes get checked.

Remote pre-integration verification

In this scenario all changes get verified by executing a set of predefined
steps on a remote server. Only when do all of them pass the changes are
automatically integrated to the mainline branch. This guarantees that the
source code will always match baseline quality requirements.

In order to enable this scenario it is necessary to prepare a dedicated
machine where the verification steps will run. It is possible to repurpose
the integration machine for this task and in fact many commercial CI
servers support this mode of operation. It is important for this machine
to have a good performance so that developers do not have to wait long
to see if their changes are correct or not.

Case studies showed that long queues for pre-integration verification
and slow feedback in general leads to a situation where developer integrate
their changes less often and loose the real benefits of CI systems [Bro08;
Rog04; DPH12]. Therefore, this strategy is applicable only to projects
where builds are relatively fast and integration machines can cope with
the rate of new changes coming in. Otherwise costs of hardware required

24

2.6. CHALLENGES OF LARGE-SCALE CI SYSTEMS

to maintain sufficiently high availability might be too high.

Other strategies and extensions

Apart from the most popular strategies there were other proposals, which
have not been adopted by the industry. Their utility was mainly demon-
strated in a controlled environments, but hardly any solutions reached a
stage where they could be used in a commercial CI systems.

Guimarães and Silva [GS12] introduced an idea of continuous merg-
ing of the uncommitted changes in real-time. In their research they per-
formed controlled user experiments on groups of graduate software engi-
neers. During the experiment engineers had to solve a predefined pro-
gramming problem in a small team with a confederate, who was adding
conflicting source code at certain points in time. This empirical evaluation
demonstrated that continuous merging makes developers aware of certain
classes of conflicts earlier and fosters early resolution before the defective
changes are picked up in a full integration build.

Hassan and Zhang [HZ06] presented how decision trees can be used to
predict results of integration builds before their completion. Their solution
is intended to help developers select the right time of a day to update their
working copy of the project to minimize the risk of syncing to a bad state of
the project. Additionally this solution claims to be beneficial for managers
who can use it plan resources allocation should the integration fail.

Finally Storm [Sto07] proposed extension to the common post-integration
verification where projects are split into a set of dependent components
versioned independently. In case of a failure in one component it some-
times can be replaced with its previous version to form a complete product.
This approach limits the scope of a failure to a boundary of a single com-
ponent and provides clear backtracking procedure to restore the correct
state. However, it requires complex versioning scheme which makes it
hard to maintain in practice.

2.6 Challenges of large-scale CI systems

Success of Continuous Integration practice depends strongly on the disci-
pline of the team. The tools are there to help developers and encourage
the right behaviors. As the project scales up in terms of the size of its

25

CHAPTER 2. CONTINUOUS INTEGRATION

code base or the size of the team the more elaborate solutions are required
to sustain high productivity.

There are several factors that undermine the discipline of team mem-
bers making the Continuous Integration increasingly hard to practice. Un-
derstanding these obstacles and their symptoms is essential in preparing
strategies to overcome them by both improving tools and evolving behav-
ioral patterns.

Code base size

When the size of the code base starts to grow, the time it takes to run a
full integration build is increasing as well. The increase rate may depend
on a specific characteristics of a project. While some phases of integration
build such as compilation tends to increase slowly during development,
the test phase is less predictable and can grow rapidly dominating the
overall build time. This phenomenon is particularly important in projects
with high number of integration tests which check interactions between
different components. If not managed properly, the build time can increase
exponentially with the number of tests executed [Rog04].

When the build time grows developers need to wait longer to receive
feedback on the results of their integration. Even if they have a new
task to work on the lack of closure on the previous task and the context
switching decrease their productivity. A natural reaction is to reduce the
frequency of check-ins in order to minimize this futile time. However, this
creates new problems by itself because it increases the likelihood of merge
conflicts and makes each integration much harder task.

There is no simple solution to this problem and the only way to improve
experience of people working on the project is to drive the build time
down by following some recommendations, which were showed to work in
practice [Rog04; Ras04]. Of course not all recommendations are applicable
to all projects, but there is a high chance that some of them will work and
by combining them together one can increase the gain even further.

Development velocity

Another problem is the development velocity expressed in the rate of new
changes that are made to source code. Although the relation is not pro-

26

2.6. CHALLENGES OF LARGE-SCALE CI SYSTEMS

portional the more people are working on a project the more changes they
can prepare in a given time frame. Apart from that it obviously exacer-
bates the problem of rapidly growing code base discussed in the previous
section it brings some unique challenges.

With high number of concurrent changes there is a high chance of de-
velopers running into merge conflicts which need to be resolved prior to
check-in. Existing tools, which support three-way merges can make this
task easier, but it is still a manual process. The best way to mitigate the
risk of conflicts is to split the project into well-defined modules and care-
fully plan the work to decrease the work concurrency level on any given
source code artifact to preferably one.

Team size

Another challenge, which is closely related to development velocity, is how
to design a CI system when it is going to be used by many very large teams.
Here the biggest problem is that there are many people who depend on
working build and a break in a compilation phase has potential to affect all
of them. In such environments broken build management becomes critical.

One of the most natural solution is to organize people into small de-
velopment teams and to divide project into self-contained components,
which most of the time can be modified independently. Then each team
can gets its own local integration server and the impact of the broken build
is limited to the small group of people who work directly on the affected
component.

Sometimes, however, it might be impossible to define components with
sufficiently clear dependencies and the only way to make sure the whole
project is in a correct state is to run a full integration build. In order
to decrease likelihood that it will fail there can be local pre-integration
verification put in place. The remote variation would not be very practical
because it would require many machines to match the high rate of new
changes.

Geographical distribution

Designing CI system for large teams is challenging, but it gets even harder
if these team ad distributed geographically. This increases the impact of

27

CHAPTER 2. CONTINUOUS INTEGRATION

a broken build because not only it can affect many people but also it can
stay in this bad state much longer if the defect was detected outside of
business hours of the team who owns the broken component. In worst case
developers might be forced to work around the issue until it gets fixed the
other day.

Humble and Farley [HF10] recognized this problem and pointed out
that when working in a geographically distributed project it is absolutely
necessary to fix a broken build before the end of the work day. Violating
this rule can not only block a remote team for day but also undermine
trust and relationship between teams.

However, such policy can only be enforced if the integration builds are
fast enough to run multiple times a day. As soon as their duration reaches
one hour developers it might be extremely hard or even impossible for
developers to fix issues the same day. One could think about extending
policy to force people to connect and resolve problems outside of business
hours, but that would lead to the culture where people are afraid to make
any changes and the productivity would drop.

A better option is to create a dedicated team of build engineers who are
responsible for the health of the whole CI system. Its members should be
distributed globally similar to how normal teams are distributed to provide
full coverage during relevant business hours. They should be trained in
technologies used in the project so that they can diagnose and possibly fix
issues in any component.

Of course there are certain types of problems that build engineers will
not be able to forward-fix either because the design is not clear or because
they do not have the right experience. In such situations it is important to
give them rights to revert a changeset, which was identified as culprit even
if the attribution is not absolutely certain. It will generate extra work for
developers who are the authors of reverted changesets because they will
need to verify and check them in again, but the gain of having a whole
remote team unblocked for a day justifies this effort.

2.7 Summary

Continuous Integration is a software development practice, which origi-
nally proposed as part of Extreme Programming methodology. It is the

28

2.7. SUMMARY

only element which was broadly adopted by the industry. It consists of
a set of rules which encourage developers to integrate and verify their
changes frequently by checking them in into mainline branch and exe-
cuting a predefined suite of integration tests. There are many tools and
systems which help teams to be successful in following CI guidelines.

There are many challenges one may face when working with a CI system
and they increase when the project grows in terms of code base size and
the number of people involved in the project. Moreover these challenges
typically come out together. With that regards the most complicated
CI systems are the ones which have to serve large teams with hundreds
developers working from locations distributed geographically in different
time zones, where everyone contributes to the same project with large
code base and slow integration builds.

In such projects broken build management becomes a critical aspect.
In smaller projects the most effective solution is remote pre-integration
verification, but it becomes prohibitively expensive when the number of
developers is high. Another solution, which scales much better with devel-
opment velocity, is the post-integration verification where the integration
builds check a batch of changes at the same time.

Although post-integration verification solves scale problems it has its
own challenges. The most significant is the impact of broken builds which
can potentially affect everyone working on the project. It is critical that
all the issues are detected and resolved in a timely fashion. This can be
achieved by creating a dedicated team of build engineers who look after
this process.

The goal of this research is to design and implement an agent capable
of helping build engineers by automatically diagnosing failures, finding
changesets which introduced defects, and possibly taking care of them by
reverting them from the source code repository. This addition to existing
CI system aims to improve productivity of developers by driving down
the time to resolution for issues that would otherwise get into the normal
development workflow.

29

3 Reasoning under uncertainty

When we talk about reasoning in the context of real world applications
we typically refer to a task where the system has access to available in-
formation and it has to reach conclusions about what might be true and
how to act [Rus+95]. When designing such system one inevitably has to
deal with uncertainty. This is a consequence of several factors. We might
be uncertain about the true state of the system because we cannot make
all the necessary observations and have to work with partial data. For
example in medical diagnosis problems patients true disease is often not
directly observable, and his future prognosis is never directly available.

Even if we can make the observations oftentimes they are subjected to
errors that have to be accounted for. They are a consequence of limited
precision of measuring devices or the measuring process itself. Continuing
example from the previous section one can imagine that even as simple
and common observation as body temperature measurement has limited
precision and depends on such aspects as the time of day and physical
activity of the patient.

Finally, uncertainty might be an effect of complex relationships in the
real world which are not modelled accurately because they are not well
understood or because they are simply not deterministic, at least relative
to our ability to model them. For example there are hardly any diseases
where we have a clear, universally true relationship between them and
their symptoms.

In summary, uncertainty is inherent to real world problems and has to
be accounted for. Probability theory provides mathematically consistent
framework to quantify and operate with uncertainty. In principle proba-
bilistic model assign probability value to each of the possible state of the
system. However in real world application, the number of states can be
very high and sparse model representation is necessary to keep it man-
ageable. Probabilistic graphical models are a general-purpose framework
for modelling joint probability distribution over many random variables

31

CHAPTER 3. REASONING UNDER UNCERTAINTY

and their possible assignments or distributions [KF09]. This chapter talks
about Bayesian networks which are one of the most popular class of such
models.

3.1 Previous work

In the early days of expert systems it was common to model uncertainty
with Certainty Factors (CF). This approach was used and popularized
by MYCIN - a rule-based expert system created in the early 1970’s by
Buchanan, Shortliffe, et al. [BS+84]. The knowledge in this system was
stored as rules of the form ”if evidence then hypothesis” with certainty
factor expressed as number in the range between −1 and 1 which indicates
if the evidence increases or decreases belief in the hypothesis.

Although the system was never used in practice it was very success-
ful in controlled studies by outperforming infectious disease experts who
were judged using the same criteria [SB75]. This gave rise to research on
certainty factors trying to find precise probabilistic interpretation [Ada84;
Hec90]. Sensitivity analysis revealed that the system performance did not
depend strongly on the change in the rule certainty factors and that the
real value of the model was in the rules themselves.

Later Heckerman and Horvitz [HH87] showed that certain classes of
probability dependencies, which occur commonly in real-world domains,
cannot be represented in a natural or efficient manner within rule-based
framework and certainty factors. In particular they identified mutual ex-
clusivity and multiple causation as the main problems. Each of them
require either rules with very long list of propositions or many related
rules which quickly becomes unmanageable.

Several other methods to handle uncertainty in expert system have been
proposed in the literature including Confidence Factors, Dampster-Shafer
Belief Functions, Rough Sets Theory and Fuzzy Logic. They were demon-
strated to perform well in certain domains and thanks to the more recent
modifications they are applicable to modern problems. They are also a
subject of an active research both in theoretical modelling and practical
applications [Woz04; Cyr08; Woz11; KW12].

For example, Rough Set Theory is a great option for building medical
diagnosis systems [IWD05; PWD07]. Such models make little assumption

32

3.1. PREVIOUS WORK

about the data what makes them suitable also to the problem of knowledge
discovery [IWD07]. It is possible because they operate on a set of uncertain
rules, which can be both processed programatically and also interpreted
by domain experts.

One of the earliest comparison of popular formalisms for represent-
ing uncertainty was created by Wise and Henrion [WH86]. In their re-
search they focused on: Bayesian Decision Theory, Confidence Factors,
Dampster-Shafer Belief Functions, and Fuzzy Logic. They showed that all
the options they took into consideration exhibit significant problems in
some key reasoning patterns. This was a clear sign that there is a room
for improvement in this space.

In the late 1980’s Judea Pearl and his team at UCLA Cognitive Systems
Laboratory made a significant progress when they created Bayesian Net-
work framework and described it in a series of papers that culminated in
Pearl’s highly influential textbook ”Probabilistic Reasoning in Intelligent
Systems” [Pea88]. Although it mainly focused on Bayesian networks, it
draw attention to probabilistic graphical models in general and helped to
drive development in this space.

This new approach was demonstrated to work in practice when Hecker-
man, Horvitz, and Nathwani [HHN91] constructed their highly successful,
large-scale expert system for diagnosing pathology samples - Pathfinder.
It was built on Bayesian network and avoided the unrealistic strong as-
sumptions made by early probabilistic expert systems. This allowed them
to reach diagnosis performance equal to human experts [HN92].

Over the years probabilistic graphical models were improving mainly in
terms of inference algorithms which were applicable to broader ranges of
problems. Some of the most significant advances were the belief propaga-
tion algorithm proposed by Pearl [Pea86]. It can calculate probability in
any acyclic discrete network. When they were working on Munin expert
system Olesen et al. [Ole+89] developed a Hugin algorithm also known as
a Clique Tree algorithm. It has better performance and the subsequent
iterations improved it even further.

More recent research was focused on effective inference in networks
which make use of different families of continuous distributions. Winn
and Bishop [WB05] proposed a Variational Message Passing algorithm
which can perform approximate inference using a factorized variational
distribution in any conjugate-exponential model, and in a range of non-

33

CHAPTER 3. REASONING UNDER UNCERTAINTY

conjugate models. They also demonstrated its utility solving problems in
the domain of machine vision and bioinformatics.

At present, although there is active work on other approaches to uncer-
tain reasoning, probabilistic methods in general, and probabilistic graph-
ical models in specific, have gained almost universal acceptance and are
applied in many different domains [KF09]. They are particularly success-
ful in problems where there is available prior expert knowledge like medical
diagnosis, analysis of genetic and genomic data and fault diagnosis.

Researchers who want to include graphical models in their work can se-
lect from many software implementations available today [PHF10; KHH01].
One of the most interesting options is the Infer.NET library created by
Minka et al. [Min+14] from the Machine Learning and Perception group
at Microsoft Research Cambridge. It extends a general purpose program-
ming language C# with probabilistic constructs. Its license is open for
any non-commertial use.

3.2 Representation

The goal of Bayesian network is to represent a joint distribution P over a
finite set of random variables X = {X1, ..., Xn}. Even in the simplest case
where we deal only with binary random variables, there are 2n possible
assignments of values x1,, xn, and we would need 2n − 1 parameters to
specify a joint distribution over this space. Of course for any reasonable
number of variables this quickly becomes unmanageable for many reasons.

Computationally it would be very expensive to store and manipulate
such big model. Cognitively, it would be impossible to acquire so many
parameters in the process of expert elicitation and even if somebody could
specify their values these numbers would have to be very small and im-
precise. Finally, if we were to learn the distribution from data, we would
need extremely large number of samples to have statistically significant es-
timates. These were the main challenges in probabilistic methods before
graphical models were proposed to overcome them.

3.2.1 Bayesian network representation

Bayesian networks solve the combinatorial explosion problem of model
parameters by exploiting conditional independence properties of the dis-

34

3.2. REPRESENTATION

tribution. Instead of explicitly encoding single high-dimensional distribu-
tions they allow to factor it into many related local probability models,
which can be combined together only when it is necessary to reason about
the original joint distribution.

This model consists of a finite directed acyclic graph, where each node i
represents a random variable Xi together with is prior probability P (Xi)
or conditional probability distribution (CPD) P (Xi|Parents(Xi)), where
Parents denotes variables in the graph whose nodes are directly linked
by edges pointing at the node i. These edges not only encode informa-
tion about all dependencies between variables, but also tell a lot about
the independence assumptions. In particular, at each random variable is
conditionally independent of its non-descendants (NonDescendants(Xi))
given its parents.

(Xi ⊥ NonDescendants(Xi)|Parents(Xi)) (3.1)

This is a fundamental property which makes it possible to represent the
joint distribution in a compact way. By following the graph structure it is
possible to combine all the local probabilities stored in nodes to recreate a
single global joint distribution as presented. Example of this composition
for graph in Figure 3.1 was presented in Equation 3.2.

X3

X5

X2

X4

X6

X1

Figure 3.1 Simple Bayesian network with six random variables

P (X1, X2, X3, X4, X5, X6) =

P (X6|X5)P (X5|X2, X3)P (X3)P (X4|X1, X2)P (X2)P (X1) (3.2)

35

CHAPTER 3. REASONING UNDER UNCERTAINTY

Please notice that this factorization of the joint distribution makes no
assumption on the form of random variables. It works equally well with
both discrete and continuous variables. However the latter are more chal-
lenging when it comes to specifying conditional probability.

3.2.2 Local probabilistic models

So far the discussion was focused on the graphs and their relation to
concepts from the probability theory. This section is more specific and
explains how the local probabilistic models are represented.

Tabular models

When dealing with graphs composed solely of discrete-valued random
variables one can always represent conditional probability distributions
P (X|Parents(X)) as a table that contains entry for each joint assign-
ment to Parents(X). For this table to be a proper CPD it is required
that all the values are nonnegative and satisfy following Equation:∑

x∈V al(X)

P (x|Parents(X)) = 1 (3.3)

where V al(X) stands for a set of all the possible values of X random
variable. This model is very general and can encode any discrete CPD.
An example of distribution P (X1|X2, X3) with binary random variables,
which is represented in this way is presented in Table 3.1.

X1

X2 X3 0 1

0 0 0.1 0.9
0 1 0.2 0.8
1 0 0.6 0.4
1 1 0.7 0.3

Table 3.1 Example of tabular conditional probability distribution

36

3.2. REPRESENTATION

This representation has some significant limitations. First of all it can-
not model random variables with infinite domains (e.g. continuous random
variables) because it is impossible to store each possible assignment in the
table. Another problem is related to the number of parameters that need
to be specified if there are many parents. This number grows exponen-
tially with the number of parents. Nevertheless, there are certain domains
where tabular representation is not only sufficient, but also brings very
good performance.

Context-specific conditional probability distribution

Another popular representation was proposed by Boutilier et al. [Bou+96].
They noticed that sometimes CPD tables contain repetitions when certain
assignments are dominated by subset of parent random variables. In order
to create more conceptually appealing model they proposed tree-CPD rep-
resentation where each node of Bayesian network contains a tree structure
which can be traversed to find the right distribution for the given parents
assignment.

They also pointed out that in some domains it might be easier to de-
scribe distribution in terms of rules that can be directly interpreted by
human experts. These rule-CPDs are defied by a set of rules which spec-
ify entries in CPDs and the context where they are applicable.

Noisy-OR model

Another option to avoid repetitions in CPD tables is to exploit the causal
mechanism underlying the relation between variables. One of the most
popular solution from this category is Noisy-Or model, which can provide
a logarithmic reduction of the number of parameters required to specify
a CPD [ZD06]. It is applicable to problems where there are multiple
independent causal mechanisms that can lead to a certain event and its
likelihood does diminish if several of them act simultaneously.

This model works only with binary random variables. Let Y be a binary
random variable with k binary parents X1, ..., Xk the CPD is Noisy-Or if
there exist k + 1 noise parameters λ0, ..., λk such that:

P (Y = 0|X1, ..., Xk) = (1− λ0)
∏

i:Xi=1

(1− λi) (3.4)

37

CHAPTER 3. REASONING UNDER UNCERTAINTY

Noise parameters λ1, ..., λk are used to model situation where the causal
mechanism is not fully deterministic meaning that even when a given cause
it present (Xi = 1) it does not certainly imply presence of the consequence
(Y = 1). The first noise parameter λ0, on the other hand models differ-
ent phenomenon. It is commonly referred to as a leak probability and
it represents influence of causes that are not explicitly included in the
model [Loc99].

Sometimes it might be challenging to choose good values for these pa-
rameters. They should be selected according to the domain and the phe-
nomenon they model. However, in practice they are typically set manually
to very low values so that the whole CPD resembles standard OR logical
operator.

Continuous variables

All the models discussed so far were restricted to discrete variables with
finitely many values. In many situations, however, some variables are
best modelled with values from a continuous space (e.g. position, velocity,
temperature). Fortunately the framework of Bayesian networks is flexible
enough to encode joint distributions over continuous space as well. The
only requirement is that the CPD P (X|Parents(X)) has to be defined for
every assignment of Parents(X), where parent variables might be discrete
or continuous.

One local probability model which is a good approximation in many
practical applications is Linear Gaussian CPD [KF09]. Not only does it
capture many interesting dependencies, but also scales well with the num-
ber of parents making this a very general solution. Let Y be a continuous
random variable with k continuous parents X1, ..., Xk. We say that Y is
described by a Linear Gaussian model if there exist parameters β0, ..., βk
and σ2 such that the following Equation 3.5 holds for each assignment to
parent variables x1, ..., x2.

p(Y |x1, ..., xk) = N (β0 + β1x1 + ...+ βkxk, σ
2) (3.5)

As the name implies these formula can be interpreted as a statement
that Y is a linear function of the variable X1, ..., X2, with addition of
Gaussian noise with mean 0 and variance σ2. This model, although very
useful in practice, has some limitations. For example variance of the child

38

3.2. REPRESENTATION

X

θX

Data m

θX

X[1] X[2] X[M]

a) b)

Figure 3.2 Example of a template-based representation
a) plate model; b) ground network

variable Y cannot depend on the actual values of its parents. In order to
capture such relation one needs to use more complex models.

3.2.3 Template-based representation

Bayesian networks specify a joint distribution over a fixed set of random
variables X. However, in many domains probabilistic models have to
relate to much more complex space. For example in a temporal setting we
might want to track robot’s location as it moved in the word and gathers
observations. We might limit the space where the robot moves, but to
correctly model trajectories we need to set positions in time. Depending
on the duration of the observations the model might need to represent
series of samples of different length or even infinite series.

In order to make Bayesian networks applicable to such problems they
were extended with template-based representation, which can represent
an entire class of distribution from the same type (e.g. distributions of
trajectories of different length). One of the simplest and best-established
solutions in this space are plate models. It is an object-relational frame-
work where each instance of the same class share the same set of attributed
and the same probabilistic model.

The simplest example of a plate model is presented in Figure 3.2 part a.
It describes multiple random variables X sampled from the same distri-
bution. In the schematic language of plate models this is indicated by
enclosing all the variables in a box titled with the domain over which it

39

CHAPTER 3. REASONING UNDER UNCERTAINTY

can be expanded. The box represents entire stack of identically distributed
variables, thus it is called plate to make the analogy to a stack of identical
plates.

Given a fixed data set of size M we can instantiate the model from
Figure 3.2 part a and end up with a Bayesian network similar to the one
from part b, which is commonly referred to as the ground network. This
is very simple structure, but it is possible to construct more elaborate
networks by nesting plates. It is even possible to share some variables
between several plates in a similar way to how the intersection is repre-
sented in the Ven Diagrams. Then, such variable is instantiated for each
possible combination of items from the surrounding domains. In practice
some combinations might be of low interest and they can be trimmed after
template is fully expanded to the ground network.

3.3 Inference

Once Bayesian network is constructed it can be used to answer queries of
interest regarding the joint probability distribution it encodes. The most
common query type one might use is the probability query. It consists of
two parts:

• evidence - a subset E of random variables in the model together
with their instantiation e,

• query variables - a subset of Y random variables in the network.

Then, the goal of the inference task can be defined as computation of
the following probability:

P ((Y)|E = e) (3.6)

that is the posterior probability distribution over values y of Y , condi-
tioned on the fact that E has assignment e. This type of query is very
common in practice where it is natural to have some evidence which can
be used to reason about state which is not directly observable. The discus-
sion about inference algorithms which are applicable to different models
is beyond the scope of this section, but it can be found in a great book by
Kollar and Friedman [KF09, p. 285-692].

40

3.4. LEARNING

3.4 Learning

Development process of Bayesian networks not only consists of modelling
relations between random variables but also finding their distribution.
There are three main approaches to this task. First is to specify distribu-
tions manually with the help of an expert. This solution, although feasible
for some problems, can be nontrivial and expensive task even for modestly
sized networks especially if there is disagreement between experts regard-
ing specific probabilities. Additionally this approach is not applicable to
domains where properties of distributions are changing over time because
that would require experts to constantly update the network.

In order to overcome limitation of manually defined networks we can
estimate model parameters from data provided that we have access to
samples generated from the distribution we try to model. Currently, with
all the advances in data storage and processing solution it becomes much
easier to get large data sets than to obtain information from human ex-
perts. Ideally samples should be independent and identically distributed
(IID). Although, this requirement cannot be always satisfied in practice,
it should considered when designing data collection process.

Finally for problems where the data sets have insufficient size or do not
describe the complete domain the two approaches discussed so far can be
combined together. Such models make use of the prior expert knowledge
as a starting point and enhance it with the learnings from the data. This
approach was selected for the model discussed in this dissertation.

3.5 Bayesian troubleshooters

One distinctive application of Bayesian network which is worth mention-
ing in the context of this dissertation is the system fault diagnosis. It
is a separate branch of research and the models used for this problem
are referred to as Bayesian troubleshooters. They are regular Bayesian
networks, but their random variables correspond directly to: causes or de-
fects, symptoms, resolutions and other concepts from the specific domain
they model.

Intensive development in this space started in the middle of 90’s when
Microsoft started hiring Bayesian mathematicians and researchers to work

41

CHAPTER 3. REASONING UNDER UNCERTAINTY

on the systems for diagnosing problems with variety of software products
including Windows [Loc99]. Apart from many articles and tutorials that
came from this group they created a component-centric toolkit for model-
ing and inference with Bayesian networks MSBNx [KHH01]. Although this
toolkit was publicly available it was mainly used internally at Microsoft.

Other companies also invested in Bayesian troubleshooters. In particu-
lar Hewlett-Packard Company created SACSO troubleshooter capable of
diagnosing problems of printer systems [SJK00]. Apart from the proba-
bilistic query results users could also specify that they are interested in
getting suggestions about the optimal repair plans. More recent research
and installations confirm that this is a very efficient solution to the prob-
lem of system fault diagnosis [PWN09; WKB10; Fra+12].

3.6 Summary

When designing automatic reasoning system for a real world application
it necessary to deal with uncertainty. It can be caused by many factors
such as impossibility to make observations about all the relevant state or
accuracy inherent to the measurement procedures and selected devices.
Additionally, uncertainty might be a result of the discrepancy between
the system and not fully understood relationships and processes from the
real world it tries to model. Probability theory provides mathematically
consistent framework to quantify and operate with uncertainty.

Bayesian networks and graphical models in general embrace probability
and provide powerful representation which can encode joint distribution
over many related random variables. Other approaches have been pro-
posed in the past. Although some of them are still in use, probabilistic
graphical models gained almost universal acceptance and can be consid-
ered as a state of the art solution for building reasoning systems.

The flexibility of Bayesian networks makes them applicable to problems
in discrete and continuous domains. The difference is only in the local
probability models used for the random variables. A great effort was put
in the research on these models and as a result there is an impressive
selection of well understood option one can choose from when design-
ing the network. Apart from the distributions one has also fine grained
control over relationships between variables because there are hardly any

42

3.6. SUMMARY

constraints on the edges that can be created in the graph.
Once the network is constructed it can answer important queries regard-

ing the joint probability distribution. The most common is a probability
query which aims to find the posterior probability distribution over vari-
ables of interest, conditioned on a set of observed evidence random vari-
ables. It is applicable to many problems encountered in practice where
there is a clear separation between observable and not-observable state.

An intensive research on Bayesian networks was focused on the system
fault diagnosis. It was driven by commercial companies, which wanted to
use this technique to improve reliability of the services they provide, as
well as the software and products they sell. This effort formed a branch
of Bayesian troubleshooters which showed to be a suitable solution in
many domains. They were also selected as the modelling technique for
the diagnosis system described in this dissertation.

43

4 Data set

In order to teach a statistical model it is necessary to prepare a data
set which represents the analyzed domain. Previously, chapter ?? dis-
cussed methods of estimating parameters for Bayesian networks. They
all assumed that there is available a data set consisting of fully observed
instances of the random variables the network is built from.

Although continuous integration systems produce a lot of data there
is no standard data set which can be used in the research in this space.
Therefore, it was necessary to first design a format for samples which will
hold enough information to both train and evaluate models. Then, design
and implement a data collection procedure which can be integrated with
existing CI systems used in the industry and finally run it for a sufficiently
long period of time to collect enough samples for the research. This chapter
explores above mentioned topics in details.

4.1 Format

In order to estimate parameters for a Bayesian network from the data it
is necessary to collect a data set where each data instance contains fully
observed random variables used in the network. Therefore, in theory it is
enough to preserve only the vector of values of the random variables and
not the source data that was used to observe them.

Such approach has some significant drawbacks which are relevant for
a long running research. In particular it assumes that the structure of
the network and the types of random variables are known upfront. If the
structure was modified by adding a new variable it would be necessary
to either use algorithms which perform parameter estimation based on
partially observed data or collect a new data set. In many cases the latter
option is prohibitively expensive or even impossible when the source data
is no longer available.

45

CHAPTER 4. DATA SET

In real-life applications these problems are solved by preserving the
relevant source data and making observations on demand [KF09]. With
the current prices of the storage space this solution is much more cost
effective and provides the flexibility needed in the long running research.

Of course, the decision about which data is relevant depends strongly
on the analyzed domain. For the problem of automatic broken integration
diagnosis the following four categories of data were selected:

• Build configuration: Information about the settings for tools used
in the build.

• Build logs: Text files with reports generated by the tools used in
the build.

• Build trace: Trace file contains the information about all processes
that were spawned and the files they accessed.

• Changes: Collection of new changesets which were committed in
the repository since the last successful integration build.

• Causes: Collection of changesets which were reverted with relation
to the failure.

To make it easier to manage, a single data instance was represented by
an archive with a list of relevant files. The following sections explain in
detail their content and the process in which they were collected.

4.1.1 Build configuration

Build configuration contains the information necessary for the CI server
to start and run the integration build which is preserved outside of the
version control repository. It exists because it is necessary to pass to inform
the server about the location of the repository before it can connect and
update its working copy of the project. Apart from the information about
the version control system it may also contain the definition of the scope
of the integration, what components have to be built, and which tests
should be executed. Finally, this category includes all the information
that can be implicitly used in the build process such as: version of the

46

4.1. FORMAT

operating system, version of the compiler and other tools, values of the
environmental variables.

Because this information is not typically preserved it is crucial to collect
it during the build and save it as an artifact. Most, if not all, the data
is textual, therefore a list of text files is a convenient way to preserve it.
This is the format that was used this research.

4.1.2 Build logs

In build process there can be many different tools used. Typically, they
produce logs or write the reports about the execution directory to the
standard output stream, which can be redirected to a file. Apart from the
execution trace, logs contain warnings and errors, which are very impor-
tant to diagnose problems.

Log files can be organized in many different ways. Each tool can write
to a dedicated file or the reports can be combine to decrease the total
number of files. In the latter option there is a risk that the logs entries
coming from concurrently running tasks will be interleaved. This problem
can be solved by adding a prefix to each entry which will clearly identify
the task it is coming from.

In the data set collected the log files were added to the archive directly
without any transformation, but with structured names which identifies
the task that created them.

4.1.3 Build trace

In order to save the information about the tasks that were executed in the
build and the files they used it is necessary to instrument the build process
to record all file access operations. Although some of the tools expose an
option to log this information as they are running, this is exceptional case
and will not be further considered. Most of the applications used in the
build process do not keep track of the files they read and write. Therefore,
for the solution to be truly generic and robust the instrumentation has to
be done at the level of the operating system.

This is not a trivial task as such instrumentation is not a standard
feature of the available operating systems. With access to the appropriate
source code a custom version of the OS could be created. However, when

47

CHAPTER 4. DATA SET

it comes to the commercial software, researches seldom have access the
relevant sources.

In order to solve this problem Microsoft Research created and published
Detours [HB99]. It is a library for intercepting arbitrary Win32 binary
functions on x86 and x64 machines. It has been used to extend appli-
cations and the Windows operating systems itself without modifying the
binary files. There are other solutions to achieve system level interception
but they did not reached the stage of being officially supported by the
software vendors [LS00].

With Detours it was possible to inject instrumentation into the relevant
functions in the operating system and record the information about the
processes and file system operations they performed. There was no stan-
dard format of preserving such data, thus a custom format was designed
together with a library for writing and reading it.

4.1.4 Changes

The goal of the diagnosis is to find a changeset which introduced a de-
fect, thus it is crucial to keep track of all the potential candidates. As it
was explained in the section 2.1 at page 6, the status of a changeset is
considered unknown until it is verified in a full integration build. Conse-
quently, the list of candidates consists of changes that were committed to
the repository since the last successful integration. Their number depends
on the frequency of builds and on the ability of the development team to
fix issues. The more often the mainline branch represents the correct state
the fewer candidates to consider.

After establishing which changesets should be included in the data set
a decision had to be made regarding the level of details saved. Of course
all the information is stored in the version control system so in theory a
list of changeset identifiers is enough to make all the observations needed.
However, in practice such solution would result in increasing the load on a
repository used day to day by the development team and had a potential
to decrease the productivity of the people who are working on the project.

In order to make the data set more independent of the production envi-
ronment more information can be saved. There three basic levels of details
that were considered:

48

4.1. FORMAT

• identifiers,

• identifiers with metadata,

• identifiers with metadata and diff.

To illustrate these options better there were three listings created with
an output generated from a Git version control system [CH09]. They show
the same changeset1, but from different perspectives. The repository and
the change itself were created for demonstration purpose, thus they are
very minimalistic.

The command used in the first listing uses option --format=%H to
change the default format and print just the identifier, which is a hex-
adecimal number with 40 digits.

1 >>git log -1 --format=%H
2 f6d945eb06f1444f62c600069b5bae5ec9e02863

Listing 4.1 Example of an identifier of a changeset

The command from the second listing uses option --name-status to
include more metadata in the output. Apart from the identifier in the
line 2 there is information about the author, time-stamp and comments.
There is also a one-element list of files that were modified in the line 8.
The letter ’A’ indicates that the file was added.

1 >>git log -1 --name-status
2 commit f6d945eb06f1444f62c600069b5bae5ec9e02863
3 Author: Stanislaw Swierc <stanislaw.swierc@gmail.com>
4 Date: Sat May 10 18:26:32 2014 +0100
5
6 Initial commit
7
8 A sample.txt

Listing 4.2 Example of an identifier and metadata of a changeset

In the last listening option --patch causes the diff to be printed, which
line by line presents the changes introduced. The format that was used

1In Git taxonomy changesets are called commits.

49

CHAPTER 4. DATA SET

here is called unified diff format and is one of the most popular formats
there are [Joh96]. It shows not only that the change added a file sample.txt
but also content of the lines that were added.

1 >>git log -1 --patch
2 commit f6d945eb06f1444f62c600069b5bae5ec9e02863
3 Author: Stanislaw Swierc <stanislaw.swierc@gmail.com>
4 Date: Sat May 10 18:26:32 2014 +0100
5
6 Initial commit
7
8 diff --git a/sample.txt b/sample.txt
9 new file mode 100644

10 index 0000000..08fe272
11 --- /dev/null
12 +++ b/sample.txt
13 @@ -0,0 +2 @@
14 +first line
15 +second line

Listing 4.3 Example of an identifier, metadata and diff of a changeset

The presented listings were generated artificially. In practice the changes
can be much bigger and more complicated. In order to predict which level
of details is the most appropriate for the data set, a study of Alali et.
al [AKM08] was analyzed. They examined changes in nine open source
software repositories to find characteristics of a typical change. The mea-
sure they considered were number of files, number of lines and number of
blocks. The summary of their research for GNU gcc project, which they
selected as a good representation, is presented in the Table 4.1. The cat-
egories they selected were based on the statistics analysis under assump-
tions that all the changesets were sampled from the same distribution.

In the project they analyzed most of the changes were small or extra-
small. This implies that if a diff was included in the data set the size
of a single instance would not grow significantly on average. However,
the data also shows that the large and extra-large changes have a non-
negligible share. In the most extreme case there was a changeset which
modified over 203K lines of code. It was probably a change in the project
structure, where the files were moved from one directory to another. The
diff of this change was very big and could even reach double size of all

50

4.1. FORMAT

Number of files Number of lines Number of blocks

Size Range Share Range Share Range Share

x-small 1 - 1 8.4% 0 - 5 19.0% 0 - 1 10.3%
small 2 - 4 68.0% 6 - 46 55.3% 2 - 8 65.2%

medium 5 - 7 12.8% 47 - 106 11.1% 9 - 17 10.7%
large 8 - 10 4% 107 - 166 4.3% 18 - 26 4.1%

x-large 11 - 5K 6.7% 167 - 203K 9.4% 27 - 8K 9.7%

Table 4.1 Changesets characteristics summary for the gcc project

the source files in the project. If it was included in the data set it would
notably increase the total size.

Based on the observations of the changeset characteristic distributions a
decision was made to include the identifiers and the metadata in the data
set and to leave the diffs outside. If the training procedure requires some
observations to be made on the content of the change that information
can be fetch directly from the version control system.

4.1.5 Causes

Finally, the data set to be used in a supervised learning setup has to
contain the information about the causes that were manually found by
the build engineers or developers. As discussed in the chapter 2 there are
two basic types of failures in the CI system, those that are related to the
changes in the source code and those that are not. The former type is
what this research is focused on.

In order to tell which changeset introduced a defect which broke the
integration build it is enough to save its identifier. Additionally, it may
be helpful to also preserve the information about the circumstances that
led to the failure. Such data can be expressed in a free-form text and
associated with the changeset.

Each instance in the data set contains a list of tuples describing the
cause with the following elements:

• changeset identifier,

• text explaining the issue.

51

CHAPTER 4. DATA SET

4.2 Collection scenarios

Continuous Integration system are designed primary for executing inte-
gration builds and collecting the information about the problems they
encounter, but they do not correlate them with the changes that were
committed to the project. This is a complicated task which is typically
performed manually by either build engineers or the developers. Unfor-
tunately because their main business objective is to put the project back
into correct state the information about the causes is rarely preserved.

This section describes several scenarios of failed integration builds and
shows how the data set collection can be enabled in each of them.

4.2.1 Forward fix scenario

One of the most popular strategies of resolving broken integration is a for-
ward fix. It leaves all the changesets, including the one which introduced
the repository and commits a change which a fix on top. This scenario
was depicted in the sequence diagram in Figure 4.1.

Developer Repository CI Server

1. commit

c1

2. commit

c2

3. update

4. build

5. notify

6. commit

c3

Build fails due to c1

Developer fixes the
defect introduced by c1
with a new change c3

Figure 4.1 Forward fix sequence diagram

52

4.2. COLLECTION SCENARIOS

Developer commits two changes c1 and c2 to the repository of which the
first one introduces a defect. They are detected by the CI Server which
updates its working copy of the project and starts a new integration build.
The build fails and the developer is informed about it. He diagnoses the
problem and prepares a fix which is committed on top of other changes.

In order to collect information about the cause a developer has to enter
to the system an identifier of a changeset that introduced the defect. In
the analyzed scenario it can happen after the fix is committed in the last
step.

4.2.2 Backward fix scenario

In some systems a different strategy is used, where all the changes which
introduced defects are immediately reverted from the repository.

Developer Repository CI Server

1. commit

c1

2. commit

c2

3. update

4. build

5. diagnose

c1
6. revert c1

8. build

7. update

Build
Engineer

Build Engineer correctly
returns c1

Build fails due to c1

Build succeeds

Figure 4.2 Backward fix sequence diagram

53

CHAPTER 4. DATA SET

Similarly to the previous scenario developer commits two changesets c1
and c2. The first change introduces a defect which causes the integration
build to fail. This time, however, the diagnosis is performed by the build
engineer, who correctly finds the culprit. Because the fix requires detailed
knowledge about the project he decides to revert the change with expecta-
tion that it will remove the defect from the source code. The subsequent
integration build succeeds and confirms that this was the right decision.

This scenario is particularly interesting from the data set collection
point of view because the users do not need to enter the information
about the problem to in an external system. Every action is tracked in
the repository and can be used later to find the mapping between failures
and changes that introduced defects.

Although this is somewhat simple scenario because it assumes that the
build engineer will correctly find and revert all the bad changesets, it can
be frequently observed in practice. This scenario was the main source of
data set instances collected in this research.

4.2.3 Ambiguous backward fix scenario

It is not always possible to collect a high quality data set instance in
the backward fix scenario. Sometimes there are more defects and they
appear one by one in the subsequent integration builds. This results in
an ambiguity that cannot be resolved other than by manual intervention.
This problem is depicted in the sequence diagram in Figure 4.3.

It extends the previous scenario by adding a second defect to the change-
set c2 on top of existing c1. The first integration build fails and the logs
show evidence of a first defect, but the second is hidden because the build
was terminated before it reached the step where the error would have ap-
peared. Build engineer correctly finds and reverts the culprit. This time
the second build fails as well and reveals another defect, which is handled
in the same way. Finally, the project is rebuilt once more to make sure its
state is correct.

Apart from the obvious difference in the number of failed builds, there is
one aspect that makes it ambiguous from a data set collection perspective.
By looking just at the information that was preserved in the version control
system it is impossible to tell if the build engineer made the right decision
reverting the change c1. If it was correct the sequence diagram would

54

4.2. COLLECTION SCENARIOS

look exactly the same. Therefore, there is no way to tell which changeset
introduced a defect which caused the first build to fail.

This scenario is also one that is frequently observed in practice. In order
to improve the quality of the data set and avoid the ambiguity a decision
was made to ignore the first integration build (step 4) and collect a single
data set instance for the second build (step 8) where one can be certain
about what caused it to fail.

Developer Repository CI Server

1. commit

c1

2. commit

c2

3. update

4. build

5. diagnose

c1
6. revert c1

7. update

Build
Engineer

8. build

9. diagnose

c2
10. revert c2

12. build

11. update

Build Engineer correctly
returns c1

Build fails due to c1

Build Engineer correctly
returns c2

Build fails due to c2 which
was previously hidden
behind the change c1

Build succeeds

Figure 4.3 Sequence diagram with ambiguous data set collection scenario

55

CHAPTER 4. DATA SET

4.3 Quality improvement

Shortly after the data set collection mechanism was enabled in the CI
system the quality of samples was inspected to make sure that the type
and the quality of information is sufficient to perform the diagnosis. At
the beginning the performance of a naive diagnosis model was measured.
Then, an outlier detection algorithm was run against the data set to find
samples that lay unusually far from the rest of the samples.

4.3.1 Initial quality assessment

In the initial analysis a naive diagnosis model was used, which finds all
the changesets that modified at least one file used in the build process
and sets their probability of being culprits to one. This effectively creates
two groups, one with changesets that are related to the build and another
with all the other changesets. Because the probability within each group
is the same the changeset have an arbitrary order. The performance of
this model was presented in the ROC chart in Figure 4.4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

Figure 4.4 ROC chart for naive diagnosis model

56

4.3. QUALITY IMPROVEMENT

It is clear that there are two ranges (0, 0.05) and (0.05, 1) where the curve
behaves differently. At the beginning it increases rapidly to reach the level
of about 0.66 true positive rate. Then, it flattens out and increases almost
linearly up to the top right corner of the chart.

The linear shape of the curve in the second range resembles the curve
of a no-informative classifier which assigns samples to classes at ran-
dom [Jam+13]. After closer inspection of samples it was clear that this
is precisely what was happening. All the changes which appeared in the
second range, had the probability set to zero meaning that they did not
modified any files that were used in the build.

In order to find out what is the cause of this behavior 50 integration
builds were selected and inspected manually. It turned out that there were
some deficiencies in the way the training set was captured which resulted
in the higher number of false negatives. These problems are described in
the following sections.

The problem of concurrent builds

The data set collection scenarios presented in the previous section were
simplified because there was single integration machine involved. In prac-
tice capturing was performed in a distributed build system where many
integration builds were running concurrently for different platforms and
configurations. In this setup there is a risk of a problem depicted in the
sequence diagram in Figure 4.5.

The scenario starts in the same way as in the previous examples. The
developer commits two independent changes to the repository. The first
change c1 is verified locally by running build targeting platform x64. It
succeeds but it introduces a defect to the x86 version of the application.
Then, the developer switches to a bug reported for the x86 platform. Nat-
urally he switches to this environment and uses it to verify the fix in a
local build. Unfortunately the fix introduces a defect for the other plat-
form. Both changes pass local verification but introduce two distinctive
issues to the project.

Continuous Integration server detects changes in the repository and
delegates tasks to the build machines targeting platforms x86 and x64
respectively. Both builds fail at around the same time and are diagnosed

57

CHAPTER 4. DATA SET

Developer Repository CI Server

1. commit

c1

2. commit

c2

3. update

4. build x64

6. diagnose x86

c1

8. revert c1

x86 Build
Machine

x64 Build
Machine

5. build x86

failed

failed

7. diagnose x64

c2

Build
Engineer

9. revert c2

Build fails due to c1

Build fails due to c2

Figure 4.5 Concurrent failures of builds for two different platforms

by the build engineer. In the result both c1 and c2 changes get reverted.
Finally, the server starts a new integration build which succeeds for all
platforms and confirms that the project is back in the correct state.

In the absence of the diagnosis result from steps 6 and 7, the only
way to tell if a change was good or bad is by inspecting the repository.
The build for platform x86 failed in the first run and succeeded in the
second after changes c1 and c2 were reverted, thus both changes appear
to be responsible for the failure. Similar reasoning is applicable to x64
platform. As a result both changes are marked as culprits for both builds
regardless if they modified files used in the process or not. Since only one
change was responsible for the failure the second can be seen as a noise in
the data set.

To quantify this phenomenon the ROC chart from Figure 4.5 was an-
alyzed. The point at which the curve becomes linear is (0.047, 0.67). It

58

4.3. QUALITY IMPROVEMENT

means that the naive model was unable to find any relation between the
failure and the changes in approximately 33% of cases.

The problem of voluntary revert operations

Another source of potential noise in the data set was identified through
discussions of the practices used in the teams who were using the system.
Developers admitted that in certain situations whey would voluntary re-
vert their changes even if they do not cause a build break in the first in-
tegration build. This can happen if they are aware of a defect that would
either appear only in the higher level build in a staged build environment
or pass unseen through the current validation steps.

Although the presence of this phenomenon was confirmed by the users it
was impossible to measure its impact on the data set because the voluntary
revert operation is indistinguishable from a normal revert performed by a
build engineer to fix the defect as depicted in Figure 4.6.

Developer Repository CI Server

1. commit

c1

2. commit

c2

3. update

4. build

5. diagnose

c1
6. revert c1

7. revert c2

Build
Engineer

Build Engineer correctly
returns c1

Build fails due to c1

Developer voluntary
reverts c2

Figure 4.6 Sequence diagram with a voluntary revert scenario

59

CHAPTER 4. DATA SET

Post processing step

In order to solve the problem discussed previously, a post processing step
was introduced to prune all the changes marked as culprits if the proba-
bility returned by the naive model was precisely zero. There was a risk
that such step would lead to overfitting. Therefore, it was necessary to
confirm that it is correct by manual inspection of the effect it has on the
representative subset of the training set.

The ROC chart created after pruning is presented in Figure 4.7. At the
start it is similar to the previous chart and quickly increases, but instead
of reaching the level of 0.66 it goes up to 1 of true positive rate.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

Figure 4.7 ROC chart created after training set was pruned

4.3.2 Outliers analysis

Since the data set was collected in a real setup there was a risk that
it would contain some samples which represent extraordinary situations
that are not relevant for the diagnosis problem. In order to detect them a
statistical analysis was performed. The goal was to identify outliers, which

60

4.3. QUALITY IMPROVEMENT

are defined as observations that lie unusually far from the main body of
the distribution [DB07].

The environment where the data was collected run two main types of
integration builds. There were long running builds which were validating
multiple project and short builds focused on specific components. For the
purpose of the outlier detection the data set was split by the type of the
builds into two categories A and B which were then analyzed indepen-
dently.

The following measures were taken into account:

• committed - total number of new changes in a build,

• reverted - total number of changes reverted in relation to a build.

The first question that had to be answered was whether the selected
measures have to be analyzed together or in other words is there a relation
that has to be taken into account. To answer that the linear correlation
coefficient was calculated (denoted by Cor) [Jam+13]. It is a measure
of the strength and the direction of a linear relationships between two
variables X and Y . It is defined in the Equation 4.1, where n stands for
the number of pairs of the data.

Cor(X,Y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
(4.1)

The correlation coefficients was calculated for each type of the build
separately. They both had very low values, what indicates that there is
random or nonlinear relationship between the two variables. Consequently
the further analysis can be performed for each of them independently.

• Cor(committedA, revertedA) = 0.135

• Cor(committedB, revertedB) = 0.148

The distributions of the analyzed measures are not Gaussian, thus in
order to find outliers a more flexible approach had to be applied which
does not make such strict assumptions. One of the available methods
is based on the fourthspread (denoted as fs) defined as the difference

61

CHAPTER 4. DATA SET

between the third and the first quartile. An observation is said to be an
outlier if it is farther than 1.5fs from the closest quartile [DB07, p. 37].

In order to analyze outliers a pictorial summary was created using box-
plots. This type of visualization is a popular choice during exploratory
data analysis because it summarizes the distribution, but also shows in-
dividual samples which does not necessarily fit to the rest. This type of
chart presents such features of the data like: center, spread, the extent and
nature of any departure from symmetry and outliers. The last element is
the most relevant in the context of this section. Each small circle above
the whiskers represents a sample which was classified as an outlier

The boxplots for the two measures and two build types are presented
in Figure 4.8. In order not to disclose sensitive information the number
of committed changes have been standardized to have zero mean and a
standard deviation of one. As a result the first boxplot may appear coun-
terintuitive with negative numbers in the ordinate axis.

Both distributions are asymmetrical. The spread between the first quar-
tile and median is much smaller than the spread between the third quar-
tile and median. This tendency is visible for all four distributions. Each
boxplot contains some outliers, but both their number and the distance
from the main body is higher for the standardized number of committed
changes.

Detected outliers were inspected manually. It turned out that they
were all related to advanced operations in the version control system.
Some development teams were working on features that were classified as
potentially disruptive to the rest of the product and required an extra
isolation. Therefore, they created and worked in a branch of the project
for a longer period of time. When the feature was ready it was merged
with the mainline. This appeared as a spike in the number of new changes
that had to be validated in the integration build. With different scope of
the features there were different levels of the spikes but they impacted all
the distributions.

This scenario does not happen very often. There is an extra cost as-
sociated with doing development in the isolation and the teams choose it
only when it is absolutely necessary. One of the factors that needs to be
taken into consideration is the effort it takes to integrate changes back to
the mainline. Since this problem is well understood and planned for, it

62

4.4. SUMMARY

A B

0
2

4
6

8
10

Committed

st
an

da
rd

iz
ed

 n
um

be
r

of
 c

ha
ng

es
et

s

A B

0
4

8
12

16
20

Reverted

nu
m

be
r

of
 c

ha
ng

es
et

s

Figure 4.8 Boxplots for the number of changes committed and reverted
for two types of builds

is not critical to automate it. Therefore, all outliers related to advanced
branch manipulation were removed from the data set. The data instances
that were preserve represent casual integration builds.

4.4 Summary

This chapter talks about the problem of collecting data set in an indus-
trial Continuous Integration system. The format of data instances has
to be planned carefully to make sure they contain enough information to
train the diagnosis model and to evaluate its performance. The proposed
solution satisfies these requirements.

There are different patterns of interactions with CI systems. Some of
them are good for fully automated data set collection, in others people
have to take an extra step and preserve the information which would be
lost otherwise. Finally, there are some ambiguous scenarios where it is
impossible to collect a high quality data samples.

For the problem of automated diagnosis the backward-fix scenario is
preferred. Developers instead of fixing the defect remove completely the
change that introduced it. The main advantage of this scenario is that the

63

CHAPTER 4. DATA SET

information about defect is stored together with the source code inside the
version control system, which is already in use and developers are already
familiar with it. This information can be extracted automatically and
added to the data instances to make them complete.

If the data set is collected in a real, industrial environment its quality
may be suboptimal and should be carefully assess before it is used to
train the model. Close inspection of the data instances showed that they
contain some noise. Concurrent integration builds and platform sensitive
defects were identified as the main sources of errors in the data set. When
there are multiple changesets reverted at the same time it is hard to map
them to the observed defects. This can result in the lower true positive
rates.

This problem can be mitigated with a post processing step where all the
changesets marked as culprits are inspected to see if they modified files
used in the build. Changesets that did not modify any files can be safely
ignored. This process can improve the overall quality of the data set.

Finally, the data set may contain some extraordinary cases which do
not need to be included in the training process. Outliers detection com-
bined with manual investigation showed that the advanced version control
operations, such as branching and merging, can lead to integration builds
with either unusually high number of new changesets to validate or the
number of defects. Since they are always a result of a conscious decision
of the development team such samples can be removed from the data set
with an assumption that the automatic diagnosis is not critical in these
scenarios.

From a perspective of data collection the backward-fix scenario is pre-
ferred because it enables to fully automate the process. Instead of asking
users to enter the information about which changesets introduced defects,
this data can be obtained directly from the version control system by
looking at revert operations and the time when they were performed.

64

5 Diagnosis model

In the previous chapter we described the format of the data set instances.
The main requirement was for it to capture enough information to train
the diagnosis model. Now we will show how this data can be used to
find defects in projects as well as the changes that introduced them. This
model was first presented by Świerc, O’Flaherty, and Rodŕıguez [SOR14]
in March 2014 shortly before it was deployed to a commercial Continuous
Integration system.

5.1 Requirements

Before the diagnosis model is explain it is worth mentioning the require-
ments that such solution should satisfy to make it successful in a commer-
cial environment. They were gathered by analysis of similar efforts in the
field of advanced automation as well as through interviews with subject
matter experts.

5.1.1 Machine Learning solution

In Continuous Integration systems as their name implies the process does
not stop. As long as developers work on the project and commit new
changesets there is a need to run integration builds. Each run generates
new data with a potential value for a diagnosis agent. This environment
creates a great opportunity for a Machine Learning system.

There are many definitions of what learning means in the context of a
computer system [Rus+95]. For the purpose of requirements specification
a convenient definition was proposed by T.M. Mitchell [Mit97]. It states
that a computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P , if its performance at
tasks T , as measured by P , improves with experience E. This definition
captures the fundamental aspects of learning systems.

65

CHAPTER 5. DIAGNOSIS MODEL

In the context of automatic failure diagnosis in the CI systems this
requirement implies that the model should be designed in a way that
takes advantage of the examples recorded in the data set. Not only should
it improve the accuracy of the diagnosis but also adapt to the changes in
the environment, where it is being used.

5.1.2 Incorporation of the existing expert knowledge

As it was discussed in chapter 2, currently the most popular solution for
handling issues in the CI systems is to delegate the task of diagnosing
and fixing problems to developers or to set up a dedicated team of build
engineers, who can own this process. This implies that there are already
human experts in this field, who understand this problem well.

People who have been working in this domain for many years have
knowledge which is scarce and very expensive resource. The model should
be designed in a way to make it possible to capture the knowledge from
many experts and combine it with what can be learned from the data.
Such solution can lead to a system that has a better performance or even
outperform any single expert [Sch11].

5.1.3 Interpretable results

Social problems may be an impediment for an adoption of a Machine
Learning system. People may feel fear of replacement, fear of change or
simply be skeptical to technology [Sch11]. One option to mitigate this risk
is to design the system to return easy interpretable results.

Previous research in this field showed that managers are less likely to
make decisions based on results from systems they do not fully under-
stand [HZ06]. In order to maximize the chance of the system being
adopted in practice the diagnosis model and the results it produces should
be clear for the domain experts to examine and verify its correctness.

5.1.4 Scalability with the number of distinctive defects

One of the critical aspects of the diagnosis model is its capability to scale
well with the number of distinctive defects. The tools used in the CI
systems can generate many different errors and warnings, which in cer-
tain cases can be also considered as issues and prevent the integration

66

5.2. DIAGNOSIS PROCEDURE

Tool Warnings Errors

Microsoft Visual C# Compiler 176 953
(version 12.0.21005.1)
Microsoft C/C++ Optimizing Compiler 410 981
(version 18.00.21005.1)
Microsoft Incremental Linker 46 71
(version 12.00.21005.1)

Table 5.1 Counts of errors and warnings returned by selected tools

build from reporting success. Table 5.1 gathers the numbers of distinctive
warnings and errors for some popular tools.

It is clear that an integration build which executes C# Compiler can
fail with over a thousand different error messages. The number of dis-
tinctive defects, however, is harder to estimate because there is no simple
mapping. On the one hand, all the syntax errors can be modelled with a
single generic “syntax error” defect. On the other hand, a single error can
correspond to multiple defects. For example “type not found” error can
be caused by adding a reference to a missing type, deleting the original
type definition or even modifying project configuration to omit a relevant
file.

Based on the interviews with subject matter experts the initial number
of distinctive defects that has to be supported by the diagnosis agent was
established at around one hundred. This value may change in time if new
tools or verification steps are included in the integration builds. For this
reason, it is important for the model to scale well to match this demand.

5.2 Diagnosis procedure

With the requirements in mind several possible solutions were considered
including rule-based systems and regression trees. The former were re-
jected because of the challenges in creating a rule-base machine learning
systems, while the latter does not incorporate existing expert knowledge.
One solution that satisfies all the requirements are the Bayesian trou-

67

CHAPTER 5. DIAGNOSIS MODEL

bleshooters which extend Bayesian networks described in the chapter 3.

With explicit probabilistic modelling it is possible to design a model
to leverage both data set and available expert knowledge. Additionally,
the structure of the network defines clear paths of reasoning that can be
followed to get insights about how the results were formulated. Finally, if
designed correctly the network can have clear extensibility points which
set the direction of future development.

Although the proposed design uses a Bayesian troubleshooter at its
core there are other important steps that have to be performed before
the network can be constructed. These steps as well as the steps directly
related to the Bayesian network are described in the remaining part of
this section.

5.2.1 Create a build graph from logs and build trace

In the first step the build graph is built from the information captured in
the build trace file. As it was descried in the section 4.1.3 at page 47 the
trace file contains the data about all the Operating System processes that
were created in the context of the integration build and the file access op-
erations they performed. Although this information is independent from
the solution used to coordinate build tasks, it is convenient to describe it
in terms of GNU Make or simply Make, which is one of the most popular
utility used in this space [Mec04]. It is important to note, however, that
the diagnosis model is not necessarily tied to this particular piece of soft-
ware, and has applications to other systems used in the industry [HB10;
Bai+07].

With Make the build specification is described in terms of rules in a
dedicated language and generally saved in a file named Makefile. A rule
consists of three parts: the target, prerequisites, and the command to
perform. A target is a file or a collection of related files which will be
created after successful execution of the command. It is also possible to
define targets which do not produce any files and represent more abstract
operations like deploying build artifacts to the staging environment. The
commands correspond to normal shell commands or scripts. They are
executed only when all the prerequisites expressed in terms of dependent
targets are satisfied.

With this terminology it is possible to define a build graph as a di-

68

5.2. DIAGNOSIS PROCEDURE

rected acyclic graph where vertices represent the build target and edges
connecting targets with their prerequisites. The edges are pointing from
the prerequisites to targets along with the actual flow of the build process.
Each vertex holds additional information about the commands that were
executed to build the target.

The most important piece of information is whether the target succeeded
or not. Normally, it can be inferred from the status code returned by the
command used to build it. In Make a status of zero indicates that the
command succeeded, whereas a status of nonzero indicates some kind of
failure. Some programs use the return status code to indicate something
more meaningful, but when the build graph is built this information is
converted to a binary flag representing success or failure.

By looking at the commands that were executed for a given target it
is possible to correlate this data with the information saved in the build
trace file to get a more detailed picture of the execution. In particular, each
target can be mapped to the operating system process hierarchy created
for its commands. Then, by looking at the file system access operation a
set of files used to build the target and a set of files produced by the target
can be found. These sets are crucial for the diagnosis and are attached to
the vertices.

With the data described previously the build graph is complete in a
sense that it can be used in the subsequent diagnosis steps. However,
there are some optional refinements that can improve the performance of
the system.

Refinement 1: Splitting targets

In large scale software systems the costs of maintaining single Makefile file
can be prohibitively high. One way to solve this problem is to divide the
system into a set of components, store them in distinctive directories and
create separate Makefile file for each of them. Then, the entire system is
built using a top-level Makefile that invokes the Makefile for each compo-
nent in the proper order. This approach is called recursive make because
the top-level Makefile invokes Make recursively [Mec04]. It is a common
technique for handling componentized systems.

With recursive make targets in the top-level Makefile represent not a
single but a whole hierarchy of targets. This complicates the process of

69

CHAPTER 5. DIAGNOSIS MODEL

constructing a build graph. One simple option is to focus just on the top-
level targets and not traverse the hierarchy. A more advanced option is
to do a pre-order depth-first traversal of the hierarchy and extract child-
targets to the top level with preserving all their dependencies and the
dependencies of their ancestors.

Refinement 2: Latent errors

In order for the Make to know if a command was successful or not it must
return a meaningful status code. Although, most of the tools used in this
space satisfy this requirement, there is a risk that some commands will
return status zero regardless of their actual outcome. This can happen in
a situation when the script is custom made by a developer who does not
fully understand how the build process works or simply when there is a
bug in the script. This can lead to non-deterministic failures which are
not surfaced in the build summary.

One optional extension of the build graph creation step is to set the
status of each target not only based on the status code but also based
on the content of the log files. A target can be considered as failed if the
status code is nonzero or if there are some error messages in the logs. This
extension increases the total cost because it requires a linear scan of all
the log files, but can increase the accuracy of the information in the build
graph.

Refinement 3: Latent dependencies

After build graph is filled with data from the build trace file it is possible
to decorate it with latent dependencies that have not been listed explicitly
in the build specification. For example if a target A creates a file F which
is later read by target B there should be an edge between targets A and
B regardless it appeared in the build specification or not. This rule is
applicable to all the files including intermediate files which are easier to
miss than build artifacts.

In certain situations this step may lead to the violation of acyclic prop-
erty of the graph. Although it is a sign of a problem in the build specifica-
tion the graph algorithms used during diagnosis can handle this problem
well, thus there is no need to artificially restore this property.

70

5.2. DIAGNOSIS PROCEDURE

5.2.2 Find the set of leading-failed build targets

When the build graph is complete, it is used to find the set of leading-
failed targets, which are defined as failed targets whose all upstream de-
pendencies succeeded. The name comes from the fact that this procedure
divides the build graph into two subgraphs. First, contains all the tar-
gets which succeeded, whereas the second contains failed targets and the
targets which succeeded despite some of their dependencies have failed.
The sources of the second subgraphs are special in a way that they are
“leading” all the failed targets.

The leading-failed targets have an interesting property that failure can-
not be explained from the structure of the build graph by a failure of
any other target. This property if frequently exploited by human domain
experts, who start diagnosis by exploring errors of the failed targets with
no failed upstream dependencies, and move down the build graph only
when they seek for extra information to support their hypothesis regard-
ing the defect. This step was added to the diagnosis model to emulate
this behavior of a human expert.

When the diagnosis is focused on the leading-failed targets there is a
risk that a genuine defect will stay unseen just because all its symptoms
appeared in a downstream target. This is a valid concern, but typically
human experts ignore it because once all the clearly visible defects are
removed from the system the next integration build will progress pass the
previous point of the failure and expose previously skipped defects. This
is an iterative process where each iteration decreases the size of a set of
failed targets by removing defects visible in the leading-failed targets until
this size goes down to zero, at which point in time the whole integration
build is successful.

An example of a build graph with some failed targets was presented in
the Figure 5.1. The graph consists of nine nodes, where five of them have
failed. The set of leading-failed targets includes only 3 and 4 because their
only upstream dependency is target 1 which succeeded. Targets 6 and 8
do not belong there because their immediate dependencies have failed.
Whereas, the target 9 was skipped because it is transitively dependent on
the target 4.

71

CHAPTER 5. DIAGNOSIS MODEL

Target 7

Target 5

Target 6 Target 8

Target 2

Target 9

Target 3

Target 4

Target 1

Success Failure

Figure 5.1 Example of a build graph with failed targets

5.2.3 Extract the information regarding errors from log files

For every leading-failed target there are most likely some errors in the
execution log thread. They carry a lot of information about the nature of
the problem like the identifier of the tool, its error code and the name of
the source file where the error was detected. This information has to be
extracted and made available in the diagnosis procedure.

Similarly to the leading-failed targets the first error in the thread is
typically sufficient to identify the defect, while the following errors can
be used to increase the confidence of a given hypothesis. Based on this
observation the diagnosis model was designed to focus primary on the first
error.

The concept of errors in Continuous Integration system is slightly dif-
ferent from how this term is commonly used. The error is any condition
that makes the integration build fail. In particular, a warning returned by
a tool used in the process can also be considered as an error if that is the
policy of the project and its builds. Therefore, warnings should also be
taken into consideration when scanning the log thread if a given project
requires it.

Some of the tools can make this task easier by exposing special con-
figuration or command-line options. For example Microsoft Visual C#
Compiler supports an option warnaserror, which allows the user to
adjust how the compiler reports warnings with the granularity down to a

72

5.2. DIAGNOSIS PROCEDURE

level of a specific warning code. Two variants of this option together with
short description are presented in the Listing 5.1. Such options should be
preferred in the integration build specifications over any other solutions.

1 >>csc.exe /help
2 [...]
3 - ERRORS AND WARNINGS -
4 /warnaserror[+|-] Report all warnings as errors
5 /warnaserror[+|-]:<warn list> Report specific warnings as errors
6 [...]

Listing 5.1 Selected Microsoft Visual C# Compiler warning options

5.2.4 Reduce the set of leading-failed build targets

Each item in the set of leading-failed build targets can potentially be
caused by a distinctive defect in the code base and is inspected thoroughly.
Therefore, whenever it is possible, the set should be reduced to decrease
the problem size which consequently decreases the diagnosis time and the
computational cost required to perform it.

There are certain scenarios where a single defect can lead to a large
number of leading-failed targets in the build graph. One of the most com-
mon is when a target represents a core library with reusable functionality
that is referenced by many projects and consequently many build targets
depend directly on it. A change to the library itself which alters its public
interface can compile correctly in isolation but break the downstream tar-
gets when included in an integration build. Such problem is easy to detect
because all the leading-failed targets will be located in the same part of
the build graph.

Another more complicated scenario is when a single configuration file
is used as an input by many targets which can be scattered across the
guild graph. In this case the locality cannot be used as an indicator and
it is necessary to observe file access patterns or inspect the log messages
to detect similarity in the data. The following sections describe different
strategies that may be used to solve this problem.

73

CHAPTER 5. DIAGNOSIS MODEL

Duplicate-based reduction

One of the most effective way to reduce the set of leading-failed targets
is to search the corresponding error messages for duplicates. Two targets
which failed with the exactly same error messages are expected to be
related to the same defect regardless of their place in the build graph.

A good example of when this strategy works is when a rarely used func-
tion is deleted from a core library and some downstream project fail with
a compiler error complaining that a specific symbol was not recognized.
For every target both the symbol name and the surrounding error message
will match what can be easily detected as a duplicate.

There are certain error types where the strict comparison does not work
well. The tool that reports the error may include date and time or other
contextual information specific to the target that was built. This problem
is hard to solve in a unified way because it is not clear which parts of
the error message can be ignored. Fortunately in real world these errors
appear rarely and can be handled in the case by case basis.

Topological reduction

Another strategy does not need to inspect error messages but relies on
the information present in the build graph. It is based on an assumption
that leading-failed targets which have the same upstream and downstream
dependencies are similar to each other and presumably are related to the
same defect. The higher number of shared dependencies the stronger the
similarity relation, but in practice it is sufficient to require at least one
dependency for every direction.

Example of build graph where topological reduction is applicable is pre-
sented in the Figure 5.2. There are eight targets in total and five of them
are marked as failures. The initial set of leading-failed targets consists of
targets 2, 3, 4, and 9. The first three depend on target 1 and act as de-
pendencies for target 6. Because they all failed there is strong indication
that there is a defect which was introduced to the source code of target 1
and any target 2, 3, or 4 can be used as a starting point for the diagnosis
to find it.

Such patterns are very common in projects which are localized into
many different languages. Each localization task corresponds to a single

74

5.2. DIAGNOSIS PROCEDURE

target and due to the strong similarity they all appear in the same place
of the build graph with the same dependencies.

Target 7

Target 6 Target 8

Target 9

Target 5

Target 4

Target 3

Target 2

Target 1

Success Failure

Figure 5.2 Build graph where topological reduction is applicable

Policy-based reduction

Previous strategies describe how the set of leading-failed targets can be
reduced in an automatic way to ignore certain failures which are expected
to bring little value to the overall diagnosis result. However, sometimes
it may be necessary to deliberately ignore certain known failures to avoid
alerting the development team about them over and over again. This can
be solved with a simple policy-based reduction. A policy may be set to
always remove certain target from the set.

It is worth noticing that a policy-based reduction should be used care-
fully because ignoring failures can reduce the benefits of practicing Con-
tinuous Integration. Ideally it should be enabled only for a short period
of time during the integration of disruptive changes in the project when
the failures are expected and diagnosed by a person who is responsible for
the integration process.

75

CHAPTER 5. DIAGNOSIS MODEL

5.2.5 Build Bayesian network describing the problem

Once the diagnosis task is scoped to the reduced set of leading-failed tar-
gets a Bayesian network describing the problem can be constructed. An
instance of the network is built from a template represented as a plate
model (see section 3.2.3). The structure of the model is presented in the
Figure 5.3. The random variables are divided into five layers by their type
and functionality, and placed on four plates, three of which are organized
in a hierarchical structure while one is cutting through.

Target

The outermost plate represents the leading-failed target and defines bound-
ary of a subgraph with nodes which are related to a particular target. The
only edge that is crossing its border connects defect with its hyperparam-
eter. A probabilistic interpretation is that all targets are conditionally
independent given the values of the hyperparameters.

This of course is a simplification because in reality all the targets are
related, but it makes the network more manageable in terms of the de-
sign and interpretation of the results. When a knowledge engineer defines
which symptoms are relevant for a given defect he can focus on a single
failure without trying to find how it might be related to the other coinci-
dental failures. It also simplifies the work of a build engineer who might
be looking for an explanation why a particular target failed because it
limits the set of random variables he might need to inspect.

This plate does not have any nodes on its own because everything is
considered in the context of the target and the set of candidate changesets
which could have introduced the defect. In an alternative design one could
introduce target level evidence random variables for observations that are
not related to any changesets. However, nested plates were selected be-
cause they can encode the same probability distributions while preserving
unified framework for working with evidence.

Changeset

Inside the target there is a Changeset plate which represents a set of can-
didate changesets. The most important at this level is the culprit C binary

76

5.2. DIAGNOSIS PROCEDURE

θD

Target t

Defect d

Changeset c

Evidence e

D

EC

S

C

EB

• θD(d) - prior parameter which controls the probability distribution
of the d defect type.

• EB(t, c, e), EB(t, c, e) - true if the evidence of type e appeared for
the changeset c and the build target t.

• S(t, c, d) - true if symptoms suggest that a changeset c could have
introduced a defect of type d to the component built by target t.

• D(t, c, d) - true if the changeset c introduced a defect of type d to
the build target t.

• C(t, c) - true if the changeset c introduced a defect to the build
target t.

Figure 5.3 Plate model of the Bayesian network used for diagnosis

77

CHAPTER 5. DIAGNOSIS MODEL

random variable which indicates if the changeset introduced a defect to the
build target. It cannot be observed directly, but we can use probabilistic
inference to find its value based on the observations of its predecessors.

For its local probability model we selected the Noisy-Or model described
in section 3.2.2 at page 37. It assumes that all the defects use different
causal mechanism, and each of them should flag a changeset to be consid-
ered as a culprit. If we take into account that the defects are modelled as
ND binary random variables we can define the formula for the conditional
probability distribution function as:

P (C(t, c) = 0|D(t, c, 1), ..., D(t, c,ND)) =

(1− λC(c))

ND∏
i:D(t,c,i)=1

(1− λD(i)) (5.1)

The noise parameters λD can be used to model a situation in which
the defect is present but it does not surface during the build. Since the
process of making observations is fully automated the chance of skipping
a defect is very low, thus it is practical to set all of these parameters to
value close or equal to one.

The leak parameter λC , on the other hand has a more important role
in the diagnosis. It models the influence of defects that are not explic-
itly included in the network. Its value corresponds to the probability of a
changeset being a culprit despite the fact that there are no visible symp-
toms. During the development phase it is acceptable to set it to a higher
value, but as more defect types are supported by the system it should go
down to e.g. 0.001.

Sometimes builds fails when there were no defects introduced to the
project. It might happen when some external systems are down, like the
artifact store server where the build artifacts are uploaded towards the
end of the build. If the integrator cannot reach the server it will mark
the build as failed to indicate that no artifacts are available. This class
of problems are modelled by adding a system pseudo-changeset with a
special null identifier.

78

5.2. DIAGNOSIS PROCEDURE

Evidence

The innermost plate contains evidence random variables which represent
observable phenomena. Their values can always be set in the network,
however, it might not always be practical because there is a cost associated
with each observation. The cost is mainly expressed in the time it takes
to execute all the actions required to make the observation.

The system supports two classes of evidence with a corresponding nodes
in the template: EB and EC . Fist, represents basic evidence which is
inexpensive to observe, thus, it can be fully set in each network used for
the diagnosis task. As a consequence these variables do not need to have
their prior probabilities specified.

Good examples of such evidence are assertions which can be checked by
inspecting local resources such as logs, build trace, or the basic information
about the changesets. The following points present interpretation of some
evidence random variables instantiated to diagnose a failure in a “app”
target which builds a MSBuild project “app.csproj” using Microsoft Visual
C# Compiler. The project fails because the changeset “4312” adds a
reference to a missing source file.

• File “app.csproj” is an input of a target “app”.

• Changeset “4312” modified file “app.csproj”.

• Changeset “4312” modified project file “app.csproj” of the leading-
failed target “app”.

• Target “app” failed with the Microsoft Visual C# Compiler error
“CS1504 (NoSourceFile)” for the file “foo.cs”.

Second class contains complex evidence which is expensive to observe.
In contrast to the basic evidence these random variables do not need to
be set and in some situations they can be completely ignored if the result
inferred from the basic evidence is sufficient to find the defect.

Consequently it is necessary to specify the prior probability for these
variables. They all make use of Bernoulli distribution with parameters set
manually by the knowledge engineer who is defining the diagnosis proce-
dure for a particular defect type. If some complex evidence is reused in

79

CHAPTER 5. DIAGNOSIS MODEL

multiple symptoms it might be necessary to synthesize opinions of different
authors to reach an agreement regarding the values of the parameters.

Typically this evidence is expensive because in order make the observa-
tion it is necessary to connect to external systems, fetch more information
and process it. To illustrate that we will continue example of the ,,app”
target failure caused by adding a reference to a missing source file to the
project.

• Changeset “4312” modified project file of the target “app.csproj” by
adding a reference to the source file “foo.cs”.

In order to observe such evidence it is necessary to:

1. Connect to the Version Control Repository and download two revi-
sions of the “app.csproj” file, one for the changeset “4312” and one
for its immediate predecessor in the revision graph.

2. Parse both project files.

3. Compare the sets of referenced source file and check if the “foo.cs”
exists in one revision but not in the other.

The first step is the most expensive one as it makes a network call. This
cost may be justified in a situation when there are many changesets that
touched the project file and the basic evidence is insufficient to identify
the culprit. By inspecting multiple revisions we can find the point in time
when the reference to the file “foo.cs” was added and it will be strong
indicator of the defect.

Defect

Evidence alone does not indicate the type of defects that exist in the
project. They need to be grouped together to form higher level constructs
modelled with symptom random variables S(t, c, d) in the Defect plate.
These variables depend on both types of evidence.

The plate modelling framework has some limitations in the expressive-
ness when it comes to the irregular dependencies. According to the canon-
ical interpretation of the template presented in the Figure 5.3 each symp-
tom variable depends on all available evidence variables. However, it does

80

5.2. DIAGNOSIS PROCEDURE

not completely match the design. Symptom variables are defined in the
context of specific defect types and they depend on a selected subset of
evidence variables. This could be modeled by including an extra deter-
ministic variables to the model, which would mask the evidence, but it is
debatable if such change improves the interpretability of the template.

For each defect type there exists precisely one symptom in the model.
This implies that if the knowledge engineer finds that there are multiple
symptoms which can all indicate the same general defect it is necessary
to split it into several specialized defects to satisfy the constraints of the
model.

The symptom is assumed to be appear only when all of relevant evidence
is present. Therefore, it is modelled with a Noisy-And construct similar to
the Noisy-Or described previously in the context of the culprit variables.
The formula for the conditional probability distribution can be defined in
the following way:

P (S(t, c, d) = 1|EB(t, c, 1), ..., EB(t, c,NEB),

EC(t, c, 1), ..., EC(t, c,NEC)) =

(1− λS(d))

NEB∏
i:EB(t,c,i)=1

λEB(i)

NEC∏
j:EC(t,c,j)=1

λEC(j) (5.2)

The noise parameters λEB and λEC can be used to model evidence
whose presence does not certainly imply the presence of the symptom.
Whereas the leak parameter λS limits the maximum probability for the
symptom variable. All the parameters should be set manually by the
knowledge engineer who is working on the specific defect type.

Presence of a symptom indicates only that the circumstances are right
for the defect to exist, but it does not imply it. The uncertainty regard-
ing the defect is modelled with a D(t, c, d) random variable, which uses
a rule-based representation for its local probability model [Bou+96]. Its
distribution is conditioned on the value of the symptom random variable
and it might either be zero or a Bernoulli’s distribution with prior pa-
rameter θD(d). The formula for the defect distribution can be defined
as:

P (D(t, c, d) = 1|S(t, c, d), θD(d)) = S(t, c, d)θD(d) (5.3)

81

CHAPTER 5. DIAGNOSIS MODEL

The parameter θD(d) is itself a random variable known as a prior pa-
rameter because if it was removed from the network it would be necessary
to define a regular parameter of the prior distribution. This variable is
special in a way that it is the only variable that appears outside of the
hierarchy surrounded by the Target plate. This model structure implies
that all the failed targets are conditionally independent given θD(d) and
its value is shared not only between failed targets within a single build,
but also across many builds. This is a key aspect for the Bayesian param-
eter estimation which will be discussed in section 5.3.2. The distribution
is defined as follows:

P (θD(d)) = γθα1d−1
D (1− θD)α0d−1 (5.4)

The constant γ is a normalizing constant for the Beta distribution in-
troduced in section 3.4, whereas α1d and α0d are two hyperparameters,
which are estimated from the samples for each defect type separately.

5.2.6 Observe basic evidence

After the Bayesian network is built from the template we can start adding
information about the failure by observing the basic evidence. It has
priority over its complex counterpart because it is more cost effective.

For every evidence type there is a predicate function that is responsible
for performing all the actions required to determine whether the variable
should be set to true or false. They are expressed with an imperative code
and executed by the diagnosis agent.

5.2.7 Execute inference procedure

The inference boils down to execution of a set of probabilistic queries, one
per each target and changeset combination. The query has a form of a
posterior probability and it finds likelihood that a changeset introduced
a defect given the observed basic evidence EB and the vector of prior
parameters θD. This task can be formally defined as:

P (C(t, c) = 1|EB,θD) (5.5)

82

5.2. DIAGNOSIS PROCEDURE

5.2.8 Observe complex evidence

In some situations the basic evidence can be insufficient to find a strong
changeset candidate. Then, it is necessary to start observing complex
evidence. Due to its cost the processing is not batched, but is happens
sequentially one observation at a time.

There can be many strategies for selecting the next complex evidence to
observe. One practical heuristic method is to rank the random variables by
the number of dependent symptoms. The higher this number is the greater
impact the variable might have on the changeset posterior probability. If
two complex evidence variables are used in the same number of symptoms
then they can be further ranked by the number of basic evidence variables
that participate in these symptoms. This strategy follows an assumption
that more specialized defect types should have priority over general ones.

With the second class of evidence the probabilistic query introduced
in Equation 5.5 can be updated by including more conditioning random
variables:

P (C(t, c) = 1|EB,EC ,θD) (5.6)

The process of observing more evidence and updating the probabilities
should continue until there is a changeset candidate with a high posterior
probability that is clearly standing out from the rest, or the execution
time limit is reached, or there is no more evidence to observed.

5.2.9 Collect results

When the termination condition is reached and the network is complete
in terms of observed evidence the posterior probabilities of the Culprit
random variables are calculated once more for each combination of leading-
failed target and changeset, and returned as the diagnosis result. This
format is perfect for a downstream automation that might act upon the
output. It the result needs also to be presented to users, in order to make
it more appealing it can be grouped by the target and ordered descending
by the probability. That way the most relevant or actionable information
floats to the top.

Additionally, the whole network or its parts can be persisted to give a
better justification in case somebody wants to understand why a particular

83

CHAPTER 5. DIAGNOSIS MODEL

changeset was blamed to have introduced a defect. This is important for
the knowledge engineers when they are adding support for new defect
types.

5.3 Training procedure

The Bayesian network presented in the previous section supports two basic
types of training. Subject matter experts can set the values of hyperpa-
rameters which are combined with the statistics calculated from the data
to form the prior parameters for defect distributions. One advantage of
this procedure is that the manual steps appear very early and once they
are done the model can be automatically retrained when more samples are
added to the training.

We recall that defects are modelled with Bernoulli’s distributions with
prior parameters coming from a Beta distributions. This implies that the
posterior probability of observing new defect D[M +1] conditioned on the
presence of the right symptoms S[M+1] and the previous M observations
D[1], ..., D[M] can be described with Equation 5.7.

To make the formula more succinct the index variables for target, change-
set, and defect type were omitted. Therefore, it should be interpreted with
an assumption that all the random variables mentioned in Equation 5.7
are for the same defect type observed in the context of M independent
failures.

P (D[M + 1]|S[M + 1], D[1], ..., D[M]) =
α1 +M [D = 1, S = 1]

α0 + α1 +M [S = 1]
(5.7)

This equation combines the hyperparameters of the Beta distribution α0

and α1 with the counts of certain events recorded in the training set. Count
M [D = 1, S = 1] represents the number of situations when the defect was
observed in the presence of related symptoms, whereas M [S = 1] is the
total number of situations when the symptoms were observed.

It is interesting to examine the effect of the hyperparameters over the
size of the training set. Initially, when there are very few samples their
values dominate the probability. However, as more samples are observed
and the respective counts grow this effect diminishes. By selecting the
right initial values one can control its strength with relation to the data.

84

5.3. TRAINING PROCEDURE

5.3.1 Expert elicitation

The existing expert knowledge is captured partially in the network struc-
ture and partially in the values of hyperparameters which describe distri-
butions of different defect types. Their values should be established as a
consensus from opinions of build engineers in the process known as expert
elicitation.

The task of quantifying uncertainty can be very daunting especially
without solid understanding probability theory. However, with Beta dis-
tribution it is possible to formulate the task differently so that it is ap-
proachable by practically everyone. Hyperparameters α0 and α1 appear
in Equation 5.7 next to the count statistics. For this reason they are often
referred to as pseudo-count [KF09, p. 740]. We can think of them as the
number of times we have seen particular events in our prior experience
before data set collection process started.

With this observation it is possible to prepare a survey for the people
involved in the process of build break management and ask them two
simple questions for each defect type:

• How often do you see builds failing with S symptoms?
(Never, Rarely, Occasionally, Regularly, Always)

• When you observe S symptoms, how often do you find that the
failure is caused by D defect type?
(Never, Rarely, Occasionally, Regularly, Always, Not Applicable)

Their answers can be translated directly to the values of the hyperpa-
rameters. The first answer corresponds to sum of α0 and α1, whereas the
second defines the ratio between them. For example if we observe answers
(Occasionally, Always) and select mapping (20, 0.95) we can calculate
α1 = 20 · 0.95 = 19 and α0 = 20 · (1 − 0.95) = 1, and conclude that the
prior parameter of the defect type has distribution Beta(19, 1).

There is some freedom in selecting the mapping used to translate an-
swers to numbers, but there are several constraints it needs to satisfy.
Answer Always to the first question must not have too high value in re-
lation to the number of samples in the training set so that it does not
dominate the probability even if there is enough information in the data

85

CHAPTER 5. DIAGNOSIS MODEL

to learn the distribution. Answers Never and Always to the second ques-
tion must not translate to 0 and 1 values because that could give users
false confidence when in fact there are hardly any examples of defects that
are truly certain.

Finally, answer Never to the first question should be taken into special
consideration. If the defect has never been observed, then why the diag-
nosis agent should even support it? To answer this question it is necessary
to think about the skill-set of build engineers. They are very knowledge-
able about the technologies used in the project they are directly involved
in, but they might not know the tools used in other projects. In a com-
plex system there are typically certain people who own specific areas. By
selecting Never as the answer, what respondents are really doing is indi-
cating that this defect type does not belong to their area of expertise, thus,
such answers should be ignored altogether. Only if this pattern repeats
for all build engineers should the defect type be reevaluated and possibly
removed from the system.

5.3.2 Offline training

In order for the diagnosis agent to have good performance the moment it
is deployed it is necessary to collect a training set use it to learn from it in
an offline strategy. The framework of Bayesian network supports several
types of learning tasks, but in the context of the diagnosis agent we will
focus on learning as a parameter estimation problem.

Equation 5.7 provides a good description of how the estimation should
be performed. It involves calculating count statistics for the events M [D =
1, S = 1] and M [S = 1]. While the latter is straightforward because we can
directly observe if a given symptom is present in the sample, the former
brings significant challenges because it requires us to know when a certain
defect type was added to the project. As explained in the chapter 4 this
information is very hard to obtain, especially in an automated fashion.

In order to solve this problem we may train the model under additional
assumption that the defect existed if the observed symptoms supported
it and the related changeset was in fact labeled as the real culprit. Al-
though not always true, this is a very practical simplification because it
lets us work with less expensive, automatically labelled samples and with
sufficiently large training set its impact becomes negligible. With this as-

86

5.3. TRAINING PROCEDURE

sumption the right side of Equation 5.7 can be replace with the following
fraction:

α1 +M [C = 1, S = 1]

α0 + α1 +M [S = 1]
(5.8)

Count M [C = 1, S = 1] represents the number of events when the
symptoms for a given defect type were present and the changeset was
identified as the real culprit. The main advantage of this version is that
all the events which appear in the formula can be observed in the training
set. The modified learning procedure rewards all the defect types which
in the light of the available evidence could have existed.

We recall from the section 5.2.5 that the proposed model support two
classes of evidence: simple and complex. The latter brings another chal-
lenge to the training task because it might not always be practical to fully
observe it. This problem is less significant than during the real diagno-
sis because the timing constrains are much weaker, meaning that we can
tolerate expensive observations in the training phase, but it still exists.

Consequently, the statistics which appear in Equation 5.8 cannot be
simply set by counting events because there is some uncertainty they need
to account for. We can solve this problem with probabilistic modelling by
replacing the exact counts with their expected values:

M̄ [C = 1, S = 1] = E[M [C = 1, S = 1]] (5.9)

M̄ [S = 1] = E[M [S = 1]] (5.10)

Distributed training

The training task can be executed on a single machine, but it can also be
distributed across many machines. It is possible because the addition op-
eration, which is used to calculate the statistics appearing in Equation 5.8,
is associative meaning that the samples can be processed in an arbitrary
order.

This task fits perfectly to the MapReduce programming paradigm sup-
ported by several distributed computation systems including a very pop-
ular option - Apache Hadoop [Whi09]. For the problem to be executed on

87

CHAPTER 5. DIAGNOSIS MODEL

a Hadoop cluster it has to be decomposed into two tasks. The first is the
Map task, which takes a set of data and converts it into a collection of
key-value pairs. Second, is the Reduce task, which takes output from the
Map task and for each key it combines the pairs into smaller set of pairs.

In order to use MapReduce paradigm in the training phase the Map
map tasks should, for each sample, build the Bayesian network, observe
the random variables including the Culprit variables and emit the count
values keyed by the index of the defect type. The subsequent Reduce task
can preserve the key and sum up all the partial results to form the total
counts returned as a result of the whole operation.

5.3.3 Online training

The agent is designed to diagnose the failed integration builds as they
happen. This stream of tasks can also be turned into a stream of samples
and used to update the model parameters with the new information. That
way there is no need to persist all the samples in the training set and the
model gets extended to adapt to the changing environment.

In order to enable online training it is necessary to close the feedback
loop. The most significant challenge is related to the Culprit random
variable, which cannot be observed at the diagnosis time and becomes
available much later, after the defect gets removed from the project. To
work around this gap in time the Bayesian network used in the diagnosis
can be saved to the temporary store and loaded once there is sufficient
information to update the parameters. This process can be implemented
with the following steps:

1. perform diagnosis,

2. save the Bayesian network to a file,

3. wait for the first successful build,

4. check the backward fix scenario for ambiguity,

5. load the network from a file,

6. observe the Culprit variable,

7. update the event counts for all the defect types.

88

5.4. PRACTICAL CONSIDERATIONS

This scenario is possible only if the project uses the backward-fix strat-
egy for managing broken builds (see section 4.2). In all the other cases,
the steps three and four can be replaced with one manual step where build
engineer points out the culprit.

5.4 Practical considerations

As described in previous sections diagnosis model returns a list of possible
culprits ordered by the probability rank. How this output is used next
depends on the environment in which the model operates. There are three
main scenarios which can be used in practice:

Decision support system - diagnosis results help build engineers find cul-
prits faster but no change gets reverted unless human approves it.

Full automation - diagnosis results are used by the automation to revert
identified culprits.

Mixed - diagnosis results are used by the automation to revert culprits
with high probability, but the system falls-back to build engineers if
none of the culprits have sufficiently high probability.

In the current Continuous Integration systems build engineers are re-
sponsible for managing broken builds. The most natural way of enabling
diagnosis model in such environments is to use it as a decision support
system [WDN07]. This scenarios does not change existing processes. Just
as before human experts are responsible for finding defects, but by in-
specting potential candidates in the descending order of the probability,
they should be able to accomplish this task faster. Only after they confirm
that the change introduced a defect it gets reverted form the repository.
This guarantees that the false positive rate will stay at the same level at
the cost of having human involved in the process.

Full automation mode on the other hand lowers the costs of maintain-
ing the CI system by delegating all the tasks to autonomous agents. In
this scenario agent responds to each broken integration build by either
reverting the top candidate or restarting the build if symptoms indicate
that this is an intermittent system issue. A disadvantage of this solution is

89

CHAPTER 5. DIAGNOSIS MODEL

that it can have higher false positive rate and does not handle new defects
well.

When build engineers come across errors they have not seen before they
can always reach out to the development team for help. Similar approach
is adapted in the mixed mode where the diagnosis agent is allowed to
act upon a failed build provided that the culprit was identified with high
probability. If symptoms do not clearly identify what the problem is, or
there are many candidates with equally high ranks, the agent can escalate
to build engineers and aid them with diagnosis results.

In this scenario system switches from automation to decision support
mode based on the value of the probability. The rate at which it happens
can be controlled by defining minimal threshold at which the agent can
still revert culprits. This threshold can take values in the range (0, 1) and
can be selected according to the unique project characteristics. It can be
lower for projects where developer can tolerate higher false positive rates.

Mixed mode combines advantages of previous solutions because trivial
defects get fixed automatically while hard problems are brought to the
attention of human experts. Project owners can control this process by
setting value of the probability threshold for automatic revert. As a result
the false positive rate can be kept low while the costs of maintaining the
system go down because there are fewer interventions form build engineers.

5.5 Summary

The diagnosis model presented in this chapter satisfies all the requirements
gathered in the planning phase. It is a Machine Learning system because
the more samples are added to the training set the more accurate estimates
of model parameters are becoming and consequently expected performance
improves as well.

Not only does the model learn from the training set, but it also in-
corporates the existing expert knowledge by capturing it in the Bayesian
network structure and values of hyperparameters, which control the prior
probability distributions for the supported defect types. It makes the
model more flexible in a sense that it can diagnose rare defects provided
that they are well known and understood by the experts. Additionally, by
participating in the shaping of the model people involved in the process

90

5.5. SUMMARY

of build break management can understand how it works and trust the
results it gives.

To make the results interpretable the random variables used in the
Bayesian network represent concepts commonly used by the build engi-
neers such as evidence, symptoms and defects. They were also organized
into five layers by their function. That design makes it approachable to
users who can examine and verify the correctness of the results before they
act upon them.

Finally, the structure of the Bayesian network was designed to scale well
with the number of distinctive defect types. If an integration build fails
with a new, unknown defect the network can be extended to support it
by defining new evidence, combining it to form symptoms and specifying
prior probability for the defect type. These steps are the same regardless
the complexity of the problem, thus the network is always modified in the
additive fashion.

In order to achieve this property the network structure encodes some im-
plicit conditional independences assumptions. In particular, all the defects
are conditionally independent given their prior parameters. Consequently,
the results of the probabilistic queries for the Culprit random variables can
be skewed towards positive value. Nevertheless, as it will be demonstrated
in the following chapter, this affects all the changesets in the similar way
and does not change their relations significantly when they are ordered by
the probability rank.

The diagnosis model was design to solve a very specific problem of
finding defects in the Continuous Integration systems. Although it has
potential to work in other domains, there were no attempts to test this
hypothesis.

91

6 Study of the effectiveness

Previous chapter described the diagnosis procedure. In this chapter we
will use this design to train the model in different configurations and look
at the quality of the results it produces. We will follow grey-box testing
approach where most of the time we will analyze output, but in order to
explain certain phenomena we will refer to the implementation details of
the underlying model.

6.1 Data set used in the research

The data set used in this research was collected in an industrial Continuous
Integration system at Microsoft Corporation in the period from Nov 2012
to Feb 2014. During this time the system was used by many teams working
on thousands of different projects and using different technologies, but
sharing the same build definition and execution technology. Both the
collection process and the format of samples were described in details in
chapter 4 at page 45.

There were two main types of integration builds running in the system.
First type consisted of short builds focused on specific self-contained soft-
ware components or projects. Typically they were verifying up dozen new
changeset and their outputs were mainly consumed by the team members
working directly with the source code. Those people were also responsible
for managing the process and making sure that all defects get fixed in a
timely fashion.

Builds of the second type, on the other hand, took longer to execute
because they were integrating changes across many projects which are
grouped together to form complete products. Because the impact of de-
fects in this phase was much higher there was a dedicated team of build
engineers who were looking after this process.

Although the rate of failed integration builds was very low, the high
number of executions happening every day compensated for it and made it

93

CHAPTER 6. STUDY OF THE EFFECTIVENESS

46%
40%

14%

0%

10%

20%

30%

40%

50%

C# C/C++ Other
programming language

di
st

rib
ut

io
n

Figure 6.1 Programming languages distribution in the data set

possible to collect a data set of a size sufficient for the research. Moreover,
thanks to the diversity in projects and types of integration builds, the
samples represent a broad range of problems to diagnose.

6.1.1 Programming languages

Projects which used the common CI system were being written in differ-
ent programming languages with the distribution presented in Figure 6.1.
It is clear that the primary languages of choice were C# in the man-
aged space (46%) and C/C++ for the native code (40%). The remaining
part (14%) contained more specialized languages for writing automation
scripts, and domain specific languages for creating installers and deploy-
ment packages.

Without formal analysis, if we assume that there is weak correlation
between programming languages and the number of defects detected in
the integration builds we can expect that a model capable of diagnosing
failures for the top two languages would cover approximately 80% of all
the issues.

6.1.2 Expert elicitation

Apart from the data set it is necessary to capture prior expert knowledge
to build the model and sets all of its hyperparameters. This task was

94

6.2. RESEARCH APPROACH

performed according to the procedure described in section 5.3.1 at page 85.
After the main defect types were identified a survey was prepared for
people who are involved in the build break management.

In order to capture insight for defects appearing in both types of builds
described previously the survey was handed to both a team of build engi-
neers, who deal with issues in the CI system on a daily basis, and a team
of developers who occasionally have to fix problems in the build they own.
Since the survey was carried out in an industrial environment the response
rate was high. Results were combined to form a single Beta probability
distribution for each defect type.

6.2 Research approach

The data set used in the research and the diagnosis model have some
unique characteristics which require special handling to reduce the esti-
mation bias for the quality measures. This section presents main factors
that were taken into consideration.

6.2.1 Prior expert knowledge

The model is designed to incorporate the prior expert knowledge. In order
to measure its impact on the effectiveness the analysis will be performed in
two phases. First, the model will be evaluated with uninformative priors,
which are defined as assignments to the hyperparameters which maximize
the information brought by the data [KF09].

For Beta distributions selected for the defect types this corresponds
to setting both α0 and α1 to 1. With these values we can focus on the
influence of the size of the training set without worrying that the results
are shifted because some parameters were set manually. In the second
phase we will look into what happens when we start to incorporate prior
expert knowledge.

6.2.2 Complex evidence

Model supports two classes of evidence: basic and complex. The difference
is that the latter can be expensive in terms of time it takes to observe the
evidence and in practice the values of corresponding random variables

95

CHAPTER 6. STUDY OF THE EFFECTIVENESS

will not always be set. This design is important because it allows to set
upper limits on the execution time, however, it bring some challenges in
the analysis because it adds an extra parameter which can influence the
quality of results.

During this research complex evidences were used several times for very
specific defect types. For example they checked if a changeset removed
definition of a constructor still in use which resulted in C# Compiler error
CS1729 (BadCtorArgCount). It is complex task because it requires at
least one network call to Version Control System to download the previous
version of the file and check if the constructor existed before.

Taking into account that complex evidences are used for very specific
defect types, which have low frequency in the data set, and the challenges
it brings to the analysis, a decision was made to treat them the same as ba-
sic evidences in a sense that they is always observed. This corresponds to
a situation when there are no limits on the execution time. With this sim-
plification the estimates of quality measures will be optimistically biased
but this effect is expected to have low impact on the overall performance.

6.2.3 Noise parameters

The proposed network contains many Noisy-OR and Noisy-And local
probability models whose noise and leaks parameters have to be set. They
express the uncertainty about procedures used to observe random variables
and relations between them. Description together with interpretation of
each parameter was included in the section 5.2.5 at page 76. Here we
present assignment which was used throughout the research to emphasize
how the model behaves in different setups. In practice these parameters
can take different values to fine-tune the system.

Because the diagnosis procedure is fully automated there is little un-
certainty added in the execution steps. For example, if a compiler finds
a problem, it always emits an error to the log where it will certainly be
discovered and translated to evidence. Therefore, all the noise parameters
were set to its neutral value which is at 1.

λD = λEB = λEC = 1 (6.1)

Similar reasoning is applicable to the leak parameter for the symptom
random variable because it is used mainly to combine evidences and not

96

6.2. RESEARCH APPROACH

add to the uncertainty. In contrast to the noise parameters its neutral
value is at 0.

λS = 0 (6.2)

The only parameter which is set to a significant value is the leak param-
eter for culprit random variables. It plays a key role in the network size
analysis because it models the influence of defect that are not explicitly
included in the network structure. Its value corresponds to the probabil-
ity of a changeset being a culprit despite the fact that there are no visible
symptoms. This is particularly important for very small networks which
do not support many defect types.

The value of this parameter can be set once for each changeset, but in
practice it is good to define different values for normal changes and special
system pseudo changeset added to model system defects. The reason is
that the absence of symptoms can indicate either that the issue is not
supported or that the data sources used to populate evidence random
variables were unavailable due to the system failure. It was observed
that the latter scenario is more popular so its leak parameter was set
accordingly to a value ten times higher than for the normal case.

λC(c) =

{
0.01 if c is system pseudo changeset

0.001 otherwise
(6.3)

6.2.4 Cross-Validation

The way data set was collected creates a challenge for estimating the
test error associated with a particular model trained with it. A very
popular approach is K-Fold Cross-Validation, where the available samples
are randomly divided into k groups, or folds, of approximately equal size.
The first fold is treated as a validation set and the model is trained on
the remaining k − 1 folds. The mean squared error is then computed and
saved. This procedure is repeated k times, with each group treated once
as a validation set. The final result is computed by averaging the partial
results.

This approach in its original form would lead to estimates biased to-
wards lower errors. It is because the data does not satisfy the indepen-

97

CHAPTER 6. STUDY OF THE EFFECTIVENESS

dence assumption made implicitly in the random division step. At a given
point in time there can be several integration builds running for the same
project, each using slightly different configurations. A single defect in
the project can cause all of them to fail and make the samples highly
dependent on each other.

If the builds were randomly divided into training and test sets then an
easy way to design a diagnosis agent would be to mark changesets from
the test set as culprits when they are known to have introduced a defect
to some projects in the training set. Such model would appear to perform
surprisingly well in cross-validation while in practice it would not be able
to detect new defects at all.

In order to eliminate this problem in the experiments, the cross-validation
was performed on a groups created not by random sampling, but by divid-
ing them accordingly to their start time with a caveat that the cutoff point
cannot split consecutive or concurrent failed builds of the same project.

The result of this step is presented in Figure 6.2. It is clear that the folds
are uneven with an average around 10%. Fold number 8 is much bigger
than its neighbors which indicates that there were many concurrent builds
failing close to the cutoff point of this fold. The extra samples it received
were taken from the fold number 9, which is much smaller.

This approach does not guarantee the estimates will be unbiased, but it
significantly reduces the bias by making folds independent with regards to
defect instances, what is required by the cross-validation procedure. They
are not fully independent because they contain samples from the same
projects, but these are the patterns we want the model to discover and
exploit in the diagnosis.

6.3 Network size sensitivity analysis

One of the most interesting aspects of the model is how the diagnosis qual-
ity changes with the number of distinctive defect types random variables
included in the Bayesian network. It corresponds directly to the require-
ment of scalability defined in section 5.1.4. The expectation is that the
quality will improve as more defect types are supported by the system.

This section is divided into three parts. First we will look into a baseline

98

6.3. NETWORK SIZE SENSITIVITY ANALYSIS

0%

2.5%

5%

7.5%

10%

1 2 3 4 5 6 7 8 9 10
fold

di
st

rib
ut

io
n

Figure 6.2 Example of data set division into uneven folds

model with very limited capabilities. Its simplicity will help us define the
measures and introduce charts that will be used in subsequent sections
to reason about behavior and efficiency of the model. With this solid
background we will observe how the results change when we add support
for general and then specific defect types.

6.3.1 Baseline analysis

We will start the analysis with the simplest issue, yet the one which can
be seen in practice. It is a failed compilation due to a syntax error, which
indicates that the source code does not adhere to the grammar rules of
the programming language. Each compiler can have its own set of syntax
errors but they are all similar in the sense of the causal mechanisms and
scenarios in which they are created.

One example of such problem is the CS1514, (LBraceExpected) error
reported by the C# Compiler with a message similar to the one presented
in the following listing. The lack of ”{” character in the source code
violates the grammar rules and prevents the compiler from processing the

99

CHAPTER 6. STUDY OF THE EFFECTIVENESS

source file.

1 A.cs(7,30,7,30): error CS1514: { expected

Listing 6.1 Example of a C# Compiler error CS1514

A single error code can correspond to multiple defect types. Even as
simple problem as syntax error can be introduced in several scenarios listed
below.

• Developer made a syntax error when writing the code.

• Developer missed a syntax error after his or her change was auto-
matically merged with other concurrent changes.

• Developer modified a macro construct in a header file included in
the sources which, when expanded, created a syntax error.

• Project owner updated build configuration to include old erroneous
file in the process.

• Project owner changed the version of the code-generation tool used
during the build.

The first scenario is by far the most popular case among all the other
examples. It is very similar to the second scenario which additionally
explains the circumstances of the error. For diagnosis it is sufficient to
find the changeset which introduced the defect, thus the first scenario was
selected for the baseline.

A plate scheme for this model is presented in Figure 6.3. Dashed lines
around evidence and defect indicate that instead of representing a whole
set of random variables they are fully expanded plates. In this particular
case they expand to one node each.

Evidence random variable Eb(1) takes value true when the changeset c
edited a file which was mentioned in the error message related to target t.
In order to observe this variable it is necessary to prepare a procedure that
will parse logs and load the information from the version control system
about recent modifications. Hyperparameter θD(1), on the other hand, is

100

6.3. NETWORK SIZE SENSITIVITY ANALYSIS

Target t

Defect 1

Changeset c

Evidence

D(1)

C

EB(1)

θD(1)

S(1)

Figure 6.3 Plate schema for the baseline model

not related to any target and encodes the probability for the defect type
alone.

Syntax error is an example of a problem within the project’a source
code. However, integration builds might fail also due to system failures.
For example C# Compiler might run out of available memory and fail
with an error CS0003 (NoMemory) as presented in the listing below.

1 error CS0003: Out of memory

Listing 6.2 Example of a C# Compiler error CS0003

This can happen when there are multiple builds scheduled to run at the
same physical machine at the same time. Such error has nothing to do
with the changes in the project, thus the diagnosis agent should indicate
it by selecting system pseudo changeset as the culprit.

System defects represent a unique class of problems and they deserve
to be analyzed separately. Therefore, all charts presented in this chapter

101

CHAPTER 6. STUDY OF THE EFFECTIVENESS

are doubled to account for that. Although it is interesting to see if the
model can handle both classes, system defects are rarely observed and their
frequency goes down when the Continuous Integration system becomes
more reliable. Taking that into account the primary focus will be on the
project defects.

We will assume that the diagnosis agent works in the mixed mode,
which was first introduced in section 5.4 at page 89. It assumes that there
exists a certain probability threshold above which the agent automatically
takes an action on behalf of build engineers or escalates the problem to
human experts if none of the failure explanations have sufficiently high
probability. Naturally selecting the right value of threshold is critical to
achieve good performance in practice. To help us understand how the
quality measures change with this value it will be used as the horizontal
axis for almost all visualization we will see.

Outcome rates analysis

The first chart that we will introduce focuses on the impact of the diagnosis
agent on the health of the project and the efficiency of the system. There
exist five main scenarios which we will take into consideration:

Fixed (clean): Real culprit was identified and correctly reverted from the
repository. After this action project state was valid again and sub-
sequent build succeeded.

Fixed (collateral): Real culprit was identified and correctly reverted, but
there were some innocent changesets above the threshold which were
incorrectly reverted as well. After this action project state was valid
again and subsequent build succeeded.

Bad revert: All the changesets that were reverted were actually innocent
and the real culprit was left in the code base. After this action
project state stayed invalid and subsequent build failed with the
same error.

Bad retry: Diagnosis result incorrectly indicated that the failure was caused
by the system defect and the build should be retried. However, sub-
sequent build failed with the same error.

102

6.3. NETWORK SIZE SENSITIVITY ANALYSIS

Fallback: None of the changesets had sufficiently high probability rank
to be considered as a culprits and the problem was escalated to a
human expert for a manual intervention.

Each of these scenarios has some unique implications. The most de-
sired outcome is fixed (clean) because it restores valid state of the project
without generating extra work for the team. Only the developer who
committed changeset with a defect needs to revisit it and improve the
code before committing it again, but his task would need to be completed
regardless.

Fixed (collateral) outcome, on the other hand, as its name implies has
some collateral damage because apart from the real culprit some innocent
changesets are removed as well. Their authors need to spend some time
to confirm their changes are correct and commit them again. This is an
extra work for them. Depending on the scale of the damage this scenario
can also be considered as a positive one when the costs of the extra work
it generates are lower than the costs related to productivity drop which
results from the project staying in an invalid state This is particularly
important for teams with dozens of people who might be impacted by a
failed integration build.

The worst case is bad revert. Similarly to fixed (collateral) innocent
changesets get removed, but this time the real culprit is left in the repos-
itory undetected. This means that developers need to face the cost of
committing their changesets again and they get nothing back because the
project is still in invalid state, however, they learn about it only after
subsequent build fails with the same error. If it happens users might get
impression that the system works against them so it is important to keep
this rate at the minimum level.

Another negative outcome is bad rollback where system incorrectly re-
tries the build with expectation that the second run will not hit the same
intermittent issues. Just as for bad revert the subsequent build fails with
the same error. The main difference, however, is that the bad decision did
not generate extra work for developers. Instead the only consequence is
that the system is unavailable while the second build is being executed so
the overall efficiency is decreased. This rate can be tolerated at a much
higher level than the bad revert rate.

103

CHAPTER 6. STUDY OF THE EFFECTIVENESS

Finally, in certain situations the safest thing diagnosis agent can do is
to escalate the problem to build engineers for manual intervention, which
we will refer to as fallback scenario. It is worth mentioning that even very
high fallback rate (approaching one) can be acceptable in practice because
in existing systems which do not automatically diagnose failures this rate
is equal to 1, yet they are operational. By the way the diagnosis model
was designed setting probability threshold to one drives the fallback rate
one as well because due to non-zero leak parameters the model will never
point at a real changeset with absolute certainty1. This relationship can
help us understand charts in this section because we can always start the
interpretation from threshold equal to 1, which is almost identical to a
situation where the model is completely disabled.

With good understanding of all the possible outcome rates we can
present them all in a single area plot in Figure 6.4. Different outcomes are
represented with grey-scale color scheme where bad revert intentionally
stands out with its black color to represent most severe mistake. Imme-
diately visible is that the fallback rate increases almost linearly with the
threshold. This increase becomes stepwise for higher values because there
were fewer samples in a data set which got such high probability ranks.
As explained in the previous paragraph it reaches value one together with
the threshold.

When the probability threshold is set to zero fixed (collateral) rate domi-
nates the distribution because for such low value all changesets are reverted
including the real culprits. This of course is related to high collateral dam-
age which is unacceptable in practice. From there the rate changes in two
phases. Initially it decreases rapidly along with threshold to reach 8% at
the point 0.09. Then it changes gently up to the point 0.5 where it drops
down to 0.

In the first phase most of the changesets had arbitrary order because
in the presence of no applicable defect types their probability was set
entirely based on the leak parameters. The point at which the rate transi-
tions into second phase corresponds to builds with one changeset and one
pseudo system changeset, each with their leak parameters defined in the

1This rule does not hold for degenerated case of builds with no changesets where the
failure is certainly caused by a system issue.

104

6.3. NETWORK SIZE SENSITIVITY ANALYSIS

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

P
roject defect

S
ystem

 defect

0.00 0.25 0.50 0.75 1.00
threshold

Fixed (clean) Fixed (collateral) Bad revert Bad retry Fallback

Figure 6.4 Outcome rates for baseline model

Equation 6.3. We can easily calculate it as (0.001)/(0.01 + 0.001) ≈ 0.9.

The second phase shows that in the data set there were builds where
more changesets were assigned higher probabilities than what would result
from the leak parameter alone. Taking into account the only defect type
supported by the baseline model we may infer that there were multiple
changes to the same file which was mentioned in the error message. Be-
cause there was no additional evidence to break the tie builds where this
happened could only be automatically fixed by removing all the related
changesets with collateral damage.

The point at which the second phase ends and the rate drops to zero is
very interesting. It is at 1/2 and setting threshold to this value guarantees
that the agent will revert at most one changesets because non-zero leak
parameter for system defects it is impossible for two changesets to have a
probability of 1/2. Therefore, it is impossible for fixed (collateral) rate to
be greater than zero. Other similar points are at 1/3,

1/4 for which similar
guarantees hold for at most two and at most three reverts respectively.

105

CHAPTER 6. STUDY OF THE EFFECTIVENESS

This predictable behavior is very important in practice.

The most stable outcome is fixed (clean). It barely changes in the full
range of probability threshold except the extreme points where it goes
down to zero. This indicates that the most intuitive procedure which is
to blame the change to a file mentioned in the error message is in fact
very reliable and can handle approximately 20% of all the project related
issues in the data set. However, it does not always work. For threshold
equal to 0.95 both fixed (clean) and bad revert rates are greater than zero
indicating that there must have been some examples where the changeset
was correct even though the error mentioned the file it modified.

Because the model supported only a single defect type it was unable
to find relationship between the failure and changesets and for low values
of the threshold the only reasonable action the agent could take was to
repeat the build. This resulted in a high level of bad retry rate which
decreases with threshold.

Up to this point we focused only on the project defects, however, most
of the statements were true for system defects as well. The main difference
is that because the leak parameters for system defects is much higher than
for project defects in the case of baseline model the fixed (clean) rate is
much higher as if it took the share of the bad retry rate.

Precision and recall analysis

Outcome rates are great to get an overview of how the model performs
in a mixed mode switching between full automation and decision support
system. In order to understand better how it behaves in each of these roles
we will need some different measures. The reason why it is so important
becomes obvious if we think about the fixed (collateral) rate. It tells us
only that the real culprit was reverted, but it does not tell us anything
about the scale of collateral damage. To get better insights we can use
precision and recall plots such as the ones presented in Figure 6.5.

If we compare these plots to what we discussed in the previous sec-
tion we can observe that recall curve has a very similar shape to sum of
fixed (clean) and fixed (collateral) rates, whereas precision curve includes
additionally mistake rates bad revert and bad retry.

Although the shapes are very much alike the actual values are different

106

6.3. NETWORK SIZE SENSITIVITY ANALYSIS

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

P
roject defect

S
ystem

 defect

0.00 0.25 0.50 0.75 1.00
threshold

measure Precision Recall

Figure 6.5 Precision and recall plots for baseline model

because rates operate at the level of integration builds while precision and
recall tell us more about what is happening at the level of changesets. For
example previous 20% of fixed (clean) rate coincide with only 15% recall.
This particular discrepancy exists because some builds in the data set had
multiple defects.

The presence of multiple defects also explains the rather strange shape
of precision around the characteristic point 0.5. In general precision in-
creases along with threshold, but at this point we can observe small drop.
This happens because above this point model ignores previously correctly
detected defects to satisfy the at most one revert guarantee discussed to-
gether with fixed (collateral) rate.

107

CHAPTER 6. STUDY OF THE EFFECTIVENESS

0%

5%

10%

15%

20%

0%

20%

40%

60%

80%

P
roject defect

S
ystem

 defect

1 5 10 15 20 25 30 <
position

di
st

rib
ut

io
n

Figure 6.6 Histogram of culprit positions for baseline model

Culprit position analysis

When the model is used as a decision support system then the agent
does not automatically revert bad changesets, but instead it prepares a
detailed report with a list of candidates ordered by the probability of
having introduced a defect. In this setup one of the most important quality
measure is the position of the real culprit in the report. Of course it is
best when it appears first because then user can find it immediately. This
is not always possible and sometimes users will need to go through a list
and inspect other, correct changesets.

It is worth mentioning that culprit position is insensitive to the proba-
bility threshold used previously. In fact in decision support mode there is
no threshold because the user is responsible for making a call about where
the defect is. Consequently, even changeset with a very low probability
rank can appear at the top of the list, provided that all the other candi-
dates have lower ranks. Because probability has to sum up to one this is

108

6.3. NETWORK SIZE SENSITIVITY ANALYSIS

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

P
roject defect

S
ystem

 defect

0 10 20 30 40 50 60 70 80 90 100
position

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

Figure 6.7 Cumulative distribution of culprit positions for baseline model

only possible for builds with a high number of changesets to consider.

In order to present the distribution of culprit positions for the baseline
model we created a histogram presented in Figure 6.6. The first bar for
project defects reaches only 15%, which not surprisingly matches the level
of recall for high values of threshold from Figure 6.5. Second bar is high
as well with the level of 12%. At the third position on the other hand we
can see a drop after which the distribution slowly decreases to zero at the
point beyond the range presented in the histogram.

This pattern can be easily explained by looking at the set of defect types
supported by the baseline model. It consists of only single specific defect
type which can be observed only in 29% of builds in the data set. When
supporting evidences are there, the model assigns high probability ranks
to associated changesets bringing them to the top of the list (first two
positions). In builds which failed due to other defects the real culprit will
appear at random position. The reason why we do not see this uniform

109

CHAPTER 6. STUDY OF THE EFFECTIVENESS

distribution in the histogram is that there are more builds with small
number of changesets, thus the density is gradually decreasing.

For system defects 80% of the mass is located in the first position while
the rest is distributed in the range up to sixth position. This shows what
20% of system defects manifested with error messages which mentioned
specific files, but the baseline model was unable to distinguish them. In
order to fix this problem the model would need to be extended by adding
support for these very specific defect types.

Histograms are great for visualizing distributions, but it might be chal-
lenging to use them to compare several distributions, which is something
we will need to do in the following sections. For this tasks cumulative
distribution functions seem like a better fit. Figure 6.7 present such func-
tions created for the baseline model. Apart from much wider range of on
the horizontal axis this solution has advantage of having the same scales
for vertical axis because it is standardized to percentage.

Now it is clear that the distribution for project defects does not finish
around 30th position. The tail of the distribution is much longer. Even
at position 100 cumulative distribution is still lower than one. In next
sections we will observe how adding more defect types can help shorten
this tail and improve the overall quality of results.

6.3.2 General defect types

When diagnosis agent fails to correctly identify the culprit then most likely
it is because it does not support defect type which caused the failure.
At any point in time the model can be extended by adding support for
new types. Each such effort consists of analyzing the causal mechanism
of the defect, defining evidence which is a good indication of the failure
and implementing them in code, add corresponding random variables for
evidence, symptom and defect to the Bayesian network template.

With additional defect types the Bayesian network grows as it is de-
picted in Figures 6.8. Original defect plate is repeated once for each type
supported and contains several nodes. Evidences are outside because they
can be reused in multiple defects. All of the nodes meet at a single cul-
prit variable at the bottom of the changeset plate. This procedure can be
repeated to add support for an arbitrary number of defect types.

110

6.3. NETWORK SIZE SENSITIVITY ANALYSIS

Target t

Defect 1

Changeset c

Evidence

D(1)

C

EB(1)

θD(1)

S(1)

Defect 2

D(2)

EB(2)

θD(2)

S(2)

EB(3)

Figure 6.8 Plate model of network supporting two defect types

When extending the model one should select the specificity level for the
defect type. If a diagnosis procedure is very specific it will identify culprits
with high confidence, however, the number of builds for which it will be
applicable will be low. General defect types on the other hand can have
supporting evidence in many builds, but they do not necessarily point
at the right changeset or they might identify multiple equally plausible
candidates. We saw this problem previously for the baseline model when
the fixed (collateral) rate was greater than zero.

This section focuses on general defect types which exploit such proper-
ties of errors as:

• file system locality,

• build graph locality,

• file extension associativity.

111

CHAPTER 6. STUDY OF THE EFFECTIVENESS

Defect types count

Case General Specific Total

A 1 0 1
B 3 0 3
C 7 0 7
D 11 0 11
E 1 10 11
F 1 20 21
G 1 30 31
H 11 30 41

Table 6.1 Supported defect types counts in analyzed cases

First two assumes that the change which introduced the defect is close
to the place where the error was observed in terms of a distance measured
in the file system location or the build graph location. Both distances
are valuable because they focus on different aspects. Former can detect
big and risky changes even if the associated files have not been processed
by tasks in the build graph whereas latter captures dependencies between
projects which are located in completely different file structures.

Last property focuses on the file extensions because they can tell a lot
about the tools used to process the files at build time. Even if the error
message does not mention any file, but has an error code of C# Compiler
we can expect that the defect is somewhere in a *.cs file which is typically
used for C# source code.

We will analyze how effectiveness of the model changes as more defect
types are added by looking at results from several runs described in Ta-
ble 6.1. Each case has its unique identifier and set of defect types. In this
section we will focus only on the runs from A to D, others will be covered
in the following section.

Because we need to compare many run at the same time the area plot
presented in Figure 6.4 as to be replaced with a generalized version. Fig-
ure 6.12 shows outcome rates in stacked bar charts grouped by the value
of threshold.

112

6.3. NETWORK SIZE SENSITIVITY ANALYSIS

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

P
roject defect

S
ystem

 defect

a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d a b c d
run

Fixed (clean) Fixed (collateral) Bad revert Bad retry Fallback

Figure 6.9 Outcome rates for model with general defect types

The most clearly visible difference from the previous chart is that there
are high bad revert rates for system defects. That is because all the new
types were project defects and other issues were neglected. Diagnosis
agent was able to find more reasons to revert some changesets than to
retry a build. This is not a completely bad situation because system
defects happen so rarely, but there is definitely room for improvements.

Outcome rates for project defects were slightly impacted for the extreme
values of probability threshold, where it was close to zero or one, and
significantly different in the range from 0.15 to 0.65. We can see that
the more defect types were added to the model, fixed (clean) rate was
going up at the cost of bad revert rate. Outcome bad retry was rarely
observed because the model would always find some reasons to revert
certain changesets.

Precision and recall charts for the analyzed runs were presented in Fig-
ure 6.10. As soon as the first two defect types were added there was con-

113

CHAPTER 6. STUDY OF THE EFFECTIVENESS

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

P
roject defect

P
roject defect

S
ystem

 defect
S

ystem
 defect

P
recision

R
ecall

P
recision

R
ecall

0.00 0.25 0.50 0.75 1.00
threshold

measure Precision Recall

run a b c d

Figure 6.10 Precision and recall plots for model with general defect types

114

6.3. NETWORK SIZE SENSITIVITY ANALYSIS

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

P
roject defect

S
ystem

 defect

0 10 20 30 40 50 60 70 80 90 100
position

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

run a b c d

Figure 6.11 Cumulative distribution plot of culprit positions for model
with general defect types

siderable improvement in both precision and recall. These defects types
were looking for issues based on the file system and build graph locality.
As it turns out these are very good predictors. Other defect types only
slightly altered the measures.

The change becomes more visible when we look at the cumulative dis-
tribution of culprit positions in Figure 6.11. Model which supported more
defect types would produce reports with more culprits located at leading
positions. In particular in the best run D 40% culprits appeared on the
first position in comparison to the 15% of the baseline.

Additionally the upper limit for the position was improved as well. Pre-
viously the baseline model could not guarantee that all culprits would ap-
pear in the first 100 results. With more defect types for all the runs the
cumulative distribution converged to zero before the 80th position.

115

CHAPTER 6. STUDY OF THE EFFECTIVENESS

6.3.3 Specific defect types

Model can also be extended by adding support for specific defect types.
In comparison to defects discussed in the previous section they do not
rely on common properties applicable to many errors such as build graph
locality, but focus on explicit modelling scenarios for specific error codes.
That makes them more focused and once all the necessary evidences are
there the conclusions can be made with higher confidence.

A good example or a scenario for a specific defect type is when devel-
oper delete a C# class in a library without making sure it is not used by
the projects which depend on the library. In the integration build this
can manifest with a C# Compiler error CS0234 (DottedTypeNameNot-
FoundInNS) as similar to the one presented in Listing 6.3. The message
indicates that a compiler found an identifier in the source code in the
context where it was expecting either a namespace or a type, but it was
unable to resolve it.

1 A.cs(15,14): error CS0234: The type or namespace name ’C’ does
2 not exist in the namespace ’B’ (are you missing an assembly
3 reference?)

Listing 6.3 Example of an error message used for a specific defect

In order to translate this scenario to a diagnosis procedure it is necessary
to create basic evidence random variables to indicate if the error code was
observed in logs, if a changeset modified a file which by convention should
contain the definition of the missing type. Additionally one can define a
complex evidence that will be set when the definition was in fact deleted.
This task can requires downloading and parsing two versions of the same
source file to inspect types it contains.

After adding more specific defect types the outcome rated changed as
depicted in Figure 6.12. Because identified culprits had much higher prob-
ability ranks than what we saw in the previous section the increase in fixed
(clean) rate can be observed even for extreme values of the threshold. In
particular at the point of 0.95 there is still a clear increase. This improve-
ment appears also for other points and around 0.45 has its maximum. That
is where the model was capable of fixing problem in 50% of all integration

116

6.3. NETWORK SIZE SENSITIVITY ANALYSIS

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

P
roject defect

S
ystem

 defect

a e f g a e f g a e f g a e f g a e f g a e f g a e f g a e f g a e f g a e f g
run

Fixed (clean) Fixed (collateral) Bad revert Bad retry Fallback

Figure 6.12 Outcome rates for model with specific defect types

builds in the data set with only small collateral damage. Unfortunately,
at this point bad revert rate is also higher than for the baseline model.

Because specific defect types explain only a subset of all failures the bad
retry is greater than zero for all values of threshold meaning that meaning
that external defect despite being incorrect was the only plausible explana-
tion for many builds. In the situations where it was a correct conclusions,
in the lower plot, fixed (clean) stays at a high level, comparable to the
baseline model.

High values of bad revert rate are also reflected in the precision and recall
plots in Figure 6.13. This does not match the intuition because specific
defect types should come into play only if many specific conditions are met.
However it also means that the diagnosis agent can make bad decisions
with high confidence for a small fraction of all builds. This is a negative
effect which ideally should be eliminated from the system.

117

CHAPTER 6. STUDY OF THE EFFECTIVENESS

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

P
roject defect

P
roject defect

S
ystem

 defect
S

ystem
 defect

P
recision

R
ecall

P
recision

R
ecall

0.00 0.25 0.50 0.75 1.00
threshold

measure Precision Recall

run a e f g

Figure 6.13 Precision and recall plots for model with specific defect types

118

6.3. NETWORK SIZE SENSITIVITY ANALYSIS

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

P
roject defect

S
ystem

 defect

0 10 20 30 40 50 60 70 80 90 100
position

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

run a e f g

Figure 6.14 Cumulative distribution plot of culprit positions for model
with specific defect types

Cumulative distribution plots for specific defect types presented in Fig-
ure 6.14 show that as the model was being expanded the quality was im-
proving as well, however, the rate of improvement was decreasing. There
is hardly any difference between cases F and G despite the fact that the
latter supports 10 additional defect types (see Table 6.1).

This highlights the challenge in quality evaluation for specific defect
types. Some of them are observed rarely and are underrepresented in the
data set, thus their impact on the global quality measures may appear to
be insignificant. However, for build engineers who come across such defect
in production environment it can make a significant difference whether
model supports it or not.

119

CHAPTER 6. STUDY OF THE EFFECTIVENESS

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

P
roject defect

S
ystem

 defect

a d g h a d g h a d g h a d g h a d g h a d g h a d g h a d g h a d g h a d g h
run

Fixed (clean) Fixed (collateral) Bad revert Bad retry Fallback

Figure 6.15 Outcome rates for combined model with both types of defects

6.3.4 Combined model

Previous two sections showed that general and specific defect types have
very different characteristics when it comes to quality measures. Each of
them have their strengths and weaknesses. In this section we will look
into what happens if we create one model capable of diagnosing all the
defects discussed so far. This case appeared in Table 6.1 with H identifier.
It supports a total number of 41 defect types.

The outcome rates for combined model as well as the major models from
the previous section is presented in Figure 6.15. The most interesting
pattern that emerges for project defects for fixed (clean) rate is that it
increases for the first three cases to finally drop in H to the level between
cases D and G. It is very clearly visible for probability threshold 0.65 and
its immediate neighborhood. If this rate was the only measure we care
about this would be degradation of quality, however there are other rates

120

6.3. NETWORK SIZE SENSITIVITY ANALYSIS

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

P
roject defect

S
ystem

 defect

0 10 20 30 40 50 60 70 80 90 100
position

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

run a d g h

Figure 6.16 Cumulative distribution plot of culprit positions for combined
model

that also need to be taken into consideration. For example bad revert rate
is associated with extra costs because it requires developers to do extra
work and commit their changesets again.

If we focus on the negative rates we can observe that they follow a sim-
ilar pattern and drop for the last case. For threshold 0.65 bad revert rate
decreased four times in comparison to G case. Even better improvement
was observed for bad revert which decreased almost to zero for the com-
bined model. This change, however, was at the cost of decrease in fixed
(clean) rate for system defects.

Synergy between general and specific defect types is also visible in cu-
mulative distribution of culprit position in Figure 6.16. Combined model
outperformed all the other cases. However, the change from D to H is
much smaller than from A to G because defects overlap in certain builds.

121

CHAPTER 6. STUDY OF THE EFFECTIVENESS

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

P
roject defect

P
roject defect

S
ystem

 defect
S

ystem
 defect

P
recision

R
ecall

P
recision

R
ecall

0.00 0.25 0.50 0.75 1.00
threshold

measure Precision Recall

run a d g h

Figure 6.17 Precision and recall plots for combined model

122

6.4. THE IMPACT OF PRIOR EXPERT KNOWLEDGE

The reason why combined model works better than other options is
visible in precision and recall plots in Figure 6.17. In all facets curves for
case H lies in between cases D and G. As it turns out combining defect
types leads to a balanced model.

6.4 The impact of prior expert knowledge

The analysis so far was focused on the model trained with uninformative
priors to highlight the ability of the model to train from the data set.
However, in practice there is available prior expert knowledge which in
theory can be leveraged to further improve the accuracy of the agent.
Current section explores this process by looking into what happens when
the feedback from human experts is included in the model.

As discussed in chapter 5, expert knowledge is encoded in the model
in the form of hyperparameters of probability distributions used to de-
scribe defect types. Consequently in order to analyze how quality mea-
sures change when model makes use of it we need to select models which
already support some defect types for the baseline.

Table 6.2 gathers information about cases which were used in the anal-
ysis. Because models will be compared pairwise there are two pairs or
models, each with different properties. First are D and I models which
support only general defect types. They are followed by G and J which,
on the other hand, support primary specific defects. For each pair one
model uses non-informative while the other has priors set by experts.

Includes prior Defect types count

Case expert knowledge General Specific Total

D false 11 0 11
I true 11 0 11
G false 1 30 31
J true 1 30 31

Table 6.2 Selected cases for prior expert knowledge analysis

123

CHAPTER 6. STUDY OF THE EFFECTIVENESS

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

P
roject defect

S
ystem

 defect

D I G J D I G J D I G J D I G J D I G J D I G J D I G J D I G J D I G J D I G J
run

Fixed (clean) Fixed (collateral) Bad revert Bad retry Fallback

Figure 6.18 Outcome rates for model with prior expert knowledge

Outcome rates for the analyzed models were summarized in Figure 6.18
with bar plots introduced in the previous section. It is clear that the
pairwise difference strongly depends on the defect type. For models D
and I there is hardly any difference in rates calculated for project defects
for all the values of probability threshold, while the model was able to
better diagnose external issues.

In the second pair the difference is clearly visible everywhere, however,
in contrast to what one could expect adding expert knowledge made the
model worse in the sense of proposed quality measures. There is a signif-
icant drop in fixed (clean) and other rates, where agent takes an action
while fallback rate increases.

Different patterns seen for two pairs can be explained by going back
to Equation 5.7. General defect types have typically good coverage in
the data set. They have a lot of samples which can be used to calculate
parameters of probability distributions and their priors become unimpor-
tant. Specific defect types, on the contrary, can have only few samples to

124

6.4. THE IMPACT OF PRIOR EXPERT KNOWLEDGE

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

P
roject defect

S
ystem

 defect

0 10 20 30 40 50 60 70 80 90 100
position

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

run D I G J

Figure 6.19 Cumulative distribution plot of culprit positions for model
with prior expert knowledge

support them and that is when the end distribution will be dominated by
prior probabilities provided by experts.

This also explains why there appears to be drop in quality for case J. Be-
cause prior expert knowledge, by its very nature, is supposed to come from
observations made before the data set collection process started, when it
is included in the model it can lead to decrease in performance measured
against the same data set or its subsets (cross-validation). However, what
we are really interested in is the good performance on the new samples
which have not been included in the data set so the initial warning signs
for outcome rates does not undermine the whole principle.

In fact, if we look at the cumulative distribution of culprit positions in
Figure 6.19 we can see that the curves not only did not get worse but even
improved for case I. This indicates that including prior expert knowledge

125

CHAPTER 6. STUDY OF THE EFFECTIVENESS

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

P
roject defect

P
roject defect

S
ystem

 defect
S

ystem
 defect

P
recision

R
ecall

P
recision

R
ecall

0.00 0.25 0.50 0.75 1.00
threshold

measure Precision Recall

run D I G J

Figure 6.20 Precision and recall plots for models which make use of the
prior expert knowledge

126

6.5. SUMMARY

in the model might skew returned probability values, but the overall order
of changesets should be preserved with real culprits floating to the starting
positions.

Precision and recall curves presented in Figure 6.20 are plotted against
the probability threshold, thus there is a drop in quality similar to what
we observed previously in Figure 6.18. This time, however, it is visible
that the rates were mainly affected by lowering recall while the precision
stayed mainly at the same level.

In the absence of strong evidence showing that prior expert knowledge is
valuable to the model we cannot reject a null hypothesis sating that it has
no positive effects. However, during the research we came across examples
of defect types which gained a lot from manually set priors. The first
system defect type from section 6.3.1, which was created for C# Compiler
error CS0003 (NoMemory), is one of them. With only two supporting
samples and non-informative priors its probability would have been set
to approximately 0.75. Of course such error almost certainly indicate the
problem in the system and the probability should be approaching 1. The
only way to enforce that in the model is by setting its prior based on
opinions of human experts.

6.5 Summary

Data set used in the research was collected over a period of more than
a year in an industrial Continuous Integration system used across many
projects. Although the rate of failed integration builds was very low the
high number of executions happening every day made it possible to col-
lect sufficient number of samples. Additionally, to make the diagnosis
model operational it was necessary to capture prior expert knowledge and
translate it to a supported form.

The designed model had some unique challenges which were addressed
in the research. Prior expert knowledge was eliminated completely in the
network size analysis by adoption of uninformative priors which maximize
the information brought by the data itself. This highlighted patterns and
behaviors which emerged when more random variables related to defect
types were added to the model. Only in the final phase of the research was
the prior expert knowledge included to measure its impact in isolation.

127

CHAPTER 6. STUDY OF THE EFFECTIVENESS

Network size analysis was performed in three steps. First we looked
into how different quality measures change when model is extended with
general defect types. Then, we switched to specific defect types just to
finish with a combined model.

With general defect types model practically stopped making a mistake
attributing failure to a system failure and the bad retry rate dropped
almost to zero. At the same time fixed (clean) rate, which is one of the
most important quality measures, improved slightly. Specific defect types,
on the other hand led to a model which has much higher fixed (clean) rates
at the cost of also increasing bad revert rate. Only the combined model,
which supported both classes of defect types, was able to produce high
positive rates and keep the negative rates at reasonably low levels.

The impact of prior expert knowledge was different depending on the
types of supported defect types. If there was enough samples in the data
set to estimate the probability parameter from then manually set prior
probability was unimportant and had no effect on the quality measures.
However, for models witch specific defect types both data and expert
knowledge were combined together to produce one result. This part of
the research was inconclusive because some quality measures improved
while others declined, but one thing was clear - there are certain defect
types which can gain a lot of manually set priors and the model should
support them.

128

7 Conclusions

In this dissertation we proposed a novel improvement to existing Contin-
uous Integration systems which removes the burden of selected manual
tasks by introducing an autonomous software agent capable of diagnos-
ing faults in integration builds and automatically fixing them by reverting
changesets which introduced defects in the project source code. We con-
firmed its utility by training and evaluating it on the data set collected
over the period of 16 months in a commercial CI system used at Microsoft
Corporation by many different teams.

After analysis of several modern CI systems used in practice we discov-
ered that they do not preserve enough information to build a robust data
set for statistical learning applications in fault diagnosis. Whenever an
integration build fails users care primary about quickly resolving the issue
and less about documenting the circumstances and the root cause. We
argued that in order to improve in this space it is necessary to preserve in-
formation about the build configuration, execution, failure, new changes in
the project’s source code and resolution steps. We designed a new format
for data samples which can compactly store all this information.

We looked into several real-world scenarios of handling failed builds
and proposed modifications which make it possible to not only fix the
issue but also collect data samples. We argued that backward-fix strategy,
where all the failures are resolved by reverting culprit changes from the
version control system, is superior over forward-fix strategy because it
makes it possible to fully automate the collection process so that there are
no additional steps for the people who look after this process. However, we
pointed out that in certain cases when multiple defects surface at the same
time or when there are multiple integration builds running concurrently it
is impossible to automatically collect high quality samples without extra
input from human experts.

The main contribution of this dissertation is defining clear analogy be-
tween the problem of finding changesets which introduced defects in the

129

CHAPTER 7. CONCLUSIONS

source code and well understood task of fault diagnosis. This opened an
opportunity to use a state of the art modelling techniques of building
systems for reasoning under uncertainty. The proposed expert system is
based on a Bayesian troubleshooter and can answer probability queries
about the posterior probability that a changeset had introduced a de-
fect, conditioned on the observed evidence from the completed integration
build. By framing the problem in this way we were able to design the agent
to take actions based on the probability ranks and made this process easy
to control by introducing a probability threshold under which the agent
will refrain from reverting changes automatically. When the agent does
not act upon results it can pass them to human experts and effectively
work as a decision support system.

The diagnosis procedure we proposed was created to be applicable to
real-world problems, thus it contains many practical assumptions. For ex-
ample, the model expects there it precisely one defect to find either in the
project’s source code or in the CI system itself. It makes the agent infeasi-
ble for environments where multiple-faults are standard, but we confirmed
that it did not impact the overall efficiency of the model in a significant
way when evaluated against the available data set. The benefit, however,
was cognitive simplicity because users can expect all the probability ranks
to sum to one.

The structure of the proposed Bayesian network scales well with the
number of possible defect types. This requirement was critical because
there are hundreds of reasons why a compilation phase might fail and
there are typically other phases as well which have to be taken into con-
sideration. The model satisfied also all the other requirements gathered
for the agent. It is a Machine Learning system because the more samples
are added to the training set the more accurate estimates are calculated for
model parameters. Not only does the model learn from the training set,
but it also incorporates existing expert knowledge. Finally, it produces
results which can be understood by the users.

We studied the effectiveness of the proposed model on the data gathered
in a real-world, commercial Continuous Integration system. We focused on
answering questions regarding what happens when the Bayesian network
grows in terms of the number of distinctive defect types it supports, and
how inclusion of prior expert knowledge changes the quality measures.

We showed that for the best results the model should support both

130

general and specific defect types. Only this combination led to high rate
of correctly fixed problem and kept the rate of mistakes made by the model
at reasonably low levels. In the best observed case the model was capable
of successfully handle 50% of all failed integration builds, made mistakes
for 7% and left the rest for manual intervention.

On the occasion when agent refrains from taking action it can act as
a decision support system and provide users with reports in the form of
ranked list of changesets paged by 10 items. We estimated that users can
expect the real culprit to appear at the first page in 80% of cases and
within first two pages in 90%. The rest are the more challenging failures,
where the agent showed to be no better than a random ranking algorithm.
In order to improve performance for these rare cases it would be necessary
to extend the set of defect types supported by the system, but we decided
against doing it due to increasing costs. This led to a conclusion that
with plethora of possible problems some of them are still better handled
manually.

In the study we divided all defects into two categories: project and
system. We noticed that performance for system defects was considerably
worse. It was partially because the diagnosis model had only limited
support from this category. However, it drew our attention to several cases
where evidence clearly indicated problems with the project source code,
but it was in fact a system defect related to updating the local workspace
on the integration machine. The proposed model does not handle such
cases well, as it has certain requirements regarding the reliability of the
system where it operates correctly.

The solution presented in this dissertation is not applicable to every
software project. When either development velocity or the concurrency
level is low it is typically obvious which changeset introduced a defect.
Adding extra diagnosis step to the process would only increase the total
time it takes to execute an integration build without a real benefit to the
people working on the project.

Another case where probabilistic fault diagnosis is not the right solution
is when the project is small and it takes just several minutes to run a
full integration build. Then, it is possible to find the changeset which
introduced a defect by doing a binary search on the new changesets that
have been checked-in to the repository. Alternatively, if the compiler can
run in an incremental mode it might be better to check all the changesets

131

CHAPTER 7. CONCLUSIONS

sequentially in chronological order. Both solutions are deterministic and
guarantee correct results provided that builds are reproducible. The only
problem is that this approach is limited to short builds.

The proposed solution fits perfectly to large-scale Continuous Integra-
tion systems and large projects where it takes up to several hours to exe-
cute the compilation phase, the rate at which new changesets are checked
in is high and there are many people working on the same product pos-
sibly from locations distributed geographically in different time zones. In
such environments build break management strategy is critical to make
the system successful and shortening the time it takes to diagnose issues
can improve productivity of everyone working on the project.

In June 2014 the implementation of the software agent described in
this dissertation was enabled on a voluntary basis for selected projects
at Microsoft Corporation. At the time of writing it has been constantly
running for almost a year and bringing value each time there is a failure in
an integration build that needs to be diagnosed. It has been running both
in full automation and decision support mode depending on the individual
preferences of teams and project owners.

132

Bibliography

Artificial Intelligence

[Ada84] J. B. Adams. “Probabilistic reasoning and certainty factors”.
In: Rule-Based Expert Systems (1984), pp. 263–271.

[Bou+96] C. Boutilier et al. “Context-specific independence in Bayesian
networks”. In: Proceedings of the Twelfth international con-
ference on Uncertainty in artificial intelligence. Morgan Kauf-
mann Publishers Inc. 1996, pp. 115–123.

[BS+84] B. G. Buchanan, E. H. Shortliffe, et al. Rule-based expert sys-
tems. Vol. 3. Addison-Wesley Reading, MA, 1984.

[Cyr08] K. A. Cyran. “Modified indiscernibility relation in the theory
of rough sets with real-valued attributes: Application to recog-
nition of fraunhofer diffraction patterns”. In: Transactions on
Rough Sets IX. Springer, 2008, pp. 14–34.

[DB07] J. L. Devore and K. N. Berk. Modern mathematical statistics
with applications. Cengage Learning, 2007.

[Fra+12] U. Franke et al. “Availability of enterprise IT systems: an
expert-based Bayesian framework”. In: Software quality jour-
nal 20.2 (2012), pp. 369–394.

[Hec90] D. Heckerman. “Probabilistic interpretations for MYCIN’s cer-
tainty factors”. In: Readings in uncertain reasoning. Morgan
Kaufmann Publishers Inc. 1990, pp. 298–312.

[HH87] D. E. Heckerman and E. J. Horvitz. “On the Expressiveness
of Rule-based Systems for Reasoning with Uncertainty.” In:
AAAI. 1987, pp. 121–126.

[HHN91] D. E. Heckerman, E. J. Horvitz, and B. N. Nathwani. “To-
ward normative expert systems: The Pathfinder project”. In:
Methods of information in medicine 31 (1991), pp. 90–105.

133

CHAPTER 7. CONCLUSIONS

[HN92] D. Heckerman and B. N. Nathwani. “An evaluation of the di-
agnostic accuracy of Pathfinder”. In: Computers and Biomed-
ical Research 25.1 (1992), pp. 56–74.

[IWD05] G. Ilczuk and A. Wakulicz-Deja. “Rough sets approach to
medical diagnosis system”. In: Advances in Web Intelligence.
Springer, 2005, pp. 204–210.

[IWD07] G. Ilczuk and A. Wakulicz-Deja. “Visualization of rough set
decision rules for medical diagnosis systems”. In: Rough sets,
fuzzy sets, data mining and granular computing. Springer, 2007,
pp. 371–378.

[Jam+13] G. James et al. An Introduction to Statistical Learning.
Springer, 2013.

[KF09] D. Kollar and N. Friedman. Probabilistic graphical models:
principles and techniques. The MIT Press, 2009.

[KHH01] C. Kadie, D. Hovel, and E. Horvitz. “MSBNx: A component-
centric toolkit for modeling and inference with Bayesian net-
works”. In: Microsoft Research, Richmond, WA, Technical Re-
port MSR-TR-2001-67 28 (2001).

[KW12] M. Kurzynski and M. Wozniak. “Combining classifiers un-
der probabilistic models: experimental comparative analysis
of methods”. In: Expert Systems 29.4 (2012), pp. 374–393.

[Loc99] J. Locked. “Microsoft bayesian networks: Basics of knowledge
engineering”. In: Kindred Communications Troubleshooter
Team Microsoft Support Technology 12 (1999).

[Min+14] T. Minka et al. Infer.NET 2.6. Microsoft Research Cambridge.
http://research.microsoft.com/infernet. 2014.

[Mit97] T. M. Mitchell. Machine Learning. McGraw-Hill Science En-
gineering, 1997.

[Ole+89] K. G. Olesen et al. “A munin network for the median nerve-
a case study on loops”. In: Applied Artificial Intelligence an
International Journal 3.2-3 (1989), pp. 385–403.

[Pea86] J. Pearl. “Fusion, propagation, and structuring in belief net-
works”. In: Artificial intelligence 29.3 (1986), pp. 241–288.

[Pea88] J. Pearl. Probabilistic reasoning in intelligent systems: net-
works of plausible inference. Morgan Kaufmann, 1988.

134

Artificial Intelligence

[PHF10] A. Patil, D. Huard, and C. J. Fonnesbeck. “PyMC: Bayesian
stochastic modelling in Python”. In: Journal of statistical soft-
ware 35.4 (2010), pp. 1–5.

[PWD07] P. Paszek and A. Wakulicz-Deja. “Applying Rough Set The-
ory to Medical Diagnosing”. In: Rough Sets and Intelligent
Systems Paradigms. Springer, 2007, pp. 427–435.

[PWN09] A. Pernest̊al, H. Warnquist, and M. Nyberg. “Modeling and
troubleshooting with interventions applied to an auxiliary truck
braking system”. In: Proceedings of 2nd IFAC workshop on
Dependable Control of Discrete Systems. 2009.

[Rus+95] S. J. Russell et al. Artificial intelligence: a modern approach.
Prentice hall Englewood Cliffs, 1995.

[SB75] E. H. Shortliffe and B. G. Buchanan. “A model of inexact rea-
soning in medicine”. In: Mathematical biosciences 23.3 (1975),
pp. 351–379.

[Sch11] R. J. Schalkoff. Intelligent Systems: Principles, Paradigms and
Pragmatics. Jones & Bartlett Publishers, 2011.

[SJK00] C. Skaanning, F. V. Jensen, and U. Kjærulff. “Printer trou-
bleshooting using Bayesian networks”. In: Intelligent Prob-
lem Solving. Methodologies and Approaches. Springer, 2000,
pp. 367–380.

[WB05] J. M. Winn and C. M. Bishop. “Variational message passing”.
In: Journal of Machine Learning Research. 2005, pp. 661–694.

[WDN07] A. Wakulicz-Deja and A. Nowak. “From an information sys-
tem to a decision support system”. In: Rough Sets and Intel-
ligent Systems Paradigms. Springer, 2007, pp. 454–464.

[WH86] B. P. Wise and M. Henrion. “A framework for comparing un-
certain inference systems to probability”. In: Proceedings of
the First Conference on Uncertainty in Artificial Intelligence.
Morgan Kaufmann Publishers Inc. 1986, pp. 99–108.

[WKB10] W. Wiegerinck, B. Kappen, and W. Burgers. “Bayesian net-
works for expert systems: Theory and practical applications”.
In: Interactive collaborative information systems. Springer, 2010,
pp. 547–578.

[Woz04] M. Wozniak. “Proposition of boosting algorithm for proba-
bilistic decision support system”. In: Computational Science-
ICCS 2004. Springer, 2004, pp. 675–678.

135

CHAPTER 7. CONCLUSIONS

[Woz11] M. Wozniak. “Knowledge source confidence measure applied
to a rule-based recognition system”. In: Intelligent Informa-
tion and Database Systems. Springer, 2011, pp. 425–434.

[ZD06] A. Zagorecki and M. J. Druzdzel. “Knowledge Engineering for
Bayesian Networks: How Common Are Noisy-MAX Distribu-
tions in Practice?” In: ECAI. 2006, p. 482.

Software Engineering

[Abl+08] R. Ablett et al. “Build notifications in agile environments”.
In: Agile Processes in Software Engineering and Extreme Pro-
gramming. Springer, 2008, pp. 230–231.

[AKM08] A. Alali, H. Kagdi, and J. Maletic. “What’s a typical commit?
A characterization of open source software repositories”. In:
Program Comprehension, 2008. ICPC 2008. The 16th IEEE
International Conference on. IEEE. 2008, pp. 182–191.

[BA99] K. Beck and C. Andres. Extreme Programming Explained: Em-
brace Change. Addison-Wesley Professional, 1999.

[Bai+07] S. Bailliez et al. Apache Ant 1.9.4 Manual. Apache Ant. 2007.
[Bro08] G. Brooks. “Team pace keeping build times down”. In: Agile,

2008. AGILE’08. Conference. IEEE. 2008, pp. 294–297.
[Bug09] Y. Bugayenko. “Quality of code can be planned and automat-

ically controlled”. In: Advances in System Testing and Valida-
tion Lifecycle, 2009. VALID’09. First International Confer-
ence on. IEEE. 2009, pp. 92–97.

[BZ10] R. Buse and T. Zimmermann. “Analytics for software devel-
opment”. In: Proceedings of the FSE/SDP workshop on Future
of software engineering research. ACM. 2010, pp. 77–80.

[BZ14] A. Begel and T. Zimmermann. “Analyze This! 145 Questions
for Data Scientists in Software Engineering”. In: Proceedings
of the 36th International Conference on Software Engineering.
Hyderabad, India, 2014.

[CH09] S. Chacon and J. C. Hamano. Pro git. Vol. 288. Springer, 2009.
[CS98] M. A. Cusumano and R. W. Selby. Microsoft secrets: how

the world’s most powerful software company creates technol-

136

Software Engineering

ogy, shapes markets, and manages people. Simon and Schuster,
1998.

[Cze+11] J. Czerwonka et al. “Crane: Failure prediction, change analysis
and test prioritization in practice–experiences from windows”.
In: Software Testing, Verification and Validation ICST, 2011
IEEE Fourth International Conference on. IEEE. 2011, pp. 357–
366.

[DMG07] P. M. Duvall, S. Matyas, and A. Glover. Continuous integra-
tion: improving software quality and reducing risk. Pearson
Education, 2007.

[DPH12] J. Downs, B. Plimmer, and J. G. Hosking. “Ambient awareness
of build status in collocated software teams”. In: Proceedings
of the 2012 International Conference on Software Engineering.
IEEE Press. 2012, pp. 507–517.

[FF06] M. Fowler and M. Foemmel. “Continuous integration”. In:
Thought-Works, 2006 (2006).

[Fow99] M. Fowler. Refactoring: improving the design of existing code.
Addison-Wesley Professional, 1999.

[FP98] N. E. Fenton and S. L. Pfleeger. Software metrics: a rigorous
and practical approach. PWS Publishing Co., 1998.

[GS12] M. L. Guimarães and A. R. Silva. “Making software integra-
tion really continuous”. In: Fundamental Approaches to Soft-
ware Engineering. Springer, 2012, pp. 332–346.

[HB10] S. I. Hashimi and W. Bartholomew. Inside the Microsoft Build
Engine: Using MSBuild and Team Foundation Build. O’Reilly
Media, Inc., 2010.

[HB99] G. Hunt and D. Brubacher. “Detours: binary interception of
Win32 functions”. In: 3rd Usenix Windows NT Symposium.
1999.

[HF10] J. Humble and D. Farley. Continuous delivery: reliable soft-
ware releases through build, test, and deployment automation.
Pearson Education, 2010.

[HJ07] J. Holck and N. Jørgensen. “Continuous integration and qual-
ity assurance: A case study of two open source projects”. In:
Australasian Journal of Information Systems 11.1 (2007).

[HX10] A. E. Hassan and T. Xie. “Software intelligence: the future
of mining software engineering data”. In: Proceedings of the

137

CHAPTER 7. CONCLUSIONS

FSE/SDP workshop on Future of software engineering research.
ACM. 2010, pp. 161–166.

[HZ06] A. E. Hassan and K. Zhang. “Using decision trees to predict
the certification result of a build”. In: Automated Software En-
gineering, 2006. ASE’06. 21st IEEE/ACM International Con-
ference on. IEEE. 2006, pp. 189–198.

[Joh96] M. K. Johnson. “Diff, patch, and friends”. In: Linux Journal
1996.28es (1996), pp. 2–4.

[Kim+08] S. Kim et al. “Automated continuous integration of component-
based software: An industrial experience”. In: Proceedings of
the 2008 23rd IEEE/ACM International Conference on Au-
tomated Software Engineering. IEEE Computer Society. 2008,
pp. 423–426.

[Lac09] F. J. Lacoste. “Killing the Gatekeeper: Introducing a Con-
tinuous Integration System”. In: Agile Conference, 2009. AG-
ILE’09. IEEE. 2009, pp. 387–392.

[LS00] J. R. Lorch and A. J. Smith. “The VTrace tool: building a
system tracer for Windows NT and Windows 2000”. In: MSDN
Magazine 15.10 (2000), pp. 86–102.

[LSL12] F. Lier, S. Schulz, and I. Lütkebohle. “Continuous integration
for iterative validation of simulated robot models”. In: Sim-
ulation, Modeling, and Programming for Autonomous Robots.
Springer, 2012, pp. 101–112.

[Mar11] R. C. Martin. The Clean Coder: A Code of Conduct for Profes-
sional Programmers (Robert C. Martin Series). Prentice Hall,
2011.

[Mec04] R. Mecklenburg. Managing projects with GNU make. O’Reilly
Media, Inc., 2004.

[Mil08] A. Miller. “A hundred days of continuous integration”. In:
Agile, 2008. AGILE’08. Conference. IEEE. 2008, pp. 289–293.

[Mis05] S. C. Misra. “Modeling design/coding factors that drive main-
tainability of software systems”. In: Software Quality Journal
13.3 (2005), pp. 297–320.

[Mor+10] G. Moreira et al. “Software product measurement and analy-
sis in a continuous integration environment”. In: Information
Technology: New Generations (ITNG), 2010 Seventh Interna-
tional Conference on. IEEE. 2010, pp. 1177–1182.

138

Software Engineering

[Ras04] J. Rasmusson. “Long build trouble shooting guide”. In: Ex-
treme Programming and Agile Methods-XP/Agile Universe.
Springer, 2004, pp. 13–21.

[Rob04] M. Roberts. “Enterprise continuous Integration using binary
dependencies”. In: Extreme Programming and Agile Processes
in Software Engineering. Springer, 2004, pp. 194–201.

[Rog03] R. O. Rogers. “CruiseControl. NET: Continuous integration
for. NET”. In: Extreme Programming and Agile Processes in
Software Engineering. Springer, 2003, pp. 114–122.

[Rog04] R. O. Rogers. “Scaling continuous integration”. In: Extreme
Programming and Agile Processes in Software Engineering.
Springer, 2004, pp. 68–76.

[Sch04] K. Schwaber. Agile project management with Scrum. O’Reilly
Media, Inc., 2004.

[SE04] D. Saff and M. Ernst. “An experimental evaluation of continu-
ous testing during development”. In: ACM SIGSOFT Software
Engineering Notes. Vol. 29. 4. ACM. 2004, pp. 76–85.

[SOR14] S. Świerc, M. O’Flaherty, and M. Rodŕıguez. “Automated fail-
ure diagnosis in large-scale build system”. In: The Practive of
Machine Learning. Vol. 1. Microsoft. Redmond, USA, 2014.

[Sto07] T. van der Storm. “The Sisyphus Continuous Integration Sys-
tem.” In: 11th European Conference on Software Maintenance
and Reengineering. IEEE. 2007, pp. 335–336.

[Sto08] T. van der Storm. “Backtracking incremental continuous in-
tegration”. In: 12th European Conference on Software Main-
tenance and Reengineering. IEEE. 2008, pp. 233–242.

[Sto09] S. Stolberg. “Enabling agile testing through continuous inte-
gration”. In: Agile Conference, 2009. AGILE’09. IEEE. 2009,
pp. 369–374.

[Whi09] T. White. Hadoop: the definitive guide: the definitive guide.
O’Reilly Media, Inc., 2009.

139

Notation Index

α0, α1 Parameters of Beta distribution

λ Noise parameter of Noisy-Or and Noisy-And models

θ Prior parameter which controls dependent distribution

θ Vector of prior parameters which control dependent distributions

c Changeset domain index

C Random variable which indicates whether changeset introduced a
defect

d Defect domain index

D Random variable which indicates whether specific defect was ob-
served

e Evidence domain index

E Random variable which indicates whether specific evidence was ob-
served

E Vector of random variable which indicate whether specific evidence
was observed

E[X] Expectation (mean) of X

M [x] Counts of event x in the data

M̄ [x] Expected counts of event x

N Gaussian distribution

NX Counts of X random variable

S Random variable which indicates whether specific symptom was
observed

t Build target domain index

V al(X) Possible values of X random variable

141

Index

artifact
build, 10

store, 78

backward-fix, 23

build, 7, 14
broken , 18

gated, 24
graph, 68

integration, 14
nightly, 5

target, 68

build engineer, 23

changeset, 7

CI, see Continuous Integration
commit, see changeset

component test, 7
conditional probability distribution,

35

Continuous Integration, 5

CPD, see conditional probability dis-
tribution35

diff, 49

evidence

basic, 79
complex, 79

Extreme Programming, 5

forward-fix, 23

grey-box testing, 93

Hadoop, 87
hyperparameter, 82

IID, 41
integration, 14

broken, see build broken
machine, 8

integrator, see integration machine

leading-failed target, 71
leak probability, 38

mainline, 8
MapReduce, 87

noisy-and model, 37
noisy-or model, 37

plate model, 39
pseudo-count, 85

refactoring, 15
repository, see Version Control Repos-

itory

staged build, 9
system pseudo-changeset, 78
system test, 7

142

INDEX

target, see build, target
leading-failed, 71

test
integration, 5, 7, 10, 26

trunk, see mainline

uninformative prior, 95
unit test, 7

VCS, see Version Control System
Version Control Repository, 7, 12
Version Control System, 6, 12

XP, see Extreme Programming

143

	Introduction
	Problem statement
	Dissertation organization

	Continuous Integration
	Principles and practices
	Elements
	Integration build
	Benefits
	Broken build management
	Related work
	Strategies

	Challenges of large-scale CI systems
	Summary

	Reasoning under uncertainty
	Previous work
	Representation
	Bayesian network representation
	Local probabilistic models
	Template-based representation

	Inference
	Learning
	Bayesian troubleshooters
	Summary

	Data set
	Format
	Build configuration
	Build logs
	Build trace
	Changes
	Causes

	Collection scenarios
	Forward fix scenario
	Backward fix scenario
	Ambiguous backward fix scenario

	Quality improvement
	Initial quality assessment
	Outliers analysis

	Summary

	Diagnosis model
	Requirements
	Machine Learning solution
	Incorporation of the existing expert knowledge
	Interpretable results
	Scalability with the number of distinctive defects

	Diagnosis procedure
	Create a build graph from logs and build trace
	Find the set of leading-failed build targets
	Extract the information regarding errors from log files
	Reduce the set of leading-failed build targets
	Build Bayesian network describing the problem
	Observe basic evidence
	Execute inference procedure
	Observe complex evidence
	Collect results

	Training procedure
	Expert elicitation
	Offline training
	Online training

	Practical considerations
	Summary

	Study of the effectiveness
	Data set used in the research
	Programming languages
	Expert elicitation

	Research approach
	Prior expert knowledge
	Complex evidence
	Noise parameters
	Cross-Validation

	Network size sensitivity analysis
	Baseline analysis
	General defect types
	Specific defect types
	Combined model

	The impact of prior expert knowledge
	Summary

	Conclusions
	Bibliography
	Notation Index
	Index

