
Research paper78 © Copyright by International OCSCO World Press. All rights reserved. 2014

of Achievements in Materials
and Manufacturing Engineering

International Scientific Journal

published monthly by the

World Academy of Materials

and Manufacturing Engineering

Introduction to solving task-level
programming problems in logic
programming language

K. Foit
Institute of Engineering Processes Automation and Integrated Manufacturing Systems,
Faculty of Mechanical Engineering, Silesian University of Technology,
ul. Konarskiego 18a, 44-100 Gliwice, Poland
Corresponding e-mail address: krzysztof.foit@polsl.pl

Received 17.03.2014; published in revised form 01.06.2014

ABSTRACT

Purpose: This paper illustrates one of the possibilities of using logic programming language
to process task-level description of robot’s program. The goal of such programming method
is to achieve almost the same abstract level in human-machine communication as in human-
to-human communication.
Design/methodology/approach: The task-level programming is very different from
trajectory planning, although some algorithms from this field are used in subsequent stage
of detailing of the program. At a higher level we only define the proper sequence of actions.
This could be also done using logic processing languages (e.g. Prolog).
Findings: The approach shown in the paper allows to solve manipulation tasks at high level
(the sequence of actions), but does not cover all the problems connected with manipulator
movements like avoiding collisions or detailed description of the motion.
Practical implications: Due being immature, the mentioned method is not applicable
in real world, but could be used as a base of further research.
Originality/value: Task-level programming and problem solving is a very current field
of research and experiments in robotics. It is also in very early stage, so most of methods
have only scientific mean, without wide application in the industry.
Keywords: Robotics; Task-level programming
Reference to this paper should be given in the following way:
K. Foit, Introduction to solving task-level programming problems in logic programming language,
Journal of Achievements in Materials and Manufacturing Engineering 64/2 (2014) 78-84.

ANALYSIS AND MODELLING

1. Introduction

Modern industry is largely based on robotized
production. There is no doubt, that most of the work on the
production line is done by the programmed manipulators,

without human intervention. For this reason, engineers are
searching for efficient methods of robots’ programming.
The main goal is to achieve simplicity of programming
while reducing the number of errors during programming
process. This task is realized by wide spectrum of methods,

1. Introduction

79READING DIRECT: www.journalamme.org

Volume 64 • Issue 2 • June 2014

beginning from specialized high-level programming
languages to the programming by demonstration. In addition
to the trajectory planning the programmer must take into
account the communication between robots and other
machines [1]. The use of special interfaces (touch screens,
force detectors, video devices etc.) could make the
programming process more intuitive [2-4,6]. In order to
help in everyday programming routines, so called code
snippets are created. They are usually a small portion of the
source code, which could be used in larger program (as
a part of it). Snippets generally used to minimize repetition
of the same code. In connection with code skeletons,
snippets make programming easier [6]. This form of code
developing is sometimes called “copy&paste programming”
to emphasize the negative effect of this style. It has more
in common with automatic program generation, using
advanced graphics application to simulate and off-line
programming of the robot [3,4,5]. The negative effects of
such approach manifest themselves in the quality of
resultant code: bad optimization, errors replication etc.
Despite the fact that the rapid development of a program
has several disadvantages, the method is regarded as most
efficient way of programming.

Unlike the method mentioned earlier, an ideal solution
could be to give the machine some short commands in
order to achieve the desired effect. Since the ancient times,
people dream of such possibility in relation to machinery or
“artificial life form”. The traces of this could be found in
ancient writings (e.g. “Politics” by Aristotle), myths and
legends (“The Golem of Prague”). The 20th century, with
the development of science and industry, has brought new
opportunities. In 1920’s, Czech writer and playwright,
Karel Capek defines the new word: “robot”. Over the next
decades, this word will be widely spread over the world by
another science-fiction writer – Isaac Asimov.

The first attempt to create the task-level programmed
machines was made by Westinghouse. In his factory
several “robots” was produced, including “Mr Herbert
Televox” and “Elektro the Moto-Man”. Both mentioned
machines were task-oriented ones and the proper action
was activated by sound - technically, the “Elektro” robot
was activated by human voice. In fact, the machine reacted
to a number of impulses of light, which were created by
every spoken word. Every command was connected with
the proper number of impulses. It looks like a hoax, but in
the late 1930’s it was the fulfilment of the dream of
mechanical servants. Nowadays, this trend continues.
The home appliance market offers more and more devices
controlled by voice commands or gestures; this includes
smartphones, so called “smart tv”, refrigerators etc.
The voice control is also used in cars, where provides

support for on-board equipment (radio, GPS navigation, air
conditioning, telephone, etc.) without taking your hands off
the steering wheel.

Contemporary industry is fairly conservative in the
implementation of new IT solutions. On the one hand, this
is due to economic calculations, on the other hand there is
the need to preserve the safety, security and continuity of
production. The voice control/programming, however, is
for a long time known in robotics and mainly used in
surgical robot control systems, where the operator should
always keep hands on the joystick during the surgery.
The voice control enforces brief commands that, in fact,
provide sufficient quantity of information to complete the
action described by the command.

Programming at the task level, poses major challenges
for researchers dealing with this problem [7-9]. On the
other hand, it can really simplify programming by making
a programming language similar to natural language.

2. Information, meaning, completeness

The distinction between information and its meaning
is particularly relevant at the task-level description.
The description should be sufficiently exact in order to
make interpretation clear and explicit. Natural, everyday
language uses many simplifications, which leave
a considerable margin for interpretation. For this reason,
we should take a look at the language as an information
medium, using certain principles adopted in the philosophy
of information and communication theory [10-13].

First of all, we could look at the single word as a sign
that carry some information. In general, it does not matter
whether the sign is understandable – it is important to know
that “it means something”. For example, if somebody is
familiar with the Latin alphabet, the words written in
Russian or Chinese will be completely unreadable for him,
but he will claim, but he will be right saying that they have
a meaning. In order to determine meaning of these words,
this person needs to know a foreign alphabet and a language.
We can also assume a slightly different situation. We are
on holiday in some exotic country, but we do not know the
local language. If someone says something to us in this
language, we automatically reject the information that
cannot be interpreted (language) and look for other signs,
e.g. the behaviour of the person, trying to figure out what
are the intentions. Let’s have another example: there is
a forest and some traces indicate that a boar is prowling
around. The ranger immediately identifies the signs and
will be able to visualize an animal, while the random
person could not even notice the traces.

2. Information, meaning, completeness

Research paper80

Journal of Achievements in Materials and Manufacturing Engineering

K. Foit

The given examples point out three important things.
First of all, the information is something that independently
exists in the environment. The second important thing is
the fact, that information could be correctly interpreted
only when the “receiver” has the proper level of knowledge.
Eventually, the information could be ignored, when there is
no enough knowledge to interpret it.

Another issue is the completeness of the information.
The incomplete information are very common in everyday
life, for example the sentence:
Give me some milk, please. (1)
carries only the information about what somebody wants.
There is no data about amount, type of milk or about
container. In the typical life situation, we could complement
the missing information using our knowledge and
experience: if we know that person, who wants the milk,
we could fulfil the wish. The knowledge could be
supplemented by requesting the missing data, for example
the waiter in the restaurant could ask the client some
question, which will ensure that the dish will be served in
accordance with the guest’s order.

It could be seen, that the knowledge plays the main role
in realization of defined task. Using the given example, we
could define the needed sets of data: the type of milk,
amount and container. In order to reduce the complexity,
we could use some “standard variables”. The general
declaration for this type of variables could be written in
pseudocode, as shown in Fig. 1.

Fig. 1. The declaration of types (sets) in pseudocode

The procedure, which satisfies the demand “Give me
some milk”, could be written in pseudocode as it has been
pictured in Fig. 2. This is very general approach, but it
could be seen, that the parameters are required. The
interpreter does not know what means “some” or what kind
of milk should be selected. The properly formulated
command should be in form:
Give me half glass of fat milk, please. (2)

The given sentence contains values of all variables used
by the procedure. Using the parameters from the sentence
(2), the procedure call should have the form like
Give_milk(fat,glass,half); (3)

Fig. 2. The program in pseudocode

After substituting the parameters (passed in the
procedure call) in place of the variables, the code takes the
form shown in Fig. 3.

Fig. 3. The main part of program using actual parameters

The given example illustrates the need to precisely
define the tasks and completeness of the provided
information.

As it was mentioned earlier, the correct interpretation of
the information requires a proper level of knowledge. This
general term stands for the ability of the correct
interpretation of a message, as well as the set of
proceedings rules used during the realization of the task.

In the case of a program or procedure, the knowledge
should be available in the form of data permanently
registered in the program code, or in the form of references
to external sources (file or database). The same applies to
the rules and subroutines that can be available in the form
of a universal library, dynamically linked with the code.

3. Splitting a task into parts; levels of
detail

When editing a program at the task level, we do not
focus on each step separately. Referring to the examples
shown in Figs. 2 and 3, we do not analyse what is hidden
under the names of procedures such as “Select” and “Pour”.

3. Splitting a task into parts;
levels of detail

81Introduction to solving task-level programming problems in logic programming language

Volume 64 • Issue 2 • June 2014

In everyday life, when sending a certain command to
a specific person, we assume that this command is
understood and the person is able to interpret it correctly
(Fig. 4). In fact, the specific name of procedure encodes the
set of activities that concrete the action. For example, it is
possible to write the procedure “Select” as follow in Fig. 5.

Fig. 4. General scheme illustrating data flow during
interpretation of information

Fig. 5. Hypothetical code of the procedure “Select”

The mentioned procedure consists of four another
procedures: “ReachFor”, “Grab”, “GoBack” and
“PutOnTable”. The passed parameter “obj” is the type of
object to select. As it was shown in Fig. 1, the “objects” is
the enumerated type consisting of all possible types of milk
and containers. This enables to reach both the specific type
of milk and the container and makes the procedure “Select”
more universal.

What makes this example a very important one is
moving to a different level of detail. In fact, with the
knowledge of the details of the procedure "Select", we can
replace any of its occurrence in the code shown in Figs. 2
and 3, with respectively customized code from Fig. 5. This,
however, would lead to the conclusion of quite detailed
information at the highest level of generality. On the other
hand there is no information about the commands “Grab”,
“ReachFor”, “PutOnTable” and “GoBack” used in the code
shown in Fig. 5. What we can do is to step down to another
level of details and write the mentioned procedures.

A very important conclusion drawn from these
considerations is the fact that the task level programming

resembles the structure "from general to specific".
The definition of the task itself is not enough to implement
it without the completion of the lower level procedures.
This results in a tree structure (see Fig. 6), where different
levels represent different quantity of details. This eventually
leads to the definition of elementary, indivisible actions,
which form the lowest level of the program’s structure.
This is important from the point of view of further code
processing (for example into a form of robot’s program),
but on the general level of considerations, this may lead to
unnecessary obfuscation of code. The task-level programming
should give the fast and clear solutions, which takes into
account the imposed conditions and restrictions. The
examples of such programming tasks could be famous
“Towers of Hanoi” problem or “River crossing puzzle”.
These puzzles could be easily solved and described using
task-level approach with the support of logic programming.

4. The Prolog programming language

The Prolog language was developed in early 1970’s.
It is hard to say that it is one of the programming languages
used every day. The main difference between Prolog and
other programming languages is its declarative nature.
This means that there is no algorithm that solves the
problem. Instead, there is a description of a problem,
written in a special manner (according the rules of the
Prolog language), so the system can deduce the solving of
that problem [14-15].

The source code of Prolog program consists of logical
formulas describing the properties of the problem. Prolog
uses the method of resolution in order to determine the
right answer to the problem given by the description.
Programming in Prolog consists in expressing the
relationship as opposed to functional programming, where
the expressions (functions) are evaluated. It should be kept
in mind that every function is a relation, but not vice versa.

Coding in the Prolog involves creating the program
structure, which consists of predicates and clauses.
The desired solution is called goal. The final appearance of
the source code largely depends on the type of dialect.
The Borland’s Turbo Prolog requires exact definition of
program structure as it is shown in Fig. 7, while some of
the others (e.g. SWI Prolog) are more tolerant.

The source code of the Prolog program looks very
different in comparison with source codes written in other
programming languages. First of all, there is no “data
flow”, no sequential execution of commands, no iterations.
The main body of the source code is built on so called
clauses, which could consist of facts and rules.

4. The Prolog programming language

Research paper82

Journal of Achievements in Materials and Manufacturing Engineering

K. Foit

Fig. 6. The tree structure of a program. Different levels represent different quantity of details

Fig. 7. The structure of the source code in the Turbo Prolog
language

In order to fully understand what the programming in
Prolog is, first of all we should answer to the question:
what is the predicate, clause, fact and rule. The predicate
could be seen as a declaration of the object and its
properties, for example
car (brand, color, age). (4)
defines a hypothetical object, which is a car of some brand,
some colour and age. The expression (4) could be used to
determine a concrete car – then it could have form of (5):
car (fiat, blue, 3).
car (ford, yellow, 5). (5)
car (toyota, white, 2).

The expressions listed above, describes the concrete
cars. In this way the predicate has been treated as a template,

and on this basis the specific vehicles and their properties
have been defined. The expressions (5) are called facts and
are included in the set of clauses.

The other subset of clauses is formed by rules. Let’s
assume that car painted in bright colour is better visible
at night. From the clauses mentioned in (5), we could select
the yellow and white colour and write the following rules
(6):
visible (X) :- car (X, yellow). (6)
visible (X) :- car (X, white).

Gathering the (5) and (6) together and running the code
in SWI-Prolog gives the results shown in Fig. 8. The
subsequent numbers indicate questions (goals), while "?-"
is the standard prompt of the SWI-Prolog system.

Fig. 8. The results of “asking questions” in the SWI-Prolog

The above example illustrates the general principle of
creating a program in Prolog. Despite some similarities to
the description of the algorithm by using pseudocode, the
source code written in Prolog does not describe the
subsequent steps that lead to completion of a specific task.

83Introduction to solving task-level programming problems in logic programming language

Volume 64 • Issue 2 • June 2014

5. The logic programming as a support in
planning of robotic task

As it was mentioned earlier, the Prolog language
is characterized by a declarative form of source code, as
a natural way of the creation of the program in that language.
A certain level “freedom” when defining the constants and
variables, no need to preserve the characteristic structure of
the functional programming (associated with the order of
coede execution) and the form of source code that is similar
to natural language, make the Prolog a good tool for
solving problems related to the robotic task planning [16].

5.1. The simple example

Let’s assume that there is a simple robotic assembly cell
(Fig. 9). It consists of a robot, conveyors as input and
output buffers, temporary buffer, and the assembly holder.
The robot performs the assembly operation of a car lamp.
There are four characteristic position of the robotic arm,
which are indicated in Fig. 9 by the numbers 1, 2, 3 and 4.
In the input buffer the three components are arranged in
random order – they are the mirror with the housing
(body), bulb and glass. The task of the robot is to assemble
the lamp by placing all of the components in the correct
order, starting with the body, which should be placed in the
holder, and then installing the bulb and glass. The ready
lamp should be placed in output buffer. Because the
arrangement of components in the input buffer may be
random, there is another buffer, where any component
could be stored for a while. It has the capacity of one
element. We assume that there could be any combination
of components, but there must be possibility to assemble
the lamp from the following three parts taken from the
conveyor.

Fig. 9. The model of hypothetic assembly cell

The aim is to create a simple program, which describes
the actions on the task level. In order to do that it is
necessary to create the “input_buffer” predicate (7):
input_buffer (part1, part2, part3). (7)

where the part1, part2 and part3 are components used to
build a lamp. In this manner there could be six combination
of the element sequence in the input buffer (8-13).
input_buffer (bulb, glass, body). (8)

input_buffer (bulb, body, glass). (9)

input_buffer (glass, bulb, body). (10)

input_buffer (glass, body, bulb). (11)

input_buffer (body, bulb, glass). (12)

input_buffer (body, glass, bulb). (13)

The goal is to find the sequence of robot’s arm
movements according to the configuration of the input
buffer. The assembly process should fulfil the following
rules:

the body should be placed in holder,
the bulb should be mount inside the body,
the glass should cover the body with the mounted bulb,
the temporary buffer is intended for short-time storage
of only one part.
The search for solution is initiated by entering the goal

in the form of (8-13). For example the goal (12) generates
the following solution:
Move body from in_buffer to holder
Move bulb from in_buffer to holder (14)
Move glass from in_buffer to holder
Move lamp from holder to out_buffer

The “holder” statement stands for arm position – this is
a simplification, which unambiguously determines the
position for further processing at higher level of detail.
As it can be seen, the lamp could be assembled without the
use of temporary buffer, because all of the components are
in order of use. In turn, the goal (9) generates the following
solution:
Move bulb from in_buffer to temp_buffer
Move body from in_buffer to holder
Move bulb from temp_buffer to holder (15)
Move glass from in_buffer to holder
Move lamp from holder to out_buffer

Here the temporary buffer is used, because it is need to
change the order of components. The goals (8) and (10)
cannot be solved because of limited capacity of temporary
buffer.

5.1. The simple example

5. The logic programming as a support
in planning of robotic task

Research paper84 READING DIRECT: www.journalamme.org

Journal of Achievements in Materials and Manufacturing Engineering

6. Conclusions

For centuries the man is accompanied by dreams
of machines that he can control by giving the commands
in natural language. With the development of robotics, these
dreams have become a necessity, especially in applications
where the man is accompanied by a robot during his work,
like for example heart surgery or space mission. The
development of task-level programming is currently in the
early stage, but gives a chance to clearly define the top
level actions that may be further “clarified” by developing
the subsequent levels of the code. The restrictions associated
with the particular task can cause problems even at the
highest level of generality. This paper has shown the
possible use of logic programming language as a method of
supporting the task planning for robotic systems. At the
present stage of development, the presented method cannot
be considered as independent and competent tool, but in
some cases may significantly facilitate the programmer’s
work.

References

[1] D. Reclik, G. Kost, J. wider, The signal connections
in robot integrated manufacturing systems, Journal of
Achievements in Materials and Manufacturing
Engineering 26/1 (2008) 89-96.

[2] K. Foit, J. wider, The project of a platform-
independent, off-line programming system for
industrial robots, Proceedings of the 7th International
Scientific Conference “Computer Integrated
Manufacturing – Intelligent Manufacturing Systems”,
CIM'2005, 62-65.

[3] J. wider, K. Foit, G. Wszo ek, D. Mastrowski,
The off-line programming and simulation software for
the Mitsubishi Movemaster RV-M1 robot, Journal of
Achievements in Materials and Manufacturing
Engineering 20/1-2 (2007) 499-502.

[4] K. Foit, The web-based programming interface
for the Mitsubishi Movemaster robot, Journal of
Achievements in Materials and Manufacturing
Engineering 27/2 (2008) 183-186.

[5] G. Kost, R. Zdanowicz, Modeling of manufacturing
systems and robot motions, Journal of Materials
Processing Technology 164-165 (2005) 1369-1378.

[6] K. Foit, Mixed reality as a tool supporting
programming of the robot, Advanced Materials
Research (2014) (in print).

[7] R. Johansson, Sensor integration in task-level
programming and industrial robotic task execution
control, Industrial Robot: An International Journal
31/3 (2004) 284-296.

[8] T. Lozano-Pérez, Task-level planning of pick-and-place
robot motions, IEEE Computer 22/3(1989) 21-29.

[9] E. Coste-Mainere, B. Espiau, E. Rutten, A task-level
robot programming language and its reactive
execution, Proceedings of the IEEE International
Conference “Robotics and Automation” IEEE, 1992,
2751-2756.

[10] C.C. Kuhlthau, From Information to Meaning:
Confronting Challenges of the Twenty-first Century,
Libri 58 (2008) 66-73.

[11] C. Menant, Information and Meaning, Entropy 5
(2003) 193-204.

[12] L. Floridi, Is semantic information meaningful data?,
Philosophy and Phenomenological Research 70/2
(2005) 351-370.

[13] J.C. Mingers, Information and meaning: foundations
for an intersubjective account, Information Systems
Journal 5/4 (1995) 285-306.

[14] Turbo Prolog – Owner’s handbook, Borland
International Inc., 1986.

[15] U. Nilsson, J. Maluszynski, Logic, Programming and
Prolog, John Wiley and Sons Ltd, 1995.

[16] B.G. Batchelor, R. Hack, Robot vision system
programmed in Prolog, Proceedings of the Conference
“Machine Vision Applications, Architectures and
Systems IV”, Philadelphia, 1995, 239-252.

References

6. Conclusions

