Ernest Czogala, Witold PEDRYCZ
Politeohaika Slaska

A CONTRIBUTION TO FUZZY MARKOV CHATNS

Abstract

Summaxy. Since the establishment of fusxy aet theory it formed a useful tool for solving a wide elass of probleng. Nowadays there are some attempts to combine fuxzy set theory and probability theory in order to dosoribe ubjeotive and objeotive form of uncertadaty.

Here we deal with fuzzy Marisov chains treating them as a reformulation of well known notion of probmbility. The peper introduces some basio propertios and theorems comooted with fusmy Markov ohains (e.g. tationarity of transition matrix of the ohain). The applioational example illustrates the utility of disoussed method.

1. Prelininaries

Theory of ruzgy sete investigated by many rasearohes played similariy, as the probability theory an important role in desoription of many problems of soienoe. The theory of probability and atatistios, atabliahed theoretionily by Kelmogorof foras a useful tool for fmestigation of the nondeterministio phonomena, e.B. optiaal oontrol uader Etoohastio dinturbanoes.

There are some papers congeoted with funcy-peobability theory, mentioned firstly by Zadoh [5] and coutinueed by e.g. Hirota [3]. Fuzsy set tbeo ry and probability theory were oombined in different mannex, empheaising the various mepeota of desoription of oomplex prooessen in "hard" and "soft" solenoes [6].

Let us noz introduce the notion of fazzy Markov chain forming a reformulation of stoohastio Markov ohain, disoussing nome basio propertien as atationadity of traseition watrix of the chain oorreaponding to the similar feature in probability theory. The appliontional example pointe out the utility of the disouseed method.
2. Fuzzy Markoy ohaine-dofinitions and theoreme

Let as oonsider finite collection of states

$$
\begin{equation*}
\left\{x_{1}, x_{2}, \ldots, x_{1}\right\} \tag{1}
\end{equation*}
$$

Tha transition between the aotual state and the past ones is axpressod by moans of tho number:

$$
\begin{equation*}
\mu\left(x_{1}^{n} \mid x_{j}^{n-1}, x_{x}^{n-2}, \ldots . x_{s}^{0}\right) \in[0,1] \tag{2}
\end{equation*}
$$

where upper indioes denote discrete time moments and the lower ones stand for a conorete state. In extremal oase we have:

$$
\mu\left(x_{1}^{n} \mid x_{j}^{n-1} x_{r}^{n-2} \ldots, x_{s}^{0}\right)=\left\{\begin{array}{l}
1, \text { if the possibility of transition betwee } \\
1-t h \text { and s-th state is the highest one, } \\
0, \text { if this possibility is equal to } 0
\end{array}\right.
$$

Now we could define fuzzy Markov chain.
Def_1 $\left\{\begin{array}{l}x_{1}, x_{2}, \ldots, x_{N} \\ t i s f i e d:\end{array}\right\}$ forms a ruzzy Markov ohain if the followiog is an

$$
\begin{array}{r}
\mu\left(x_{1}^{n} \mid x_{j}^{n-1}, x_{r}^{n-2}, \ldots, x_{3}^{0}\right)=\mu\left(x_{1}^{n} \mid x_{j}^{n-1}\right) \\
\text { i, } j=1,2, \ldots, N
\end{array}
$$

From the above defivition ono can desoribe the fuzzy Markov chain by mean of a transition matrix M_{n} whioh completely oharaoterizes this ohain:

$$
M_{a}=\left[\begin{array}{ccccc}
\mu\left(x_{1}^{n} \mid\right. & \left.x_{1}^{n-1}\right) & \mu\left(x_{1}^{n} \mid x_{2}^{n-i}\right) & \ldots & \mu\left(x_{1}^{n} \mid x_{N}^{n-1}\right) \\
\mu\left(x_{2}^{n} \mid\right. & \left.x_{1}^{n-1}\right) & & & \\
\vdots & & & \\
\mu\left(x_{N}^{n} \mid\right. & \left.x_{1}^{n-1}\right) & \mu\left(x_{N}^{n} \mid x_{2}^{n-1}\right) & \ldots & \mu\left(x_{N}^{n} \mid x_{N}^{n-1}\right)
\end{array}\right]
$$

If we assume the transition wetwoen $1-t h$ and $j=t h$ stato does not dependa time, 80

$$
\begin{equation*}
\mu\left(x_{1}^{n} \mid x_{j}^{n-1}\right)=\mu\left(x_{1} \mid x_{j}\right) \tag{6}
\end{equation*}
$$

is satisfied, we get a stationary Markov chain.

Def. 2. We call ruzzy Markov ohain a stationary, if

$$
M_{n}=M \quad V_{1}=1,2, \ldots
$$

holds true.

$$
M=\left[\begin{array}{ccc}
\mu\left(x_{1} \mid x_{1}\right) & \mu\left(x_{1} \mid x_{2}\right) & \cdots \mu\left(x_{1} \mid x_{N}\right) \\
\mu\left(x_{2} \mid x_{1}\right) & \mu\left(x_{2} \mid x_{2}\right) & \cdots \\
\vdots & & \\
\mu\left(x_{N} \mid x_{1}\right) & \mu\left(x_{N} \mid x_{2}\right) & \cdots \mu\left(x_{N} \mid x_{N}\right)
\end{array}\right]
$$

Now let us consider the problem of oaloulation of the possibility of transition betweon $j-t h$ and i-th state in finite number of steps (n). We start with $n=2$, having the situation depioted in Fig, 1 . State x_{j} forming a starting point is rired. For each $r \in[1, N]$ we oould oompute the minimal value of possibility betwoen $j-t h$ and $i-t h$ state via r-th state:

$$
\begin{equation*}
\text { 田回 }\left(\mu\left(x_{i} \mid x_{r}\right), \mu\left(x_{r} \mid x_{j}\right)\right)=\mu\left(x_{i} \mid x_{r}\right) \wedge \mu\left(x_{r} \mid x_{j}\right) \tag{9}
\end{equation*}
$$

and taking into acoount the maximal value for all $r \in|1, N|$

$$
\begin{align*}
\mu\left(x_{1} \mid x_{j}\right) & =\max _{1 \leqslant r \leqslant N}\left[\min \left(\mu\left(x_{1} \mid x_{r}\right), \mu\left(x_{r} \mid x_{j}\right)\right)\right]= \\
& =\bigvee_{r=1}^{N}\left[\mu\left(x_{i} \mid x_{r}\right) \wedge \mu\left(x_{r} \mid x_{j}\right)\right] \tag{10}
\end{align*}
$$

Fig. 1. Illustration of computation of possibility of tranition between j-th and 1wth state in fuzzy Marikov ohain

This remult is equivalent o the vell known max -min composition of traneition matrix M :

$$
\begin{equation*}
M^{2}=M \circ H \tag{11}
\end{equation*}
$$

or generally for every n

$$
\begin{equation*}
M^{n}=\underbrace{M \cdot M \circ \ldots \cdot M}_{n-t 1 \text { mea }} \tag{12}
\end{equation*}
$$

M^{n} is definod recursively:

$$
\begin{gather*}
M_{0}=I \tag{13}\\
I=\left[\begin{array}{cccc}
1 & & & 0 \\
& 1 & & \\
0 & & 1
\end{array}\right] \tag{14}\\
M^{k}=M^{k-1} \cdot M \tag{15}
\end{gather*}
$$

In plae of max-min oomposition (eq. 10) we oould dafine another oomposition:

$$
\begin{equation*}
\tilde{\mu}\left(x_{i} \mid x_{j}\right)=\prod_{r=1}^{N}\left(\mu\left(x_{i} \mid x_{2}\right) \cdot \mu\left(x_{1} \mid x_{N}\right)\right) \tag{16}
\end{equation*}
$$

"." is an operation of multiplioation (max-mult) oomposition. An mquation corresponding with Eq. 12 has a form:

The fellewinc theorem gives a oonperison ef these two kimds of oompeaitione.

Theoreg 1. If we diacuss max-甲in med max-init eempoitien then the rollowing holds true:

$$
\begin{equation*}
\left\lvert\, \mu\left(x_{1} \mid x_{j}\right)-\tilde{\mu}\left(x_{1} \mid x_{j}\right) \leq \frac{1}{4} \quad \nabla_{1 \leq 1, j \leq M}\right. \tag{18}
\end{equation*}
$$

$\mu(. \mid),. \mu(. \mid$.$) are olements of traneition matriees \mu^{2}$ and H^{2} reapeotively.

Proof. In erder to prove the eerreetness of the theprea it is oneugh and suffiolemt to prove the validity of inequality:

$$
\begin{equation*}
|\min (a, b)-a b| \leqslant \frac{1}{4} \quad a, b \in[0,1] \tag{19}
\end{equation*}
$$

Lot us put down:

$$
r(a, b)=|a 1 a(a ; b)-a b|
$$

We show that $\mathrm{f}(\mathrm{a}, \mathrm{b})$ attaine its global maximum in point amb= $\frac{1}{2}$ oqual to $\frac{1}{4}$ So wo considex:

$$
\begin{equation*}
a=\frac{1}{2}, \quad b=\frac{1}{2}+\& \quad \in\left[0, \frac{1}{2}\right] \tag{20}
\end{equation*}
$$

then we have

$$
\begin{equation*}
f\left(\frac{1}{2}, \frac{1}{2}+\varepsilon\right)=\left|\frac{1}{2}-\frac{1}{2}\left(\frac{1}{2}+\varepsilon\right)\right|=\left|\frac{1}{4}-\varepsilon\right| \leqslant \frac{1}{4} \tag{21}
\end{equation*}
$$

Similarly

$$
\begin{gather*}
a=\frac{1}{2}, \quad b=\frac{1}{2}-E, \quad E \in\left[0, \frac{1}{2}\right] \tag{22}\\
r\left(\frac{1}{2}, \quad \frac{1}{2}-E^{\prime}=\left|\frac{1}{2}-E-\frac{1}{2}\left(\frac{1}{2}-E\right)\right|=\left|\varepsilon-\frac{1}{4}\right| \leqslant \frac{1}{4}\right. \tag{23}
\end{gather*}
$$

so taking into moount the ametry of the disoussed funotion:

$$
\begin{equation*}
f(a, b)=f(b, a) \tag{24}
\end{equation*}
$$

it leads to the theorem.
The theorm 1 oould be extended to the form whioh makes it possible to ompare $\mu\left(x_{i} \mid x_{j}\right)$ and $\ddot{\mu}\left(x_{i} \mid x_{j}\right)$ for $n>2$.
The following inequality is valid:
$\mu\left(x_{i} \mid x_{j}\right) \tilde{\mu}\left(x_{i} \mid x_{j}\right)$ are elements of transition matrices M^{n} and \tilde{M}^{n} respeotivaly.
Disoussing max-min composition (eq. 12) we oould use the followimg results on convergeno of powars of fuzzy matrioes [4].
Theorom 2. If $M^{T} \leqslant M^{3}(r<a)$ thom M converees.
Imediate from this theorem ve cet:
Proposition 1. If for all $1, j 4[1, y]$ there exiate suoh k that

$$
\mu\left(x_{i} \mid x_{j}\right) \leqslant \mu\left(x_{1} \mid x_{k}\right) \wedge \mu\left(x_{k} \mid x_{j}\right)
$$

then M oonvergea to $M^{t} \quad t \leqslant N-1$
From this faot we have: - if $I \leqslant M$ then M oorverges to $M^{t} t \leqslant N-1$. of oourse if $M, M^{2}, M^{3}, \ldots, M^{t}$ forms a oonvergent seriee of matrioes then ve have:

$$
\begin{equation*}
\text { 11: } p\left(\mu\left(x_{i} \mid x_{j}\right), \mu^{\prime}\left(x_{i} \mid x_{j}\right)\right)=0 \tag{26}
\end{equation*}
$$

$\mu^{(}(\cdot \mid \cdot)$ stands for $n-t h$ power of $M, \mu^{\prime}(\cdot \mid \cdot)$ stamds for the linit of the power series of M, p denotes the distance.
This result oorresponds With ergodio property of Markov ehain in irobabi lity theory [2].

In order to estimete the upper bound trensition matrix let un use the olosure of fuzzy relation.

Of oourse we have:

$$
\begin{equation*}
\forall_{t=1,2, \ldots} M^{t} \subseteq M^{0} \tag{28}
\end{equation*}
$$

Tili mow we oonsidered that states are defined preoisely and transition betwbon eneh of the etate is given ubjectively aseigning their trabuition a oonerete value of poseibility.

We could extond our oonsiderationa allowing a more semeral aituation an initial state is given in the form fuzzy set X^{*} defined by meabersbip funotion:

$$
\begin{equation*}
\mu x^{0}:\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \rightarrow[0,1] \tag{29}
\end{equation*}
$$

Then using that' x° we oombine it obtaining the atate in acoond time roment pe follows:

$$
\begin{equation*}
\mu\left(x_{1} \mid x^{0}\right)=V_{m=1}^{N}\left[\mu\left(x_{1} \mid x_{m}\right) \wedge\left(V_{j=1}^{N} \int_{m}\left(x_{m} \mid x_{j}\right) \wedge \mu_{x^{o}}\left(x_{j}\right)\right)\right. \tag{30}
\end{equation*}
$$

Or

$$
\begin{equation*}
\mu\left(x_{1} \mid x^{0}\right)=\bigvee_{j=1}^{N} V_{m=1}^{N}\left[\mu\left(x_{1} \mid x_{m}\right) \wedge\left(\mu\left(x_{m} \mid x_{j}\right) \wedge \mu_{\Sigma} \circ\left(x_{j}\right)\right)\right] \tag{31}
\end{equation*}
$$

Eq. 30 oould be rewritten ae rollowe:

$$
\begin{equation*}
\mu\left(x_{1} \mid x^{0}\right)=\int_{=1}^{N}\left[\mu\left(x_{i} \mid x_{m}\right) \wedge \mu_{x^{0}}\left(\mathcal{H}_{m}\right)\right] \tag{32}
\end{equation*}
$$

(- stands for max-min oomposition), or generaliy for reriable a

$$
\begin{equation*}
\mu\left(x_{1} \mid x^{0}\right)=V_{m=1}^{N}(\mu\left(x_{1} \mid x_{m}\right) \wedge \mu_{X^{0}} \cdot M \cdot \ldots \underbrace{\left.\left(x_{m}\right)\right)}_{n-t 1} \tag{33}
\end{equation*}
$$

3. Numerieal example

As an illustration of our disoussion at the usofulness of the proposod cenept let us onsider an applioational example suoh as deterioration of quality of bridse pavemont, where this prooess is disoussed with respect to its utilizntion [1]. There are a lot of faotors whioh play an inportant rolo suoh as:

- increasime of brittlenass,
- hydratiation,
- freezing mnd unfreezing.

The states E fven here havine its linguistic representation are as follows:
$x_{1}-$ smoeth
x_{2} - quite cood
x_{3} - uneven
x_{4} - not useful for exploitation.
It is an obvious faot that fren onsineoring point of riew wo have some problems which are imteresting from essential design probloms. Sransition matrix has a ferm:

$$
M=\left[\begin{array}{rrrr}
.8 & .4 & .1 & 0 \\
.2 & .7 & .3 & .1 \\
0 & 0 & .2 & .9 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Calulating sequentially M, $\mathrm{M}^{2} \ldots$... We have:

$$
\begin{aligned}
M^{2} & =\left[\begin{array}{rrrr}
.8 & 4 & .3 & .1 \\
.2 & .7 & .3 & .3 \\
0 & 0 & .2 & .9 \\
0 & 0 & 0 & 1
\end{array}\right] \\
M^{3} & =\left[\begin{array}{rrrr}
.8 & .4 & .3 & .3 \\
.2 & .7 & .3 & .3 \\
0 & 0 & .2 & .9 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$H^{4}=M^{3}$ and M^{2} is equal to M^{3}.
Let us ensider the following situation, when we take X en a furgy set ith monbership funotion

$$
\left[\begin{array}{llll}
1 & .1 & .05 & 0
\end{array}\right]
$$

whioh desoribes the initial state of pavement as quite gond. Fie calculate

$$
x^{\infty}=X^{0} \cdot M^{0}=\left[\begin{array}{llll}
.8 & .4 & .3 & .3
\end{array}\right]
$$

It oould be wotioed that the possibility of x_{1} deoreased and tho possibility of x_{2}, x_{3}, x_{4} considerably inoreased pointing the ract of deterioration of quality of the parement.

REFERENCES

[1] Benjamin J.R., Cornoll C.A.: Frobability, Statistios and Doclsion for Civil Engineers. Mo Grak-llill, N. York, 1970.
[2] Hadloy H.: Intreduotion to Probability and Statistioal Theory, HoldenDay, San Franoisoo, 1967.
[3] Hirota K.: Extonded fuzzy expressions of probabilistio sots, in Advanoes in fuzzy set thoory and applioations, edited by M. Gupta ot al, North Holland, 1979.
[4] Thomason M.G.: Finite fuzzy automata regular fuzzy languages and pattern reoognition. Pattern Reoognition, 1975, 5, 383-390.
[5] Zadeh L.A.: Probability moasure of fuzzy evonts. J. Math Anal and Appl, $1968,23,421-427$.
[6] Zadeh L.A.: Outline of a aow approach to the analyate of oomplex systeme and deoision prooesees. IEEE Trans. SMC, 1973, s, 28-44.

Recenzent: Prof. dr hat. int. Andrzej Tylikowsh

Peame
Теория раслкнватьх мнохеств дада практические методм решения пирохою класса пробхем. Нинче судествует несколько попыток объединения теория рас плнвутвк мнохеств с теорией вероятпостен и описание такин образом субъективяон у обектмвяой форми неудеренности.

Работа касаетсл-раслквчагнх депей Каркова, аналогичннх цепям Маркова. Введено нехоторде основнще свонстда (напоимер стационарность) и доказано свлзаннде с ними теорень. Исследования иллострирует практический ппимер.

HOZMYTE LAACUCEY MARKOWA

Streszozenio
Teoria zbiordw rozaytych dostarozyła uzyteoznego narzqazia rozwiazywaaie szerokiej klasy problemb́. Istoiejo obooniekilka prob majeqoy na doIu polqozenie teorii zbiarór rozerytyoh i probabilistyki, umozliwiajac w ten spos $6 b$ opis sublektymaej i obiektywnej formy niepawnofoi.

Praoa dotyozy rozmytyoh lanouchów Markowa stanouiqoyoh adalogif lanouohów Markowa. Wprourdzono niektóre podstawowe wlasnotol (ap. staojonarnofé), udovodniono thierdzonia z nimi zwiqzane. Przyklad aplikaoyjny stanowi flustracje przoprowadzonyoh rozwazari.

