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Abstract

Let K be a field and let UT,,(K) and T, (K) denote the groups of all
unitriangular and triangular matrices over field K, respectively. In the
paper, the lattices of verbal subgroups of these groups are characterized.
Consequently the equalities between certain verbal subgroups and their
verbal width are determined. The considerations bring a series of verbal
subgroups with exactly known finite width equal to 2. An analogous char-
acterization and results for the groups of infinitely dimensional triangular
and unitriangular matrices are established in the last part of the paper.

1 INTRODUCTION & STATEMENT OF RESULTS.

Let K be a field. We consider the subgroups UT,,(K), T,,(K) and D, (K) of
the general linear group GL,(K), n € N. UT,(K) is a group consisting of all
upper triangular matrices of size n X n with unity entries on the main diagonal:

UTo(K) ={A€GL,(K) [ A=1a+ Y aijeij, ai; € K},

1<i<j<n

where 1,, denotes the unity matrix of size n X n and e; ; denotes the matrix
with unity in the place (7, j) and zeros elsewhere.

UT,(K) is a normal subgroup in the group 7, (K) of all invertible upper
triangular matrices of size n x n. Moreover, T, (K) can be represented as a
semidirect product:

Tn<K) = Dn<K) A UTn(K)a

where D,,(K) is the group of all invertible diagonal matrices of size n x n. In [9]
A. Weir determined the characteristic subgroups in UT,,(K) over fields of odd
prime characteristic. A more general description of characteristic subgroups of
UT,(K) for an arbitrary field K, |K| > 2, was given later by Levchuk in [5]
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and [6]. The case of a 2-element field (|K| = 2) was however not covered in any
of the cited results.

Let W be a set of group words over an alphabet X = {z1,x9,...}. For an
arbitrary group G the verbal subgroup of group G with respect to the set W is a
group Vi (G) generated by all values of words from W in group G. If W = {w}
then we write V,,(G) instead of Viy(G). In a nilpotent group G every verbal
subgroup is generated by a single word, i.e. for every set of words W there
exists a word w such that Vi (G) = Vi, (G).

The width widw (G) of the verbal subgroup Viy(G) is the smallest (if such
exists) number | € N such that every element g € Vjy7(G) can be represented
as a product of [ values of words from W in group G. If such number does not
exist, we say that widy (G) = co. One should pay attention to the fact that the
same verbal subgroup considered with different generating sets of words may
have different verbal width.

Every verbal subgroup is a fully characteristic subgroup. The converse state-
ment is true in some groups, for example in the free group, however in general
this is false. In this paper we will give another example of groups in which fully
characteristic subgroups coincide with verbal subgroups.

We start the considerations with introducing some special types of words
and the resulting verbal subgroups. In every group G the words:

c1 =1, Cip1 = [ci(@1, . 20), 1], =12,

called the left-normed basic commutators, generate a series of verbal subgroups
Ve, (G). The subgroups V., (G) constitute the lower central series of G:

G =7(G) 2 %(G) > ...,

in which v,(G) = V., (G).
Next, for n € N we define the words d,, as follows:

dl(xl) =T, dn+1(a:1, Ty vuny mgn) = [dn(ycl, Ty eeny CCanl), dn($2n71+1, cavy xgn)].
The verbal subgroups Vg, (G) constitute the derived series of group G:
G<G <G <.

The two types of words introduced above are the examples of a wider class
of words, namely the outer-commutator words. An outer commutator word
of weight n is defined recursively as follows. The outer-commutator word of
weight 1 is the single-letter word of the form w; = x;, where z; € X. Then, if
Uup = U(Tiy, o, ) and Uy = V(Tiy s T, ), With 7, € X, 1 < j < n are
outer-commutator words of weight r and n — r respectively, such that z;;, # x;,
for j # k, then the word [u,,v,—,] is an outer-commutator of weight n. Of
course, there exist more than one outer-commutator word of a particular weight
n.

Now we go back to the groups of matrices. In UT,(K) we distinguish
subgroups

UTJL(K) ={1n+ Z Qi j€;j ‘ Qg j EK}, 0<li<n-—1.
1<i<j—I<n—1



The matrix
tijla) =1,+ae;; € GL,(K), i#j

is called transvection. It is well known that the set of transvections
{tijla) [1<i<j—l<n—lacK}

for every I € {0,1,...,n — 1} generates the subgroup UT! (see [4] for details).
Moreover, for an arbitrary field K, the descending series of subgroups

UT,(K) =UTY(K) > UTHK) > .. >UT" *(K) > UT" 1K) = {1,}.

is the lower central series of UT,(K) with UTL(K) = v41 (UTn(K)).

We recall the concept of 1-generated-as-fully-characteristic subgroups and
say that a fully characteristic subgroup H < G is 1-generated if there exists an
element g € H such that H = (p(g9) | ¢ € End(G)). The following theorem
will be proved in Section 2:

Theorem 1 Let K be a field. Every fully characteristic subgroup of the group
UT,(K)), n € N, n > 1, coincides with a term of the lower central series of
this group and is 1-generated as the fully characteristic subgroup.

In other words the first part of Theorem 1 states that for every fully char-
acteristic subgroup H < UT,(K) there exists [ € {0, 1,...,n — 1} such that

H = 41 (UT,(K)) = UTL(K).
From Theorem 1 it follows that

e Every fully characteristic subgroup of UT, (K) is a verbal subgroup in
UT,(K).

Since every verbal subgroup coincides with a term of the lower central series
in UT,(K), a natural question arising here is: With which term of the lower
central series does a given verbal subgroup coincide? For example, we have a
well known fact about the derived series of UT,,(K):

e For every k > 0 we have Vg, (UT,(K)) = o1 (UT,(K)).

In Section 3 we prove the equalities of another series of verbal subgroups in
UT,(K). Namely, we obtain the following result:

Theorem 2 Let K be an arbitrary field and k an integer. The following equal-
ities hold:

1. if charK = p and k = r - p*, where p t r, r,a € Z and o > 0, then
Vi (UTw(K)) = 7o (UTw(K)),

2. if wy is an outer-commutator word of weight k, k > 0, then

Vwk(UTn(K)) = ’Vk(UTn(K))'



The second statement is true for a field of an arbitrary characteristic. It also
covers and agrees with the mentioned equalities on verbal subgroups generated
by the words dj.

Section 4 addresses the problem of verbal width. Due to recent significant
applications the width of verbal subgroups in groups has returned to the interest
of researchers [3]. Many authors considered the width of verbal subgroups
regarding its estimates for certain types of groups or finding examples of groups
with finite and infinite verbal width. For example, in [7] it is proved that every
verbal subgroup in an algebraic group of matrices over a field K, where K is
an algebraically closed field of infinite transcendence degree, has finite width.
In particular, this result applies to UT,(K) and T,,(K). However, there is
relatively few results on the exact verbal width in groups. In the following
theorem we give the exact width of verbal subgroups of UT,,(K) generated by
certain words.

Theorem 3 Let K be an arbitrary field and k € Z.
1. If char K = p then the width wid . (UT,(K)) is equal to

(a) 2, if k = p™ - r for some nonzero integers « and r, such that o > 1,
ptr andn > p® +3;

(b) 1, otherwise.

2. If wy is an outer-commutator word of weight k, k > 0, then
wid,, (UT,(K)) = 1.

Note that the second statement in Theorem 3 is true regardless of the char-
acteristic of field K. By Theorem 3 we get an example of a subgroup having
different verbal width, depending on the generating set of words. Moreover, it
provides a series of verbal subgroups with finite width greater than 1.

In Section 5 we characterize the verbal subgroups in the group 7,,(K). We
obtain the following result:

Theorem 4 If K is a field of more than two elements then every verbal sub-
group Viv (T,,(K)) in the group T, (K) is either UTL(K), I > 0 or a product of
the form Viy (D (K)) - UT,(K).

An analogous result for the case of matrix group over the field of char-
acteristic 0 is derived in [1], however the positive characteristic has a great
influence on the complexity of the verbal structure. In the last part of the pa-
per we discuss also the case of the groups of infinitely dimensional triangular,
unitriangular and diagonal matrices, denoted here as UT(K), T'(K) and D(K),
respectively. They are defined as the limits of direct systems of groups. Namely,
if o, : To(K) — Th41(K), n € N, are the natural embeddings, such that for

all A € T,,(K)
%(A)—<§ 01T>,



where 0 is a zero vector from K", then obviously ¢, (UT,(K)) C UT,4+1(K)
and ¢ (Dy(K)) € Dyp+1(K). Now, we define:

T(K) - hTm>(Tn(K>v(Pn)v
UT(K) = h_m>(UTn(K)a‘Pn)a
D(K) = hTm,(Dn(K>v(Pn)a

which are related to each other as follows:
T(K)=D(K) AUT(K). (1)

Now, the considerations focus on verbal subgroups and their width in the
introduced groups of infinitely dimensional matrices. The following result, anal-
ogous to the one in [1] for the case of the matrix groups over fields of charac-
teristic 0, is derived from the direct limit properties:

Theorem 5 Let K be a field.

1. Every verbal subgroup of the group UT(K) coincides with a term of the
lower central series of this group and the following equalities hold:

(i) if charK =p and p 1k, then wid«(UT(K)) =1,

(i) if charK = p and k = p®-r for some nonzero integers a and r, such
that o> 1, p{r then wid, o (UT(K)) = 2,

1) widy, (UT(K)) = 1 for every outer-commutator word wy of weight
k
k, ke N.

2. Every verbal subgroup Vyy (T(K)) is either a verbal subgroup of UT(K) or
can be represented as Vi (D(K)) - UT(K).

2 FULLY CHARACTERISTIC SUBGROUPS OF UT,(K).

2.1 Certain endomorphisms of UT, (K).

In order to describe all fully characteristic subgroups of UT, (K) we first
consider its auto- and endomorphisms. There are few classes of automorphisms
that can be distinguished in UT,,(K), namely the classes of inner and diagonal
automorphisms. The second class contains automorphisms of the type Ap :
UTh(K) — UTy(K), defined as Ap(A) = D 'AD where D € D,(K) is a
diagonal matrix. There are also automorphisms of UT,,(K) that do not belong
to any of these classes, for example 7 : A +— (¢(A4))~!, where < is the symmetry
with respect to the second diagonal of the matrix.

We introduce two endomorphisms 3,6 : UT,(K) — UT,(K):

5((31 af))=(01T 2)



1 a A of
where a = (a1, a2,...,a,_1) € K" 1,0 =(0,0,...,0) € K" ! and A is a matrix
from UT,_1(K).

Subgroups that are invariant under the automorphisms and endomorphisms
described above shall have special form, determined by the way these morphisms
act. The latter was studied by Weir and Levchuk, who described all character-
istic subgroups in groups of unitriangular matrices over fields K, |K| > 2 (see
[5, 6, 9]).

In the following part of the paper we introduce some specific notation. For
every non-identity matrix A = (4; ;) € UT,(K) by d(A) we denote the number
d(A) = @ifn{s | @ijivst1 7 0}

Of course, 0 < d(A) < n—2. For an arbitrary nontrivial subgroup H < UT,,(K)

we define
D(H)= min d(A),
AeH, A#1,
which satisfies 0 < D(H) < n — 2. Obviously H € UT"™) (k).
One of the interesting problems on group morphisms and the characteristic
subgroups is the question whether a fully characteristic subgroup is 1-generated.

In the following deduction we show that every fully characteristic subgroup in
UT,(K) is 1-generated.

2.2 Proof of Theorem 1.

Assume that H < UT,(K) is a fully characteristic subgroup of UT, (K).
The case of H = {1,} is trivial, so assume H # {1,}. Then it is possible to
pick a matrix A = (4;;) # 1,, in H and an index ig € {1,2,...,n — 1} in such
a way that

Aigio+p()+1 = a # 0.
Since H is fully characteristic subgroup, then every endomorphic image of A is
contained in H, thus in particular we have:

gr=PU=2(gn=io=DIH)=L(A)) = 1,, + aey o1 p(ry = tr.2+ (@) € H.

Now, take b # 0 and denote by D(b) the diagonal matrix 1, + (b= — 1)eq 1.
Then applying the diagonal automorphism we obtain

Apw)(tio+p) (@) =t o4 pe)(ab) € H

and hence taking b = a~!c we have t1,2¢+p(m)(c) € H for every c € K\{0}. Now,

applying repeatedly the endomorphism  for every i with 1 <i <n—D(H)—2
we have '
B'(t1,2+p(m)(€)) = tiv1ivo+n(E) () € H.

A well known fact on commutators of transvections [4] implies that

[tik(c), i (1)] = tij(c),



and hence H as a subgroup containing transvections ti7i+D(H)+1(C) for 1 <
i < n— D(H)— 1, contains also all transvections ¢; ;(c) for ¢ € K \ {0},
1<i<n—D(H)—1and i+ D(H)+1 < j <n. These transvections generate
the subgroup

UTPU(K) = yp(ga)41 (UT (K))

and since the inclusion H C U T,]LD

" =vr’" (k).
It is also clear, that H as a fully characteristic subgroup is generated by a
single matrix A, chosen as indicated in the proof. O

(H)(K ) is obvious by definition, we have

3 VALUES OF POWER AND COMMUTATOR WORDS IN
UT,(K) and PROOF OF THEOREM 2

Theorem 1 states that every verbal subgroup in the group UT,,(K) coincides
with one of the subgroups UT!(K) (0 <1 < n— 1), which are verbal subgroups
generated by the basic commutators ¢;11. Our goal here is to establish the
equalities of verbal subgroups generated by other words and the terms of the
lower central series in UT,(K). Namely, two kinds of words will be taken
into consideration: the outer-commutator words and the ”power” words z¥.

Without loss of generality further we may assume that k£ > 0.

3.1 Values of power words in UT,(K).

_ Throughout this section, given a matrix A € UT,(K), we denote by A=
(A;i;) the matrix A — 1,. For every matrix A from UT,(K) and an arbitrary
integer m the equality holds:

m
m\ ~:
A" = L
2(7)2 @
=0
We assume here A = 1,,. The statement is a well known fact for unitriangular

matrices over the commutative ring. A simple observation is that (A2); ;41 =0
for all 1 < ¢ < n and for m > 2 the equalities

(A =0, 0<k<m (3)
follow easily from induction on m. Also, for every 1 < i < j < n we have:
- -1 1 - =1 t-1 ) - -
(Am)iJ = Z (Am= )iﬂflAthj = Z Z (4™~ )i7t2At27t1At17j =
t1=i+1 t1=i+1 to=i+1
j—1  t1—1 tm—2—1  _ N - .
= X 2 2 A At A Ay =
t1=1+1tx=1+1 tm—1=1+1
7j—1 t1—1 tm—2—1
= Z Z o Z Ai,thAtmetmfz cee AtQ,tlAthj

t1=i+1 ta=i+1 tm—1=1+1

(4)



and in particular
~ i+m—1 B ~ B
(A™)iivm = > (Am_l)i,sAs,ier = (Am_l)i,ierflAierfLHm _
S=~i+1 _ B .
(Am_22ivi+m—2Ai+Iﬂ—2,i+m—1Ai+ln—17z‘+m - = (5)

Aiit1Aivtive - Aipm—2i+m—14itm—1,i+m-
The equality (2) also implies the following

Lemma 1 If charK = p and m = p%, a > 0, then for every matriz A €
UT,(K) we have
A" c UTT (K.

Proof. Since p|m then from Kummer’s theorem we have ("7) = 0 ( mod p)
for 0 < i < m. Hence it follows from (2) that

A™ =1, 4+ A™. (6)

From (3) it follows immediately that A™ € UT™1(K). O

3.2 Values of outer-commutator words in U7, (K).

We continue with discussion on some basic facts of the outer-commutator
words. The considerations below apply for groups of unitriangular matrices
over the fields of arbitrary characteristic.

Lemma 2 The matriz C € UT™T(K) is a commutator C = [A, B] of ma-

m-+1+2
trices A€ UT" . »(K) and B € uT K), such that

42l

rank(A) =141, rank(B) = m + 1.

Proof. Let C € UTHTLT;(K) Then C' = 1,,4;42 and we may choose the

matrices A and B as follows:

I+1 m+1

A=Lpqipo+ Z Ciitmt1, B =Tlmyo+ Z Cii+l+1-
i=1 =1

Then

[A,B] = 1p4142=C, rank(A) =141, rank(B)=m+ 1.0

Lemma 3 Let matriz C € UTT"HY(K) be a commutator C = [A, B] of ma-
trices A € UT™(K) and B € UTL(K), such that

rank(A) =n —m — 1, rank(B) =n—1—1.

=5 9)
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where ¢’ = (c1, ¢, ...,cn) € K™ and 0 is a zero vector from K™, is a commutator

of matrices A € UTT (K) and B € UT. | (K) such that

(1) @Y

where a = (a1, az, ...,a,),b? = (b1, ba,...,b,) € K" and

rank(A) =n —m, rank(é) =n-—I,
where A = A — 1,41 and B=DB- 1o41-

Proof. Let A and B be defined as in the statement of the lemma. Then their
commutator is a matrix of the form:

a8 = (M77),

x=A"YB 1 -1,)-a+A'B1(A-1,) b

For our proof we need to show the existence of vectors a and b such that x = c,

rank(A) = n —m and mnk(é) =n —1. Since C € UTTTHZH(K) then ¢’ =

(c1,¢2, ey Cn—m—1-1,0,...,0). Let D = A"Y(B~1~1,)and E = A~'1B~1(4-1,,)
and let us choose vectors d and e such that

c=d+e,

dnfmflfl 7é 07 €n—m—I1—1 7& 07
di=¢=0 for i>n—m-—1-—1.
If ¢;,_m—i—1 = 0 then it is a sum of two nonzero opposite elements in K, hence
there always exist vectors d and e satisfying the above conditions. Now, the

equality x = c follows from:
Da =d, (7

)
Eb =e, (8)

which may be considered as systems of linear equations. Since rank(A)
n—m-—1and A€ UT(K) then

0 7é Ai,i+m+1 = Ai,i+m+1 fO'f‘ all 1 S n—m—1.
Since rank(B) =n — 1 —1 and B € UT!(K) then
0# Biiti+1 forall i<n—-1-1

and thus )
0# By =B i forall i<n—1-1.

Therefore we have:

rank(D) = rank(B—1) = n — | — 1 = rank(D|d),



rank(E) = rank(A) =n —m — 1 = rank(Ele),
where (D|d) and (FE|e) denote the augmented matrices. Hence there exist

solutions a and b to the systems (7) and (8) respectively. Moreover, as d; = 0
for i >n —m —1—1 we have

anp = 0p—1 = ... = Ap—m+1 =0
thus A € U 77" 1 (K) and since dyp—j—y—1 # 0 then 0 # ap—p, = Ap—mni1 =
An_m7n+1 and hence rcmk:(f:l) = n — m. Analogically we obtain a solution
vector b” = (by,...,b,_;,0,...,0), where b,_; # 0, thus B € U n+1( ) and
rank‘(é) =n—1.0

Now, we can combine the two lemmas into one proposition:

Proposition 1 Every matriz C € UT™TH(K) is a value of a commutator of
matrices A € UT™(K) and B € UT.(K).

Proof. The proof is inductive on the matrix size n. Having chosen m and
[ it is necessary to check the case of the smallest nontrivial group which is for
n =m + [+ 2. The checking is stated in Lemma 2 and the inductive step and
proof is provided by Lemma 3. O

Proposition 2 Let wy be an outer-commutator word of weight k. Then
Vi UTW(K)) =V, (UT,(K)) and wid,, (UT,(K))=1.

Proof. The proof is inductive. For k& = 1 we have w; = ¢; thus obviously
Vi, (UTH(K)) = V., (UT,(K)) and wid,, (UT,,(K)) = 1. Let us assume that the
statement is true for all outer-commutator words of weight not greater than k.
Consider an outer-commutator word w1 of weight k 4+ 1. There exist outer-
commutator words v and v of weight r and k + 1 — r, respectively, such that
W41 = [u,v]. Thus

Vi (UTH(K))

Wk+1

<[’LL(A1, "'7AT)7U(AT'+17-'-7Ak+1)] | A; € UTn(K)> <
Vu(UTW(K)), Vo(UT,(K))] = [UTﬁ_l(K%UTT{f_T(K)] =
UTHK) =V, (UT,(K)).

Ck+1
Now we will show the opposite inclusion. We take C € V,, , (UT,(K)) =
UTF(K). Then by Proposition 1 we can choose matrices A € UT"~!(K) and
B € UT*"(K) such that C = [A, B]. From our inductive assumption we have

Vu(UTo(K)) =UT: Y(K), wid,(UT,(K)) =1,
Vo(UTo(K)) = UT, " (K),  wid,(UT,(K)) =1,
hence it follows that there exist matrices Ay, As, ..., A1 € UT,(K) such that
A=u(Ay,..,A) and B =v(Ar41, ..., Ag11). Thus
C=[AB]=u(A1, .., A),v(Ars1,...s Akt1)] = wit1 (A1, ooy Ag1).
Then C' € Vi, (UT,(K)) is a value of word wy1 in group UT},(K') and hence

Voot (UTn(K)) = Vo ,(UTW(K)) and  widy,,,(UT,(K))=1. O

WE+1

in

10



3.3 Proof of Theorem 2.

We will prove each equality separately.

1. Let us assume that charK = p. Then UT,(K) is a p-group and for
every integer r such that p t r we have V,»(UT,(K)) = UT,(K) and
widyr(UT,(K)) = 1. Thus

Virwe (UTn(K)) = Ve (UTH (K))

T

and

hence it is enough to consider the verbal subgroups generated by power
words zP”. Following Theorem 1, we need to prove the equality

Voo (UT,(K)) = UTE 1 (K),

The inclusion Ve (UT,(K)) C UTE" ™! (K) follows Lemma 1, so we need
only to prove the reverse inclusion. In the case @ = 0 the equality
holds trivially, so further we assume that « is positive. We show that
Ve (UT,(K)) contains all transvections of the type

tijla) =1p+aej, ac€K, 1<i<n-—p% i+p*<j<n.

which generate UTE" ! (K).

Let m = p® and A € UT,,(K). Following (6) we have A™ = 1,, + A™ and
thus by (5)

Aliim = Aiit14it1iv2 - Aivm—2i+m—14itm—1,i+m-
The matrix
Bi =1n +aejit1 +€it142 + o + €ipm—1,itm

with 1 <@ < n —m satisfies (B;)™ = t; i4m(a). This argument and the
commutator relations

[tisitm(a); tiym,;(1)] = i (a)

for i + m < j < n show that the generators of the group UTﬁa_l(K) are
contained in Vo (UT,,(K)), and so the reverse inclusion holds. O

2. Let wg be an outer-commutator word of weight k. The equality
Vi (UTn(K)) = Ve, (UTn(K))

is a statement of Proposition 2, which has already been proved.

11



4 THE WIDTH OF VERBAL SUBGROUPS.

In this section we consider the width of verbal subgroups generated by either
the words of the form 2P”, a € N or outer-commutator words. We start with
a few simple observations on powers of unitriangular matrices.

Remark 1. Let A be a matrix from UT},41(K), such that

- A a

=6 %)
where A € UT,,(K), al’ = (a1, as, ...,a,) € K™ and 0 is a zero vector from
K"™. Then for any £k € N

Ak — (z‘(l)k D;a) 7 )

where
Da=1,+A+ A%+ .+ AL (10)

This can be checked by straightforward calculations of AF.

Remark 2. Let A be a matrix from U7, (K) where charK = p. Then from
the equality (5) for every natural number o we have:

p —
Anipoﬁn — An*po‘,nfpourl . An,pa+1’n7pa+2 S ees Anan (11)

Remark 3. Let A be a matrix from UT,(K) and let D = Dy be defined
by (10) for some positive integer k. We also use the notation of A from
Section 3. Then, for all 1 <i < j <n by equalities (2) and (4) we have

Dij = T (A= X 5 (@A) = 5 (A, =

kel kel el
= T (S 06) = T ()@=
s=1 \r=s s=1
k—1 & 7j—1 t1—1 ts—o—1
= (i) > X o X A Ay A
s=1 t1=i+1to=i+1 ts—1=i+1

(12)

Remark 4. Let A be a matrix from UT,(K) where charK = p and let D =
D 4 be defined as in (10) for k = p® where a € N. Then (’;) =0( mod p)
for 1 < s < k, thus as a consequence of (12) we have D; ; = 0 in case of
j <i+k —1 and otherwise

j=1 -1 th—3—1

Dij = > > o > Ain Ay Ay, (13)
ti=id 1 to=id1 g o—itl

12



In particular

Diivh—1 = Aiir1AitiivoAirk—2,itk—1 (14)
If Ai,i+1 75 0 for i = 1, 2, ey U — 1 then Di,i—i—k—l 75 0 and

rank(D)=n—k+1 (15)

Proof of Theorem 3

We first prove the first statement of the theorem. Assume that charK =
p > 0 and consider a power word zF, k € Z. If k is not divisible by p then
widx(UT,(K)) = 1 by arguments given in the proof of Theorem 2. So as-
sume that k& = r - p%, where o > 1. We first check, that if n < p® + 2 then
widyx (UT,(K)) = 1. Again, by arguments in the proof of Theorem 2, it is
enough to show that wid, y« (UT,(K)) = 1. In the following we use the nota-
tion of matrix D4 defined in (10).

First, note that for n < p®* we have Vo (UT,(K)) = {1,} and hence
obviously wid, e (UT,(K)) = 1. Moreover, for n = p® we may choose a matrix
A € UT,(K) such that AP® =1, and Ajit1 # 0 for 1 <7 < n, and hence by
(15) rank(D4) = 1.

Now, assume n = p® 4+ 1. Then Vo (UT,(K)) = Vypo (UTpas1(K)) #
{1041}, so take

1 (a3 o (e%
B =ty pay1(b) = < S 'i') € UT;faHl(K), b’ = (5,0,0,...,0) € K?",

and denote

= A
A == (O ?) S UTpa+1(K)

where a” = (a1, as, ...,C_Lpa),o € KP" and A € UTp(K) is chosen as above. By
(9) we have that B = AP" whenever

b = Dja. (16)

Let (D4|b) denote the augmented matrix. Due to the properties of D4 given
in Remark 4 we have

rank(D4) = 1 = rank(Dal|b).

By Kronecker-Capelli theorem there exists a solution to the system of linear
equations (16) and hence B is a p®-th power of A.
Finally, assume that n = p® + 2 and take

B = (ﬁ T) 6 UTIZ:;_:QI(K), CT — (61702’07 ’0) e Kpa+1'

Let

A= (é il) € UTpoia(K), d' e KP"T,
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where A is the matrix constructed as in the above reasoning. Note, that in
the solution a to the system (16) we obtain 0 # ape = Ape poi; and thus
rank(Dz) = 2. Again, by (9), for B = AP” it is necessary and sufficient that
Djd = c. Sincerank(Dy) =2 = rank(Dngc) it follows that this equation has a
solution. Hence for every matrix B € U T]fa;; (K) there exists A € UTpot2(K)
such that B = AP". This completes the proof of part (b) in statement 1.

The proof of part (a) will consist of two steps. At first we will show that
in every group V, o (UT,(K)) such that n > p®* + 3 with o > 1 there exists an
element which is not a value of the word 27" in group UT,,(K). Then we prove
that every such element can be represented as a product of two values of the
word 2P”.

We first prove that for every n > p® 4+ 3 and o € N we have

wid o (UT,(K)) > 1.

Indeed. Assume that for certain n > p®+1 we have a matrix B € Vo (UT,(K)) =
UTE""Y(K) such that Bp—pen # 0 (it is possible to choose such B since
n > p® + 1) and there exists A € UT,(K) satisfying AP = B. Since from
(11) we have

Aza_pam, = An—p“,n—po‘—i—l : An—po‘+1,n—pf"+2 Tl st An—l,n = Bn—po‘,n 7é 0
then for all i = n — p“,...,n — 1 we have A4;;,11 # 0. Consider matrix B e
UTﬁj_;l(K) such that

) B oT 17
B=|0 1 0],
0 0 1

where 0 is a zero vector form K™ and 1 € K" has ones in n — p® + 2 first
coordinates and zeros elsewhere. We denote

- (B oT o
B:(O 1>eUT5+11(K).

If there exists A € UT,,41(K) such that B = AP" then, by (9), we have

T
A= <A a ) and Dja’ =0".

0 1
But
— B — Ap° —
0 = Bin—p"‘-&-l,n-i—l - An_—p“+1,n+1 - _
= An—p"‘—l—l,n—po‘—i—Q : An—p"‘+2,n—p"‘+3 Teeet An,n—&—la

where A4; ; = A; j for 1 < i,j < n. Hence, by assumptions on 4; ;41 the solution
exists if Ay 541 =0. B -
Now, consider B. If B = AP", where

i«

=]Ih N

=T
al > , DAE_).T =17
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and a = (a,a,41) € K" and 1T = (1,0) € K™, then we have

= =

_ __ AP _
I = ‘én_PO"f'?JH‘Q - An;po‘+2,n+2 - _ _

= An—p"‘+2,n—p°‘+3 : An—pa+3,n—pa+4 METTI Amn—i—l : An+1,n+2
But /Tan = An7n+]_ = 0, hence there is no solution to the above equation and
thus B is not a value of the word xP” in group UT},12(K).

Now, we will show that every element from V.o (UT,(K)) is a product of
two values of the word P” in group UT},(K). The proof will be inductive with
respect to the matrix dimension n. First, we observe from Theorem 2 that
for small dimensions n the verbal subgroups generated by the words 2P” are
trivial. Hence the one and only matrix from such verbal subgroup is 1,, and can
be represented as a product of p®-powers of any two matrices from UT, (K).
In particular, it is true that for every matrix B € V, o (UT),(K)) we can choose
matrices A,C € UT,(K) such that:

B = AP CP", Aiis1Cii41 #0 (17)

for every i in {1,...,n — 1}.

Now for the inductive proof assume that, for certain dimension n, every
matrix B from the verbal subgroup V, ,e(UT,(K)) can be represented as a
product of powers of A,C € UT,(K), satisfying (17). We take B € UT,11(K)
and, using our inductive assumptions we have:

_ B b APYCP" b
=5 )=("" ).

where A, B,C € UT,,(K) and b is a transposed vector from K.

Let us denote
- A a - C c
i-(61) o= 1)

for some vectors a’, ¢’ € K™. Then we have

o i Apacpa ApaDC‘C—i-DA'a
o (Vg7 o),

where D4 and D¢ are defined by (10).
It is clear that D4 and D¢ are not invertible. By (15) we have that
rank(Da) = rank(D¢) is equal to n — p* + 1 as A and C satisfy (17). For

the equality B = AP*CP” it is necessary that
A" Dg-c+Dy-a=b (18)
Since B € Vpo (UTp11(K)) = UTY 7' (K) then
b = (b1,b2, ..., bp—pat1,0,...,0).

Now, we can represent the vector b as a sum of two vectors e and f from K"

b=e-+f
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such that f,_pei1 #0and e,_paj1 #0and e; = f; =0 for i > n—p*+1. We
have
rank(D4) = rank(D4|f)

A)
rank(AP" D¢) = rank(AP" Dcle),

and hence there exist solutions x = ¢ and y = a to the systems of linear
equations
AP Do -x=e, Dy-y=1.

e [APTf
fZm—
=% )

and since from (11) we get 0 # f—pot1 = A

Moreover, if Dya = f then

n
f o _ )
mepotinil = 1 Aigr thus
i=n—p>+1

Apni1 # 0 and by (14) rank(Dg) = n—k+2. In addition, as AP” is invertible
and triangular, then there exist unique solution u to the equation:

(a7
AP u=e

such that u,_pet1 = ep—pat1 # 0 and u; = 0 for ¢ > n — p® + 2. Then, by the
same arguments as above, we obtain that Cy, 1 # 0 and rank(Dg) = n—k+2.
Hence B = AP"CP”, where Ai,z’+1c_'i,i+1 # 0 for all i« = 1,2,...,n. Thus, by
induction, wid o (UT,(K)) = 2. O.

The second part of Theorem 3 has been stated and proved as Proposition
3 in subsection 3.2. It should be pointed out that the case of w; being a
right-normed basic commutator and the field being of characteristic 0 has been
studied and stated as Theorem 4 in the earlier work of the author [1]. The
proof of Theorem 4 was based on the precedent Lemma 5, which is true but
proved incorrectly. The misstatement was noticed and corrected by the author
in [2]. Also the detailed proof of Proposition 2 presented above covers the case
and completes the calculations and proof of Theorem 4 in [1].

5 PROOFS OF THEOREMS 4 AND 5

5.1 Verbal subgroups in 7, (K)

The characterization of verbal subgroups in UT,,(K) enables further consid-
erations on verbal structure in the group of triangular matrices T,,(K). Since
the group T),(K) is a semidirect product of the subgroup D, (K) and the nor-
mal subgroup UT,(K), every verbal subgroup of T,,(K) must be of the form
Vv (T (K)) = Viv (D (K))H for some subgroup H of UT,(K), normal in T, (K)
and including the verbal subgroup Vi (UT,(K)).

Now we consider the verbal subgroups generated by various types of words
separately.

16



1. Verbal subgroups generated by commutator words

If w is a commutator word then Vi, (D, (K)) = {1} and V,(T,,(K)) =
H C UT,(K) and moreover, H is a fully characteristic subgroup of T, (K).
We extend the endomorphisms 5 and  of UT,(K) to the endomorphisms
B and 6 of T;,(K) in the following way:

= al 10 = ( a a A of
Arguing as in the proof of Theorem 1 we deduce that H = UT"(K),
where m = D(H). O

2. Verbal subgroups generated by power words

Let us assume that K is a finite field consisting of g elements and char K =
p, ¢ > 2. The multiplicative group K* of field K is cyclic. Let a be the
generator of K*. If r is a natural number such that 0 < r < g — 1, then
a” # 1. In particular, for every k < ¢ — 1 the equality

aF—1=@-1)(14+a+a*+..+d"),

implies
l4a+a®+..+d" =@ ~1)(a-1)"" (19)

We consider the following cases :

(a) (g—1) |m
Then the equality y?9~! = 1 satisfied in the group K* implies that
D™ = 1, for every matrix D € D, (K), i.e. Vym(Dp(K)) = {1n}.
Hence Vym (T,,(K)) C UT,(K), and since Vym (T),(K)) is fully char-
acteristic, it is invariant to endomorphisms 5 and § and thus it must
be equal to UT!(K) for | = D(Vym (T (K))).

(b) (g—=1)tm
Then o™ # 1. If m < g—1 then @™ # 1 because a is the generator of

the cyclic group K*. If m > ¢ — 1, then there exist numbers s,t € Z,
such that m = (¢ —1)-s+t and ¢t < ¢ — 1. Hence

a™ — a(qfl)-s+t _ (aqfl)s . at _ (:Lt ?é 1.

For i = 1,2,...,n — 1 and arbitrary b € K we define the triangular
matrix
Ai=1a+(a—1)-eii+b-eiit1.

Then the equality (19) implies that

7=0
= 1+ (@™ —1)e; +b(a™ —1)(a— 1)_161‘714_1.

m—1
(A)™ = 1n+(a™ —1)e; + (b > d e =

17



Let D; be a diagonal matrix:

D, =1,+ € (a_l — 1)

then
(D)™ =1n+ei;-(a™™ = 1)
and
(D)™ (A)™ = 1n+ba™ —1)(a—1)"ta ™e; 41 =

In+bla—1)"Y1—a™)eit1 € Vam (T (K)).
Now, we observe that for every ¢ € K there exists b € K such that
bla—1)"t1-a™)=c

Indeed. Since a™ # 1 then a™™ # 1 and (1 —a™™) is an invertible
element. Then one can take

b=c-(1—a"™) " a—-1).

The verbal subgroup V,m (T,,(K)) contains the set of all unitriangular
matrices of the form:

1ntc-eit1, ceK,

which generates the whole group UT,,(K). Hence UT,,(K) C Vym (T, (K))

and finally we have
Vam (T (K)) = Vom (Dn(K)) - UTR(K). O
Now, we summarize the above observation in the proof of Theorem 4.

Proof of Theorem 4. Let us consider first the verbal subgroup V,,(T,,(K))
generated by a single word w. If K is a finite field consisting of ¢ elements,
q > 2, then - as shown above - if w is either a commutator word or a non-
commutator word in which all letterwise sums of exponents are divisible by
g — 1 then the verbal subgroup V,,(T,,(K)) coincides with UT,"(K) for certain
m € N. Otherwise w is a non-commutator word containing a letter with the
sum of exponents not divisible by ¢ — 1 and generates the verbal subgroup of
the form V,,(Dy(K)) - UT,(K).

Since T,,(K) is not nilpotent, then we need to consider the verbal subgroups
generated by the sets of words W = {w;, i € I'}. By definition

Viv (To(K)) = [ [ Vi (Ta(K)),
iel
and every subgroup V,,, (T,,(K)) is either of the form (1): Vi, (Dy(K))-UT,(K)
or of the form (2): UT*(K), m > 0. If W contains at least one word generat-

ing the verbal subgroup of the form (1), then the verbal subgroup V,,(75,(K))
contains UT,,(K) and all possible values of commutator words. Therefore

Viv (Tn(K)) = HVwi(Tn(K)) = H Vwi<Dn(K))'UTn(K) = Vv (Dn(K))-UTn(K),
il iel’
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where I’ is the set of indices, for which w; generates the verbal subgroup of the
form (1).
Otherwise, every word w; € W generates one of the subgroups UT)" (K).
Then
Vir (To(K)) = [ ] Ve (Tu(5) = [T UL () = UT (K),
i€l el
where M is the least number among m;. Thus, every verbal subgroup Viy (T, (K))
is of the form stated in the theorem. O

5.2 Proof of Theorem 5

It is easy to verify (see [1]), that if (Gn,¢n), n € N is a direct system of
groups and G = lim_G,, is the limit of this system of groups, then for every set

n
of words W the following equality holds

Vi (G) = lim Viy(Gy).

n

This implies statements 1 and 2 of the theorem (without items (i), (ii) and
(iii)).

Now, consider a verbal subgroup Vi (UT(K)) such that widy (UT,(K)) =1
for every n € N. Let A be a matrix from Viy (UT(K)). Then there exists N € IN
such that A represents a matrix Ay € Viy (UTn(K)). Since widy (UTn(K)) =
1 then Ay is a value of a word w from W in UTn(K) and there exist matrices
Bnj € UTn(K), 1 < j <t such that A = w(Bnt, ..., Bn¢). Thus A is a value
of the word w on the representatives of By; in UT(K) and hence statements
(i) and (iii) follow easily. In addition, statement (ii) follows Theorem 3 and the
precedent reasoning. O
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