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Abstract

We investigate a special type of closed subgroups of the topological group UT(∞, K)
of infinite-dimensional unitriangular matrices over a field K (|K| > 2), considered
with the natural inverse limit topology. Namely, we generalize the concept of par-
tition subgroups introduced in [23] and define partition subgroups in UT(∞, K).
We show that they are all closed and discuss the problem of their invariancy
to various group homomorphisms. We prove that a characteristic subgroup of
UT(∞, K) is necessarily a partition subgroup and characterize the lattices of
characteristic and fully characteristic subgroups in UT(∞, K). We conclude with
some implications of the given characterization on verbal structure of UT(∞, K)
and T(∞, K) and use some topological properties to discuss the problem of the
width of verbal subgroups in groups defined over a finite field K.
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1. Introduction

Let K be a field such that |K| > 2. By T(n,K) we denote the group of
all invertible upper triangular matrices of size n × n over the field K. Further,
by UT(n,K) we denote the subgroup of T(n,K) consisting of all unitriangular
matrices (i.e. the triangular matrices having all diagonal entries equal to 1),
and by D(n,K) we denote the the subgroup of T(n,K) consisting of all diago-
nal matrices with nonzero diagonal entries. For i > j the group T(i,K) (and
so UT(i,K), and D(i,K)) may be mapped onto T(j,K) (respectively UT(j,K)
and D(j,K)) using the projection πij (or its restrictions πij|UT(i,K) and πij|D(i,K)),
which deletes the last (i− j) rows and the last (i− j) columns of the matrix. The
limits of the obtained inverse spectra (T(i,K), πi,i−1),

(
UT(i,K), πi,i−1|UT(i,K)

)
and

(
D(i,K), πi,i−1|D(i,K)

)
will be denoted by T(∞, K), UT(∞, K) and D(∞, K)
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respectively, and called the groups of infinite triangular, infinite unitriangular and
infinite diagonal matrices. The elements of T(∞, K), UT(∞, K) and D(∞, K)
are the matrices with entries indexed by the set N × N. The group UT(∞, K)
contains as a subgroup the stable group UTf (∞, K) of all finitary infinite ma-
trices, which may be constructed as a direct limit of groups UT(n,K), n ∈ N,
with natural embeddings. Similarly, the direct limits of triangular and diagonal
matrix groups will be denoted by Tf (∞, K) and Df (∞, K), respectively.

In the past few years, the groups of infinite matrices have drawn attention
of many researchers [5, 6, 7, 16, 17]. Among others one finds results on various
aspects of groups T(∞, K) and UT(∞, K), like those concerning their subgroup
structure, their automorphisms, or solvability of special types of equations [3, 4,
18, 19, 20]. Being inverse limits, the groups T(∞, K) and UT(∞, K) may be
considered in a natural way as topological groups, and in particular – profinite
groups, if K is finite (for more information on profinite groups see [13] and [14]).
In the latter case, the topological properties of T(∞, K) and UT(∞, K) turn out
to be interesting both as a self-contained study and as a tool for investigations of
the verbal structure in these groups [15]. This was the motivation of the research
presented within this paper.

Throughout the paper all finitely dimensional matrices will be denoted with
lowercase letters, while for the infinite matrices we will use the uppercase letters.
For every matrix a ∈ UT(n,K) (or A ∈ UT(∞, K)) and m ≤ n by a[m] (and
A[m], respectively) we denote the top-left block of size m×m of matrix a (or A).
The identity matrices in the groups UT(n,K) and UT(∞, K) will be denoted by
en and E. Every finitely dimensional unitriangular matrix a ∈ UT(n,K) may be
written as a sum:

a = en +
∑

1≤i<j≤n

aijeij,

where eij denotes elementary matrix of size equal to the size of a, which has 1 in
the place (i, j) and zeros elsewhere (infinite elementary matrices will be denoted
by Eij). Every matrix A ∈ UTf (∞, K) (or in Tf (∞, K) or (Df (∞, K)) differs
from E only in a finite block A[n] for some n.

In groups UT(n,K), UT(∞, K) and UTf (∞, K) we distinguish the respective
subgroups UT(n,m,K), UT(∞,m,K) and UTf (∞,m,K), which consist of all
those matrices, whose all entries on the first m superdiagonals are zeros. It is
well known (see e.g. [8]) that the series of subgroups

UT(n,K) = UT(n, 0, K) > UT(n, 1, K) > ... > UT(n, n− 1, K) = {en}

is the lower central series of UT(n,K). Analogously, in groups of infinite matrices
the two series

UTf (∞, K) = UTf (∞, 0, K) > UTf (∞, 1, K) > ...

and
UT(∞, K) = UT(∞, 0, K) > UT(∞, 1, K) > ...
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are (infinite) lower central series of UTf (∞, K) and UT(∞, K), respectively [1,
19].

In this paper we consider UT(∞, K) and T(∞, K) as topological groups and
investigate their subgroup structure. The inverse limit topology and some basic
topological properties of UT(∞, K) and T(∞, K) are discussed in Section 2. In
Section 3 we generalize the concept of a partition subgroup introduced by A. Weir
in [23] and define partition subgroups of UT(∞, K). We discuss some properties
of such subgroups with reference to analogous studies of the partition subgroups of
UT(n,K) in [9]. In particular we show that every partition subgroup is closed and
determine the normal closure and normal core of subgroups of this type. Further,
in Section 4 we provide the necessary and sufficient condition for a partition
subgroup to be characteristic in UT(∞, K) and discuss some mutual commutator
subgroups of partition subgroups. Namely, we prove that the mutual commutator
of a normal partition subgroup and UT(∞, K) is also a normal partition subgroup
of UT(∞, K), and we calculate the coordinates of the defining sequence for that
subgroup. Sections 5 and 6 concern the lattices of verbal subgroups of UT(∞, K)
and T(∞, K). In particular, we show that the respective lattice in UT(∞, K)
is linear and coincides with the lower central series of UT(∞, K). In Section
6 we note some implications of our results to the width of verbal subgroups in
UT(∞, K).

2. T(∞,K) and UT(∞,K) as topological groups

In this section we describe the inverse limit topology and the respective stan-
dard metric on T(∞, K), naturally inherited by the group UT(∞, K). We in-
troduce a special type of subgroups of UT(∞, K) and discuss their topological
properties. Then we use it for characterization of characteristic and fully charac-
teristic subgroups of UT(∞, K).

2.1. Ultrametric on T(∞, K)

Let A and B be two matrices in T(∞, K). We define the distance d(A,B)
between A and B to be equal to 1

2k
, where k is the largest natural number such

that A[k] = B[k], and 1 if A1,1 6= B1,1. If there is no such number, that is
A = B, we fix d(A,B) = 0. It is clear that the defined function d : T(∞, K) ×
T(∞, K) −→ [0, 1] is an ultrametric on T(∞, K) and the group operations:
multiplication · and inversion −1 are continuous.

The open ball B(A, r) centered at A ∈ T(∞, K) and with radius r consists
of all matrices T ∈ T(∞, K) such that T and A have the same top left block
of size blog 1

2
rc. For s > 1 we define Ts = B(E, 1

2s−1 ). We say that a matrix

A ∈ T(∞, K) has depth s, if it is contained in Ts but not in Ts+1, and we denote
this fact by dp(A) = s. For every s > 1, Ts is the kernel of the natural projection
πs : T(∞, K) −→ T(s,K), where πs(A) = A[s]. Hence Ts is normal in T(∞, K)
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and
T(∞, K)/Ts ∼= T(s,K). (1)

The group T(∞, K) together with the ultrametric d defined above is a topological
group, with the inverse limit topology defined by the open balls Ts, s ∈ N as the
basis of neighborhoods of the identity. Then UT(∞, K) considered with the
subspace topology, is also a topological group. Moreover, the family of open balls
Us = Ts ∩ UT(∞, K), s ∈ N, is a basis of neighborhoods of the identity for this
topology and we have

UT(∞, K)/Us ∼= UT(s,K). (2)

Further we discuss some properties of this topology.

2.2. Continuous maps in UT(∞, K)

To start our discussion we describe certain basic types of epimorphisms of
the group UT(∞, K). The four of them are listed below (by AU we denote the
conjugation, i.e. AU = U−1AU):

1. inner automorphisms InnU : A 7−→ AU , U ∈ UT(∞, K);

2. diagonal automorphisms DiagD : A 7−→ AD, D ∈ D(∞, K);

3. epimorphisms induced by field automorphisms ς̄ : A 7−→ A′, where (A′)i,j =
ς(Ai,j) and ς is an automorphism of the field K;

4. shifts up: Shn(A) := A|n, n ∈ N.

In the above definitionsA denotes an arbitrary unitriangular matrix in UT(∞, K),
and A|n denotes the matrix A after deleting the first n rows and n columns of it.

It has been shown recently (see [20]) that there are no other epimorphisms
of UT(∞, K), but the epimorphisms of the four types defined above and their
compositions. We recall this result in the following

Lemma 1. Let K be a field such that |K| > 2. Every epimorphism f of UT(∞, K)
onto itself is a composition of epimorphisms of types 1-4.

We are interested only in group automorphisms. The epimorphisms of type 4
clearly are not injective, thus we have the following consequence of Lemma 1:

Corollary 1. Every automorphism of UT(∞, K), where |K| > 2, is a composi-
tion of automorphisms of types 1, 2 and 3.

Since UT(∞, K) is a topological group, it is natural to discuss the continuity of
group epimorphisms. We recall that an endomorphism f : A→ A of a topological
group A is continuous, if the preimage of every open subset in f(A) is open in A.
We now prove
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Proposition 1. Every epimorphism of UT(∞, K), where |K| > 2, is continu-
ous.

Proof. It is enough to show that epimorphisms of each of the four types 1, 2,
3 and 4 are continuous. The inner automorphism are continuous, because they
involve only group operations, which are continuous by definition. Similarly, the
diagonal automorphisms, when considered as inner automorphisms of the group
T(∞, K), are continuous by definition. Automorphisms of type 3 are induced
by field automorphisms. Let ς be an automorphism of the field K, and ς̄ - the
respective induced automorphism of UT(∞, K). Consider an open ball Us and
its preimage under ς̄. It is clear that ς(a) 6= 0 for all a ∈ K∗ = K \ {0}, hence
ς̄(A)ij = 0 if and only if Aij = 0. It follows that ς̄−1(Us) ⊆ Us. Also it is clear
that the bijectivity of σ implies the bijectivity of ς̄, and hence ς̄−1(Us) = Us is
open.

Finally, let Shn(A) := A|n be the shift up by n, n ≥ 1 and let Us be an open
ball in UT (∞, K), s > 1. Then the preimage Sh−1n (Us) contains all matrices
A ∈ UT(∞, K), such that A|n ∈ Us, i.e. d(A|n, E) ≤ 1

2s−1 . Then we have:

Sh−1n (Us) =
⋃

A∈UT(∞,K), d(A|n,E)≤ 1
2s−1

B(A,
1

2s−1+n
),

i.e. Sh−1n (Us) is open in UT(∞, K). Similarly, if U is an arbitrary open set in
UT (∞, K), then it is a sum of basic open sets and their cosets. The arguments
shown above that the preimage of every such open set is open, and so is the
preimage of U . The statement follows. 2

Having all automorphisms of UT(∞, K) characterized we discuss character-
istic subgroups of UT(∞, K). We begin with the following observation

Lemma 2. Let K be a field such that |K| > 2. For every s ∈ N the basic set Us
is a characteristic subgroup of UT(∞, K)

Proof. Observe first that Us is a kernel of the natural projection πs restricted
to UT(∞, K)), which maps UT(∞, K) onto UT(s,K) and thus Us is a normal
subgroup of UT(∞, K). Now it is enough to check that Us is invariant to the
diagonal and field induced automorphisms of UT(∞, K). Indeed, every field
induced automorphism ς̄ preserves all entries of the matrix that are equal to zero
or one and thus ς̄(Us) ⊆ Us. Similarly for every matrix A ∈ Us and D ∈ D(∞, K)
we have D−1AD ∈ Us. Therefore Us is characteristic, as stated. 2

In next paragraphs we provide detailed description of all characteristic subgroups
of UT(∞, K).
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3. Partition subgroups of UT(∞,K)

In the paper [23] A. Weir described characteristic subgroups of UT(n,K) for
a finite field K using a concept of so-called partition subgroups. The characteri-
zation was completed to all fields by V. Levchuk in [9, 10]. We recall briefly these
results and propose a natural generalization of the concept of normal partition
subgroups to the case of infinite dimensional matrices.

Let û = 〈u2, u3, ..., un〉 be a sequence of nonnegative integers. By H(û) we
denote the set of all matrices a ∈ UT(n,K) such that ai,j = 0 for all indices
with j − uj ≤ i < j. Then H(û) is a subgroup of UT(n,K), which admits a nice
graphical presentation using a diagram (we explain these diagrams and give some
examples further in this section). To some extent the diagrams resemble Young
diagrams of partitions (with possible permutations of components) and for this
reason Weir called subgroups of this type partition subgroups 1. We summarize
the results of [23] and [9] in the following

Lemma 3. Let K be a field such that |K| > 2.

1. If a subgroup H of UT(n,K) is normal, then whenever there exists a ∈ H
with ai,j 6= 0 and i < j, the partition subgroup Qi,j = Qi,j(û) with û =
〈u2, u3, ..., un〉 and

uk =


k − 1, k = 2, 3, ..., j − 1,

j − i+ 1 k = j,

j − i+ t k = j + t, t = 1, 2, ..., n− j + i,

k = 2, 3, ..., n,

is contained in H.

2. A partition subgroup H = H(〈u2, u3, ..., un〉) of UT(n,K) is normal in
UT(n,K) if and only if ui+1 ≤ ui + 1 for all i = 2..., n− 1.

3. A subgroup H of UT(n,K) is invariant to all inner, diagonal and field
induced automorphisms of UT(n,K) if and only if H is a normal partition
subgroup.

4. A normal partition subgroup H of UT(n,K) is characteristic in UT(n,K)
if and only if with every matrix a ∈ H it contains the matrix H ′, which is
symmetric to H with respect to the auxiliary diagonal.

The latter condition results from the the fact that every group UT(n,K)
admits an automorphism, that maps every matrix A ∈ UT(n,K) to the inverse

1We note that the notion of a partition subgroup introduced in [23] is more general, but
for the purpose of our study it is enough to discuss only a special type of them, which can be
defined by a sequence as shown above.
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of A′, which is symmetric to A with respect to the auxiliary diagonal. We note
also that statement (3) of the above lemma concerns all subgroups H ≤ UT(n,K)
which are normal in T (n,K), i.e. invariant to any triangular automorphism that
conjugates a matrix by a triangular matrix from T(n,K).

Remark 1. In the case of |K| = 2 one the above lemma does not hold.

A simple counterexample was given in [9] for the group UT(3,F2), where one
finds a cyclic subgroup S = 〈e3 + e1,2 + e2,3〉 of order 4, which is a characteristic
non-partition subgroup. One can observe the exceptionality of the case of K = F2

looking into the group automorphisms of UT(n,F2). It is clear tht the diagonal
automorphisms fall into the class of inner automorphisms in this case. Conse-
quently, the description of characteristic subgroups of UT(n,F2) is substantially
different.

Extending the definition to infinite dimensional matrix groups and following
the terminology, the subgroup H = H(û) of UT(∞, K) will be called a partition
subgroup, if it may be characterized by an infinite sequence of nonnegative inte-
gers û = 〈u2, u3, ...〉 in the following way: A ∈ H(û) if and only if Ai,j = 0 for all
indices with j − uj ≤ i < j, j = 2, 3, .... Direct calculations show that H(û) is a
subgroup of UT(∞, K). For instance, if û = 〈u2, u3, ...〉 is a sequence such that

uk =


k − 1, k = 2, 3, ..., j − 1,

j − i+ 1 k = j,

j − i+ t k = j + t, t ≥ 1,

k = 2, 3, ...,

then Q̄i,j = Q̄i,j(û) is a partition subgroup of UT(∞, K), a generalization of the
concept of Qi,j ≤ UT(n,K). If v̂ = 〈v2, v3, ...〉 is obtained from û by modifying
the j-th coordinate of û, i.e.:

vk =


k − 1, k = 2, 3, ..., j − 1,

j − i k = j,

j − i+ t k = j + t, t ≥ 1,

k = 2, 3, ...,

then the obtained partition subgroup H(v̂) is called rectangular and denoted by
Ri,j.

Following the ideas of Weir, we introduce a more illustrative way of charac-
terizing partition subgroups – the diagrams of matrix groups. The diagrams of
exemplary partition subgroups Q̄i,j, Ri,j and H(û), where û = 〈u2, u3, ...〉 are
presented in Fig.1.

The polyline denotes the border between the zero over-diagonal entries and
arbitrary entries. It’s shape is related to the sequence û = 〈u2, u3, ...〉.

In the following theorem we summarize some general observations on partition
subgroups.
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(a) Diagram of Q̄i,j .

1
1
1
1
1
1
1
1
1
1
1
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1 · · ·

i

j

(b) Diagram of Ri,j .

1
1
1
1
1
1
1
1
1
1
1
1
1
1 · · ·

(c) Diagram of H(û).

Figure 1: Diagrams of partition subgroups.

Theorem 1.

1. Let H = H(û) be a partition subgroup defined by the sequence û = 〈u2, u3, ...〉.

(a) If û = 〈u2, u3, ...〉 is an almost zero sequence, i.e. if there exists N
such that ui = 0 for all i > N , then H is open. Otherwise H has an
empty interior.

(b) H is closed in UT(∞, K).

(c) H is invariant to any automorphism induced by a field automorphism.

2. All partition subgroups of UT(∞, K) constitute a distributive lattice Lpart.

Proof.

(1a) Let û = 〈u2, u3, ...〉 be an infinite sequence of integers. Let us assume that
it is an almost zero sequence and let N be such that ui = 0 for all i > N ,
and let r = blog 1

2
Nc. Then we have

H = H(û) =
⋃

a∈UT(N,K),A|n=a

K(A, r),

hence H is open.

If û is not an almost zero sequence, then it has infinitely many nonzero
terms. It is now sufficient to show that H does not contain any open ball
B(A, r) centered at an arbitrary matrix A ∈ H. Indeed, if B(A, r) ⊆ H,
then H contains every matrix B, such that B|n = A|n for n = b− log2 rc.
In particular, one finds in H a matrix B such that Bi,i+1 6= 0 for all i > n,
and we get a contradiction. Therefore H must be defined by û = 〈u2, u3, ...〉
such that ui = 0 for all i > n. This completes the proof.

(1b) LetH = H(û) be a partition subgroup defined by a sequence û = 〈u2, u3, ...〉
and let G = UT(∞, K) \ H. If H = UT(∞, K), i.e. kj = 0 for all
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1
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1
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1
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1
1
1
1
1
1 · · ·

(a) Diagrams of groups H(ŵ) (red)

and H(û) (blue).

1
1
1
1
1
1
1
1
1
1
1
1
1
1 · · ·

(b) Diagram of group

H(ŵ) ∪H(û) (bold).

1
1
1
1
1
1
1
1
1
1
1
1
1
1 · · ·

(c) Diagram of group

H(ŵ) ∩H(û) (bold).

Figure 2: The diagrams of a sum and an intersection of partition subgroups.

j ∈ N, then H is closed. So assume G 6= ∅. Then G contains all matri-
ces from UT(∞, K) that have a nonzero entry in the place (i, j), where
i ∈ {j − uj, ..., j − 1}, kj > 0. In particular, if A ∈ G is such that Ai,j 6= 0
for certain (i, j) with i ∈ {j − uj, ..., j − 1}, kj > 0, then the open ball
B(A, 1

2j−1 ) is contained in G. Thus G is open and hence H is closed.

(1c) Let us consider an automorphism ς̄ induced by a field automorphism ς and
observe that ς̄(Ai,j) = 0 if and only if Ai,j = 0 and ς̄(Ai,j) = 1 if and only
if Ai,j = 1. It follows that ς̄(H(û)) = H(û).

(2) In the set of all infinite sequences of nonnegative integers we introduce a
partial order �. Namely, if û = 〈u2, u3, ...〉 and ŵ = 〈w2, w3, ...〉, then we
set û � ŵ if and only if ui ≥ wi for every i ∈ N. Observe that by def-
inition, every infinite sequence of nonnegative integers û defines a unique
partition subgroup H(û), and two distinct sequences define distinct parti-
tion subgroups. The partial order � on sequences agrees with the relation
of being a subgroup, i.e. H(û) ≤ H(ŵ) if and only if û � ŵ. Indeed, if
H(û) ≤ H(ŵ), then for every i ≥ 2 we have ui ≥ wi, that is û � ŵ. Di-
rect calculations show that the subgroup H(ŵ) ∪H(û) generated by H(ŵ)
and H(û), and H(ŵ)∩H(û) are also partition subgroups H(m̂) and H(M̂)
defined by the sequences (see Fig. 2):

m̂ = 〈min{u1, w1},min{u2, w2}, ...〉 = inf
�
{û, ŵ},

and
M̂ = 〈max{u1, w1},max{u2, w2}, ...〉 = sup

�
{û, ŵ}.

Moreover, as a lattice of sets, Lpart is distributive. 2

Our next result concerns those partition subgroups, which are normal in
UT(∞, K) (some general remarks on normal subgroups of UT(∞, K) may be
found in [19]). Given a subgroup H of G, by HG we denote the normal closure
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of H in G, i.e. the smallest normal subgroup of G containing H, and by HG

we denote the normal core of H in G, i.e. the largest normal subgroup of G
contained in H. We have:

Theorem 2. Let H = H(û) be a partition subgroup of UT(∞, K), |K| > 2,
defined by a sequence û = 〈u2, u3, ...〉.

1. H is normal in UT(∞, K) if and only if for all i = 2, 3... we have ui+1 ≤
ui + 1.

2. The normal closure HUT(∞,K) of H in UT(∞, K) is the partition subgroup
H(ŵ) defined by a sequence ŵ = 〈w2, w3, ...〉, where w2 = u2 and wi =
min{ui, wi−1 + 1} for all i > 2.

3. The normal core HUT(∞,K) of H in UT(∞, K) is the partition subgroup
H(v̂) defined by a sequence v̂ = 〈v2, v3, ...〉, where vi = max

j≥i
uj for all i ≥ 2.

Proof.

1. Let H = H(û) defined by a sequence û = 〈u2, u3, ...〉 be a normal subgroup
of UT(∞, K). Let us consider the subgroup H(û) · Us of UT(∞, K), s ≥ 1.
Being the kernel of the natural projection of UT(∞, K) onto UT(s,K), the
subgroup Us is normal in UT(∞, K). Therefore

H(û) · Us/Us ∼= H(〈u2, ..., us〉)

is a normal partition subgroup of UT(∞, K)/Us ∼= UT(s,K). By Lemma
3 we obtain that ui+1 ≤ ui + 1 for all i = 2, ...s − 1. As s was chosen
arbitrarily, the statement follows.

Now let H = H(û) be the partition subgroup defined by an infinite sequence
û = 〈u2, u3, ...〉, where ui+1 ≤ ui + 1 for all i ≥ 2. By Lemma 3 we have
that for every s > 1 the partition subgroup

H(〈u2, ..., us〉) ∼= H(û) · Us/Us

is normal in UT (s,K) ∼= UT(∞, K)/Us. Hence H(û) · Us is a normal
subgroup of UT(∞, K) and so is

H(û) =
⋂
s≥2

H(û) · Us.

2. Let H = H(û) be a partition subgroup of UT(∞, K). If H � UT(∞, K)
then the statement holds. Assume the contrary. By Lemma 3 it follows
that there exists i ≥ 2 such that ui+1 > ui +1. It is clear that H(ŵ) defined
by a sequence ŵ = 〈w2, w3, ...〉, where w2 = u2 and wi = min{ui, wi−1 + 1}
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(a) Diagram of H(û).
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1 · · ·

(b) Diagram of H(û)UT(∞,K).
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1 · · ·

(c) Diagram of H(û)UT(∞,K).

Figure 3: The diagrams of the normal closure and the normal core of a given
partition subgroup H(û).

for all i > 2 is the smallest (in the lattice of partition subgroups) partition
normal subgroup of UT(∞, K) containing H (see Fig. 3(b) for the diagram
of H(w̄)). Let N �UT(∞, K) containing H. Then by the same arguments
as above,

Ns
∼= N · Us/Us � UT(∞, K)/Us

implies Ns � UT(s,K), and moreover H(〈u2, u3, ..., us〉) ⊆ Ns. Therefore,
by statement (1) of Lemma 3, Ns contains all partition subgroups Qi,j for
which i < j and ai,j 6= 0 for at least one matrix a ∈ Ns. In particular,

H(〈u2, u3, ..., us〉) ∪
⋃

i=j−uj−1

Qi,j ⊆ Ns,

and hence H(〈w2, w3, ..., ws〉) ⊆ Ns where w2 = u2 and wi = min{ui, wi−1 +
1} for all i = 2, 3, ..., s. It follows that N contains H(ŵ) such that w2 = u2
and wi = min{ui, wi−1 + 1} for all i > 2. Thus HUT(∞,K) = H(ŵ).

3. Let H = H(û) be a partition subgroup of UT(∞, K), which is not normal.
It is clear that H contains H(v̂) in the statement (see Fig. 3(c) for the
diagram of H(v̂)). Now let N be a normal subgroup contained in H and
let Ns

∼= N · Us/Us be the respective normal subgroups of UT(s,K) for
s ≥ 2. Obviously Ns ⊆ H(〈u2, u3, ..., us〉). Moreover, the statement (1) in
lemma 3 implies that Ns does not contain matrices a for which ai,j 6= 0
where i = j − max

i≤k≤n
uk (otherwise Qi,j ⊆ Ns, a contradiction). Therefore

Ns ⊆ H(〈v2, v3, ..., vs〉), where vi = max
i≤j≤s

uj for all 2 ≤ s ≤ n. Then

statement (3) follows easily. 2

Remark. From the above theorem it follows that every rectangular partition
subgroup is normal in UT(∞, K).
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4. Characteristic subgroups of UT(∞,K)

In this section we distinguish characteristic subgroups among all partition sub-
groups and prove that there are no other characteristic subgroups in UT(∞, K)
but those distinguished partition subgroups.

In the following we use the abbreviationNP -subgroup for the normal partition
subgroup of UT(∞, K).

Theorem 3. Let K be a field such that |K| > 2.

1. A partition subgroup H = H(û) defined by a sequence û = 〈u2, u3, ...〉 is
characteristic in UT(∞, K) if and only if it is normal in UT(∞, K).

2. Every characteristic subgroup of UT(∞, K) is a NP -subgroup.

Proof. 1. As the other is obvious, we need to deal only with one implication.
Let H = H(û) be a normal partition subgroup, i.e. a subgroup defined by
a sequence û = 〈u2, u3, ...〉, where ui+1 ≤ ui + 1 for all i ≥ 2. By theorem
1, H is invariant to all field-induced automorphisms, so we have to show
the invariancy of H to the diagonal automorphisms. By Lemma 3 for every
s > 1 we have that

H(〈u2, ..., us〉) ∼= H(û) · Us/Us

is invariant to all diagonal automorphisms of UT (s,K) ∼= UT(∞, K)/Us.
If a ∈ UT(s,K)∪D(s,K) and A is an arbitrary representative of the coset
of infinite matrices in UT(∞, K)/Us or in D(∞, K)/Us respective to a (e.g.
A[s] = a), then H(〈u2, ..., us〉)a = H(〈u2, ..., us〉) implies (H(û) · Us)A =
H(û) · Us. Therefore H(û) · Us is invariant to all diagonal automorphisms
and hence

H(û) =
⋂
s≥2

H(û) · Us

is a characteristic subgroup of UT(∞, K).

2. Let H be a subgroup of UT(∞, K), which is invariant to all inner, diagonal
and field-induced automorphisms. Then H · Us is also a characteristic sub-
group of UT(∞, K) and hence H · Us/Us is invariant to all inner, diagonal
and field-induced automorphisms of UT(s,K). By Lemma 3 the group H
has to be a partition subgroup and there exists a sequence û = 〈u2, ..., us〉
such that H · Us/Us ∼= H(û) and ui+1 ≤ ui + 1 for all i ∈ N. Moreover, if
H ′ = H(û′) ∼= H · Us′/Us′ where s < s′ then u′ = 〈u2, ..., us−1, us, ..., us′〉.
Therefore

H =
⋂
s≥2

H(〈u2, ..., us〉) · Us = H(ŵ),

where ŵ = (u2, u3, ...) is an infinite sequence such that wi = ui for i > 1. 2

12



The above theorem is an analogue to statement (1) of Lemma 3.

Due to the exceptionality of the case K = F2 shown in Remark 1, the question
whether or not the characteristic subgroups of the group UT (∞,F2) follow the
statements of Theorem 3, remains open and requires a separate investigation.

Given two subgroups G1 and G2 of a group G by [G1, G2] of G1 and G2 we
denote the mutual commutator of G1 and G2, i.e. the subgroup generated by
all commutators [g1, g2], where g1 ∈ G1 and g2 ∈ G2. We note that if both G1

and G2 are characteristic subgroups of G, then so is [G1, G2]. In the following we
discuss the mutual commutators of NP -subgroups with the whole group UT(∞).
We begin our investigations with rectangular partition subgroups.

Proposition 2. Let Ri,j, i < j, be a rectangular partition subgroup of UT(∞, K).
Then [Ri,j,UT(∞, K)] = Q̄i,j.

Proof. Let i < j and Ri,j = H(v̂) be a rectangular partition subgroup of
UT(∞, K) with v̂ = (v2, v3, ...), where

vk =

{
k − 1, k = 2, 3, ..., j − 1,

n+ t, k = j + t, t ≥ 0,
k = 2, 3, ...,

and n = j − i. It is clear that Ri,j ≤ UT(∞, n,K). Thus it follows that

[Ri,j,UT(∞, K)] ≤ [UT(∞, n,K),UT(∞, K)] = UT(∞, n+ 1, K).

On the other hand, if A ∈ UT(∞, K), B ∈ Ri,j then Bs,t and B−1s,t = 0 for every
(s, t) such that t− vt ≤ s < t. Then we have

[A,B]s,t = (A−1B−1AB)s,t =

= (A−1B−1A)s,t +
t−vt−1∑
k=s

(
k∑

l=s

(
l−vl−1∑
m=s

A−1s,mB
−1
m,l + A−1s,l

)
Al,k

)
Bk,t

and for all (s, t) such that t − vt ≤ s < t, since A−1B−1A ∈ Ri,j we have
[A,B]s,t = (A−1B−1A)s,t = 0. Thus [A,B] ∈ Ri,j and hence

[Ri,j,UT(∞, K)] ⊆ Ri,j ∩ UT(∞, n+ 1, K) = Q̄i,j.

Now, we prove the reverse inclusion. The mutual commutator [Ri,j,UT(∞, K)]
is a characteristic subgroup of UT(∞, K) and hence it is a NP-subgroup. Thus for
our proof it suffices to find a matrix C ∈ [Ri,j,UT(∞, K)] such that Ci,i+n+2 6= 0
and (in the case i > 1) additionally Ci−1,i+n+1 6= 0. Assume first i > 1 and take

A = E + a · Ei,i+n+1 ∈ Ri,j,

B = E +
∞∑
k=1

Ek,k+1 ∈ UT(∞, K).
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Then

[A,B]i−1,i+n+1 =
i+n+1∑
k=i−1

(
k∑

l=i−1

(
l∑

m=i−1

A−1i−1,mB
−1
m,l + A−1i−1,l

)
Al,k

)
Bk,i+n+1 = −a,

[A,B]i,i+n+2 =
i+n+2∑
k=i

(
k∑
l=i

(
l∑

m=i

A−1i,mB
−1
m,l + A−1i,l

)
Al,k

)
Bk,i+n+2 = a,

thus whenever a 6= 0 we have C = [A,B] satisfying our requirements.
In the case i = 1 we also have

[A,B]1,n+3 =
n+3∑
k=1

(
k∑

l=1

(
l∑

m=1

A−11,mB
−1
m,l + A−11,l

)
Al,k

)
Bk,n+3 = a,

and again, if a 6= 0 then C = [A,B] is the required matrix. The proposition
follows. 2

Proposition 3. Let H1, H2 be two characteristic subgroups of UT(∞, K), |K| >
2. Then

[H1H2,UT(∞, K)] = [H1,UT(∞, K)] · [H2,UT(∞, K)].

Proof. The inclusion [H1H2,UT(∞, K)] ⊇ [H1,UT(∞, K)] · [H2,UT(∞, K)] is
clear. To prove the reverse, take h1 ∈ H1, h2 ∈ H2 and g ∈ UT(∞, K). Then

[h1h2, g] = [h1, g]h2 [h2, g],

and since [H1,UT(∞, K)] is a characteristic subgroup of UT(∞, K), we have
[h1, g]h2 ∈ [H1,UT(∞, K)]. It follows that

[H1H2,UT(∞, K)] ⊆ [H1,UT(∞, K)] · [H2,UT(∞, K)],

and the proof is complete.

In particular, Proposition 2 applies to rectangular subgroups. The result can be
extended easily by induction to a product of arbitrary finite number of rectangular
partition subgroups:

Corollary 2. If H = H(ŵ) is an NP-subgroup, which is a product of a finite
number of rectangular partition subgroups we have:

[H(ŵ),UT(∞, K)] = H(v̂),

where

vi =

{
min{i− 1, wi + 1}, if wi < wi−1 + 1,

wi, if wi = wi−1 + 1.
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Propositions 1 and 2 have also direct implications on respective properties of
characteristic partition subgroups of UT(s,K), s ∈ N:

Corollary 3. Let H(ŵ|s) be a normal partition subgroup of UT(s,K), isomor-
phic to H(ŵ|s) · Us/Us. Then H(ŵ|s) is a product of finite number of rectangular
subgroups of UT(s,K) and

[H(ŵ|s),UT(s,K)] = H(v̂|s),

where

vi =

{
min{i− 1, wi + 1}, if wi < wi−1 + 1,

wi, if wi = wi−1 + 1,
2 ≤ i ≤ s.

So far we have investigated only mutual commutators of rectangular partition
subgroups and their finite products. This does not cover the whole class of
normal partition subgroups, e.g. the basic subgroups Us are not finite products
of rectangular partition subgroups. Thus the next step in our discussion is to
determine the mutual commutator of the basic subgroups Us.

Proposition 4. For s ∈ N it holds:

[Us,UT(∞, K)] = Us ∩ UT(∞, 1, K).

Proof. Observe that every matrix A ∈ Us can be represented as a product B ·U(
es B
0 U

)
,

where B ∈ Rs,s+1 and U ∈ G ∼= UT(∞, K). Hence, as Rs,s+1 is normal, the basic
group Us is a semidirect product:

Us = Rs,s+1 o G ∼
(
es Rs,s+1

0 G

)
.

For Bi := E +
∞∑
k=i

Ek,k+1 we have

[E − Ei+1,i+2, Bi] = E + Ei,i+2.

Note that E − Ei+1,i+2 ∈ Us and Bi ∈ G for all i ≥ s − 1. Hence E +
Ei,i+2 ∈ [Us,UT(∞, K)], and since [Us,UT(∞, K)] is a characteristic subgroup
of UT(∞, K) then it is a normal partition subgroup. It follows that Ri,i+2 ⊆
[Us,UT(∞, K)] for every i ≥ s− 1. Thus

Us ∩ UT(∞, 1, K) ⊆ [Us,UT(∞, K)].
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To see the reverse inclusion we first note that

[Us,UT(∞, K)] ⊆ [UT(∞, K),UT(∞, K)] = UT(∞, 1, K).

Moreover, for every pair of matrices C ∈ Us, U ∈ UT(∞, K) we have

[C,U ] = C−1CU ∈ Us,

thus [Us,UT(∞, K)] ⊆ Us ∩ UT(∞, 1, K). 2

We are now ready for the final step in our discussion of mutual commutators.

Theorem 4. Let H = H(ŵ) be a NP -subgroup defined by the sequence ŵ =
〈w2, w3, ...〉. Then [H,UT(∞, K)] coincides with the partition subgroup H(v̂) de-
fined by the sequence v̂ = 〈v2, v3, ...〉, where

vi =

{
min{i− 1, wi + 1}, if wi < wi−1 + 1,

wi, if wi = wi−1 + 1.

Proof. H = H(ŵ) be a NP -subgroup defined by the sequence ŵ = 〈w2, w3, ...〉.
Consider a descending sequence of subgroups

Hs := H(ŵ) · Us, s ∈ N.

Obviously we have H(ŵ) =
∞⋂
s=1

Hs. For every s ∈ N, Hs is a NP-subgroup and it

can be represented as a product of a finite number of rectangular subgroups and
the basic subgroup Us:

Hs = H(ŵ|s) · Us,
where H(ŵ|s) =

∏
(i,j)∈J

Ri,j and J = {(i, j) | wj−1 ≥ wj ∧ i = j − wj − 1 ≤ s}.

As both H(ŵ|s) and Us are characteristic subgroups of UT(∞, K), thus by Propo-
sition 3 we have

[Hs,UT(∞, K)] = [H(ŵ|s) · Us,UT(∞, K)] =
= [H(ŵ|s),UT(∞, K)] · [Us,UT(∞, K)] =
= H(v̂|s) · (Us ∩ UT(∞, 1, K)) ,

where

vi =

{
min{i− 1, wi + 1}, if wi < wi−1 + 1,

wi, if wi = wi−1 + 1,
2 ≤ i ≤ s.

It follows that

[H(ŵ),UT(∞, K)] = [
∞⋂
s=1

Hs,UT(∞, K)] ⊆
∞⋂
s=1

[Hs,UT(∞, K)] =

=
∞⋂
s=1

H(v̂|s) · (Us ∩ UT(∞, 1, K)) = H(v̂).
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where v̂ is the infinite sequence form the statement of the theorem.
For the reverse inclusion observe from Proposition 2 thatQi,j ⊆ [H(ŵ),UT(∞, K)]

whenever Ri,j ⊆ H(ŵ). The latter condition holds for i = j − wj − 1 and i ≥ 2.
It follows that H(v̂) ⊆ [H(ŵ),UT(∞, K)], and this completes the proof. 2

We conclude this section with the following remark:

Remark 2. Since T(∞, K) = D(∞, K) n UT(∞, K), it follows that every
subgroup H of UT(∞, K) invariant to all inner and diagonal automorphisms of
UT(∞, K), is invariant to all inner automorphisms of T(∞, K), as:

HT = HD·U = (HD)U = HU = H,

for every T ∈ T(∞, K), T = D · U , U ∈ UT(∞, K), D ∈ D(∞, K). Thus every
NP -subgroup is a normal subgroup of T(∞, K).

5. Verbal subgroups in UT(∞,K) and T(∞,K)

Let X = {x1, x2, ...} be the set of free generators of the free group F∞. Given
a set of words W = {fi}i∈I ⊆ F∞ and a group G, by W (G) we denote the
verbal subgroup of G, that is the subgroup generated by all values of the words
wi, i ∈ I, in group G. If W = {w}, we will simply write w(G) instead of W (G).
For instance, let ci denote the basic commutator words:

c1 = x1, ci+1 = [xi+1, ci(x1, ..., xi)]

For any group G the verbal subgroups ci(G) constitute the lower central series
G = γ1(G) > γ2(G) > ..., with γi(G) = ci(G). If every verbal subgroup of G
coincides with one of γi(G), i ∈ N, then G is called verbally poor.

In particular, for G = UT(n,K), n ∈ N, we have γm(G) = UT(n,m −
1, K) and in [1] group G was proved to be verbally poor. One straightforward
consequence of the above facts is that the stable unitriangular group UTf (∞, K)
is also verbally poor, that is every verbal subgroup W (UTf (∞, K)) coincides
with UTf (∞,m,K) for some m ∈ N. This implication relies on the properties of
direct limits of verbal subgroups and it fails when considering the inverse limit
instead. Although an analogous result for the group UT(∞, K) seems naturally
expected, one needs another technique to prove this fact. Some partial results on
certain specific verbal subgroups of UT(∞, K) may be found in [3] and [4]. For
the group of triangular matrices, only the finitely-dimensional case of T (n,K)
has been investigated [22].

It is known (see [12] for the reference) that every verbal subgroup is fully
characteristic. We use this fact for the characterization of all verbal subgroups in
UT(∞, K). By now we have determined all characteristic subgroups of UT(∞, K)
– they are proved to be exactly the NP - subgroups. When considering the action
of endomorphisms on these subgroups, one gets the following characterization of
fully characteristic (and also verbal) subgroups in UT(∞, K).
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Theorem 5. Let K be a field, |K| > 2.

1. Every fully characteristic subgroup of UT(∞, K) coincides with UT(∞,m,K)
for some m ∈ N ∪ {0}.

2. The group UT(∞, K) is verbally poor.

3. Every verbal subgroup W (T(∞, K)) coincides either with UT(∞,m,K) for
some m ∈ N ∪ {0} or with the product W (D(∞, K)) · UT(∞, K).

Proof.

1. Let H be a fully characteristic subgroup of UT(∞, K). Since it is a charac-
teristic subgroup, then H = H(û) and û = (u2, u3, ...), where ui+1 ≤ ui + 1.
Now let n = min

i>1
ui and consider the action of the shift Sh1 on H. Since

H is invariant to Sh1, then ui+1 = ui = n for all i > 2. Hence H is a
NP -subgroup defined by a constant sequence û = (n, n, n, ...). It follows
that H = UT(∞, n,K).

2. As every verbal subgroup H is necessarily fully characteristic, then clearly
H = UT(∞, n,K) = γn(UT(∞, K)) for some m ∈ N, i.e. every verbal
subgroup of UT(∞, K) coincides with a term of the lower central series of
UT(∞, K).

3. Let W (T(∞, K) be a verbal subgroup of T(∞, K), generated by a set
of words W . Assume first that W (T(∞, K)) ⊆ UT(∞, K). As a nor-
mal subgroup of T(∞, K) and invariant to shifts, W (T(∞, K)) is a fully
characteristic subgroup of UT(∞, K). Hence by statement (1) we have
W (T(∞, K)) = UT(∞,m,K) for some m ∈ N ∪ {0}. Using the concepts
of the proof in [2] in the case of finite matrices, it is not hard to see that
w(T(∞, K)) ⊆ UT(∞, K) whenever w is a commutator word, or - in the
case of a finite field K = Fq - a word equivalent to a power xm, where
(q− 1)|m and charK = p. Here by a word equivalent to xm we mean every
word w in which the sum of exponents of one of the letters is equal to m.

If W (D(∞, K)) is a nontrivial subgroup of W (T(∞, K)), then by the semi-
product decomposition of T(∞, K):

T(∞, K) = D(∞, K) n UT(∞, K)

we have that
W (T(∞, K)) = W (D(∞, K)) · H,

where H is a subgroup of UT(∞, K) consisting of all unitriangular matrices
B ∈ UT(∞, K) such that DB ∈ W (T(∞, K)) for some D ∈ W (D(∞, K)).
Moreover, as W (T(∞, K)) is fully characteristic subgroup of T(∞, K), it
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is invariant to all inner automorphisms of T(∞, K) (i.e. all inner and
diagonal automorphisms of UT(∞, K)), all field-induced automorphisms
and all shifts.

Let α be an endomorphism of T(∞, K) of one of the above listed types.
Then

α(W (T(∞, K))) = W (T(∞, K)),

and in particular:

α(W (D(∞, K)) · H) = W (D(∞, K)) · α(H),

and since α(UT(∞, K)) ⊆ UT(∞, K) we have that α(H) ⊆ H. Thus H is a
fully characteristic subgroup of UT(∞, K), and hence by statement (1) we
haveH = UT(∞,m,K) for some m ∈ N∪{0}. Moreover in [2] it was proved
that if W (Tf (∞, K)) * UTf (∞, K) then UTf (∞, K) ⊆ W (Tf (∞, K)).
Hence UTf (∞, K) ⊆ W (T(∞, K)) and thus H = UT(∞, K), as stated.

2

Remark 3. It is easy to see, that the verbal subgroup W (D(∞, K)) is isomor-
phic to the cartesian product of countably many isomorphic copies of W (K∗), the
respective verbal subgroup of the multiplicative group of the field. Some exam-
ples and detailed verbal structure of K∗ for certain types of fields are discussed
in [2].

We mention that statements (1) and (2) in the above theorem can be deduced
alternatively from the results in [18] and [21]. Statement (3) is an analogue to
results obtained in [1] and [2] for groups T(n,K) of finite dimensional matrices.

6. Verbal width in UT(∞,K) over a finite field

Another interesting consequence of the results obtained in Section 3, are the
implications concerning the verbal width in the considered groups. We recall that
the width widW (G) of verbal subgroup W (G) is defined to be the smallest (if such
exists) number l ∈ N such that every element A ∈ W (G) can be represented as
a product of l values of words from W in group G (if such number does not
exist, we say that the width is infinite). A well known result of Merzlyakov [11]
states that every verbal subgroup in an algebraic group of matrices over a field
K has finite width. Groups admitting this property are called verbally elliptic.
In particular, Merzlyakov’s result applies to groups UT(n,K). It is not known
in general, whether the group UT(∞, K) is verbally elliptic. In the following we
prove verbal ellipticity of groups UT(∞, K) over finite fields K, |K| > 2.

Let K be a finite field. Then every group UT(n,K) is finite and the limit
UT(∞, K) of the respective inverse spectrum (UT(n,K), πij) is clearly a profinite
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group. The profinite topology agrees with the topology we introduced in Section
2; the cosets of all normal subgroups Us, s ∈ N, constitute the basis of the
profinite topology. We will use the equivalency (see [15]):

Lemma 4. For every word w ∈ F∞ and a profinite group G the following con-
ditions are equivalent:

1. w(G) is closed,

2. w(G) has finite width in G.

We mention here that in general case for an arbitrary group G the above condi-
tions are not equivalent and only the implication (2)⇒ (1) holds.

From Theorems 1 and 5, and the above lemma we deduce

Theorem 6. If K is a finite field, then UT(∞, K) is verbally elliptic.

In other words, every verbal subgroupW (UT(∞, K)) has finite width. This result
has also an application to the groups of finitely dimensional matrices. Namely,
let us assume that widW (UT(∞, K)) = n for some set of words W , i.e. every
matrix A ∈ W (UT(∞, K)) is a product of at most n W -values in UT(∞, K):

A = W1W2...Wn,

each Wi being a W -value in UT(∞, K). Consider the image of A under the
projection πs of UT(∞, K) to UT(s,K):

πs(A) = πs(W1W2...Wn) = πs(W1)πs(W2)...πs(Wn).

Every W -value in UT(∞, K) is mapped to a W -value in UT (s,K). Moreover, as

πs(W (UT(∞, K))) = W (πs(UT(∞, K))) = W (UT(s,K))

it follows that the width of W (UT(s,K)) is at most n, i.e. the verbal subgroups
of all groups of unitriangular matrices of finite dimension over a finite field K,
which are generated by the same set of words W have the width bounded by
widW (UT(∞, K)).
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