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Abstract

In the paper we consider some commutator-type and power-type matrix equa-
tions in the group UT(∞,K) of infinite dimensional unitriangular matrices over
a fieldK. We introduce a notion of a power outer commutator ωm1,...,mk

k (x1, ..., xk)

and a power Engel commutator el,m1,...,mk
k (x, y) as outer (respectively Engel)

commutators modified by allowing powers of letters instead of letters alone.
For a given infinite unitriangular matrix A we discuss the matrix equa-

tions xk = A, ωm1,...,mk
k (x1, ..., xk) = A and el,m1,...,mk

k (x, y) = A in variables
x, x1, ..., xk, y. As a main result, we provide the necessary and sufficient condi-
tions for solvability of these equations.
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1. Introduction

Let K be an arbitrary field. Throughout the paper we assume charK 6=
2. By UT(n,K) we denote the group of upper unitriangular matrices of size
n × n over the field K, i.e. the upper triangular matrices with all diagonal
entries equal to 1. We are interested in the infinite dimensional generalization
UT(∞,K) of the group UT(n,K), which consists of all upper unitriangular
matrices with entries indexed by elements of the set N× N.

When considering the infinite dimensional generalizations of matrix groups,
it is usually necessary to impose additional conditions on a given set of infinite
matrices, which yield its closure under the group operations (multiplication and
taking an inverse). One possible generalization of linear groups is the group
GLcf (∞,K) of column finite infinite dimensional matrices over the field K,
consisting of matrices in which every column contains only finitely many nonzero
entries. Clearly, the set of all column finite matrices is closed under matrix
multiplication, however the closure under taking inverses must be additionally
imposed to get a group structure [8]. So, GLcf (∞,K) consists of exactly those
infinite column finite matrices, whose inverses are column finite. The subgroups
of this group were investigated e.g. in [7] and [9]. Dually, one may consider
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the group GLrf (∞,K), consisting of row finite infinite dimensional matrices
over the field K with row finite inverses. The intersection GLrcf (∞,K) =
GLcf (∞,K)∩GLrf (∞,K) is a group of row-column-finite infinite dimensional
matrices and is discussed in [20],[21]. A subgroup of GLrcf (∞,K) of all infinite
matrices, which differ form the infinite identity matrix on finitely many entries,
is called the stable linear group and denoted by GLf (∞,K). This group is
an object of investigations in many aspects, such as the characterization of its
Sylow p-subgroups (see [10–12]) or the automorphism group of GLf (∞,K) [1].

It is clear that every matrix from UT(∞,K) is column finite and its in-
verse is an infinite unitriangular matrix. Hence UT(∞,K) is a subgroup of
GLcf (∞,K). The intersection of UT(∞,K) with the stable linear group is a
subgroup called the group of finitary unitriangular matrices over the field K
and denoted UTf (∞,K).

In the presented paper we discuss the solvability of matrix equations of a
specific type in the group UT(∞,K). The problem of existence of solutions to
various types of matrix equations has been investigated by many. For example,
equations of the form f(x) = A in GL(n,C), with given matrix A and a complex
holomorphic function f , are investigated in [5]. The existence of solutions
x of the power equations of the type xm = A for the given matrix A, i.e.
the existence of roots of matrices of degree m, was considered in [3], [15] and
[16]. In [15] and [16] the authors discuss the solvability of power equations
in the groups GL(n,K) in terms of the characteristic polynomial of matrix
A. In [3] the necessary and sufficient conditions for solvability of power and
commutator equations in groups UT(n,K) are provided. It is shown that the
solvability of power equations in the discussed groups depends on the field
characteristic. The problems of this kind are also investigated in some groups
of infinite dimensional matrices. For instance, the existence of matrix inverses
in the group GLrcf (∞,K) is considered in [20]. Some specific commutator
equations in groups of infinite dimensional triangular matrices over a field were
discussed in [4], [7] and [18]. Equations of this type involve several variables
and provide useful information on the structure of the considered group. In this
article we improve the subject in two directions. We investigate the solvability of
generalized matrix equations which involve both powers and commutators. The
problem is considered in the group of infinite unitriangular matrices UT(∞,K),
without assuming any additional finiteness conditions.

To state our results we introduce the necessary terminology and notation.
In groups UT(n,K), UT(∞,K) and UTf (∞,K) we distinguish the respective
subgroups UT(n,m,K), UT(∞,m,K) and UTf (∞,m,K), m ≥ 0, consisting
of exactly those matrices, whose all entries on the first m superdiagonals are
zeros. It is known (see e.g. [13], Chapter 6, p. 145), that the series of subgroups:

UT(n,K) = UT(n, 0,K) > UT(n, 1,K) > ... > UT(n, n− 1,K) = {en}
is the lower central series in UT(n,K). In the groups of infinite matrices the
series

UT(∞,K) = UT(∞, 0,K) > UT(∞, 1,K) > ...

is obviously infinite, however an analogous statement holds in UTf (∞,K) and
UT(∞,K) (see [2] and [18]). The terms of the lower central series of a group
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G are commonly denoted by γm(G), m ≥ 1 (see [17], p. 121). It is known
that γm(G) is generated by the so-called basic commutators cm. A commu-
tator of elements g, h ∈ G is the element [g, h] := g−1h−1gh. Then the ba-
sic commutator cm(g1, ..., gm) is defined recursively as c1(g1) := g1, ci+1 :=
[ci(g1, g2, ..., gi), gi+1], gi ∈ G, i ≥ 1. For the groups of unitriangular matrices
we have ([2],[18]):

γm(UT(n,K)) = UT(n,m− 1,K), γm(UT(∞,K)) = UT(∞,m− 1,K).

The subgroups γm(G) are examples of the so-called verbal subgroups of G.
Given a group G and a set of words W ⊂ F(X) over a countable alphabet X
(here F(X) denotes the free group generated freely by X), we define the verbal
subgroup W (G) of group G as the subgroup generated by all values of words
from W in G. A value of a word w ∈W in group G is obtained by substituting
all letters in the word w by elements from G and calculating the resulting
product. We will use notation w(G), if the verbal subgroup is generated by
a single word w ∈ F(X), e.g. γm(G) = cm(G). We note that the set GW of
values of words from W in G is not necessarily equal to W (G). If the equality
W (G) = GW holds, then every element of the verbal subgroup W (G) is a value
from GW ; if it is not the case, then every element of W (G) is a product of
a finite number of values form GW . The width widW (G) of verbal subgroup
W (G) is defined as the smallest number k, such that every element of W (G)
can be written as a product of at most k values from GW . It may happen that
such a number does not exist, in that case the width is considered to be infinite.

The verbal subgroups and their width in groups of matrices were investi-
gated in [3, 4, 19]. In [2] it was proved, that in the groups of finite and finitary
unitriangular matrices, all verbal subgroups coincide with terms of the lower
central series, i.e. with one of subgroups UT(n,m,K) (or UTf (∞,m,K), re-
spectively). Moreover, in [3] and [4] the coincidence of w(UT(n,K)) (resp.
w(UTf (∞,K))) and UT(n,m,K) (resp. UTf (∞,m,K)) and the respective
verbal width was determined for specific kinds of words w:

• the outer-commutators, defined recursively:

ω1(x1) = x1 - the outer commutator of weight 1,

ωi+j(x1, x2, ..., xi+j) = [ωi(x1, x2, ..., xi), ωj(xi+1, xi+2, ..., xi+j ] - the outer
commutator of weight i+ j;

• the Engel commutators:

em(x, y) = [x, y, y, ..., y︸ ︷︷ ︸
m

] = [em−1(x, y), y], m ≥ 1;

• the powers xm = x · x · ... · x︸ ︷︷ ︸
m

.

The results in [3] provide examples of verbal subgroups in UT(n,K) generated
by power words with verbal width greater than 1. In other words, there exist
matrices A ∈ UT(n,K), where charK = p 6= 2, such that the power equations
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xp·m = A, m ∈ N, are not solvable in UT(n,K). An interesting question arises,
whether the verbal subgroups defined by other words which contain powers
would provide non solvable equations in groups of unitriangular matrices.

We investigate the commutators of powers, defined as:

• power outer commutators of weight k:

ωm1,...,mk
k (x1, ..., xk) := ωk(x

m1
1 , ..., xmkk ), k ≥ 1, mi ∈ Z \ {0},

• power Engel commutators:

el,m1,...,mk
k (x, y) := [xl, ym1 , ..., ymk︸ ︷︷ ︸

k

], k ≥ 1 l,mi ∈ Z \ {0}.

As a main result of the present paper we show, that in the groups of uni-
triangular matrices every matrix from the verbal subgroup generated by power
outer commutators and power Engel commutators is the value of the respective
generating word. We also determine the coincidence of the particular verbal
subgroup with a given term of the lower central series of the group. This way
we provide a criterion for the solvability of power outer/Engel commutator
equations. The results are stated in the following:

THEOREM Let G be either UT(n,K) or UTf (∞,K) or UT(∞,K) .

1. If K is a field of characteristic 0, then

(a) for every power outer commutator ωm1,...,mk
k the verbal subgroup

ωm1,...,mk
k (G) coincides with γk(G) and has width equal to 1;

(b) for every power Engel commutator el,m1,...,mk
k the verbal subgroup

el,m1,...,mk
k (G) coincides with γk+1(G) and has width equal to 1.

2. If K is a field of positive characteristic p 6= 2, then

(a) for every power outer commutator ωm1,...,mk
k , such that

mi = pαi · ri, p - ri, i = 1, 2, ..., k,

the verbal subgroup ωm1,...,mk
k (G) coincides with γs(G),

where s =
k∑
i=1

pαi, and widωm1,...,mk
k

(G) = 1;

(b) for every power Engel commutator el,m1,...,mk
k , such that

p - l, mi = pαi · ri, p - ri, i = 1, 2, ..., k,

the verbal subgroup el,m1,...,mk
k (G) coincides with γs+1(G),

where s =
k∑
i=1

pαi, and wid
e
l,m1,...,mk
k

(G) = 1.
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In the remaining part of the paper all finitely dimensional matrices will
be denoted with lowercase letters, while for the infinite matrices we will use
the uppercase letters. For every matrix a ∈ UT(n,K) (or A ∈ UT(∞,K))
and m ≤ n by a[m] (and A[m], respectively) we denote the top-left block of
size m ×m of matrix a (or A). The identity matrices of the groups UT(n,K)
and UT(∞,K) will be denoted by en and E, respectively. Every unitriangular
matrix a ∈ UT(n,K) may be written as a sum:

a = en +
∑

1≤i<j≤n
aijeij ,

where eij denotes elementary matrix of size equal to the size of a, which has
1 in the place (i, j) and zeros elsewhere (infinite elementary matrices will be
denoted by Eij).

In Section 2 we discuss verbal subgroups in the groups of infinite dimensional
matrices UT(∞,K) and UTf (∞,K), using the notion of an inverse and direct
systems of groups. Section 3 contains some technical results on the commutator
and power equations in the groups of finite unitriangular matrices. These are
stated as few lemmata and propositions, which we further use in Section 4 for
the proof of the Theorem.

2. Verbal subgroups in UT(∞,K)

To begin, we note that the groups of infinite unitriangular matrices UTf (∞,K)
and UT(∞,K) can be constructed from the groups of finitely dimensional ma-
trices UT(n,K) using the direct and inverse limits. The notion of direct and
inverse limit is commonly used in group theory for constructing new groups
from old (see [6], p.64, for detailed introduction).

The groups UT(n,K), n ∈ N, constitute an infinite system of matrix groups,
which is linearly ordered with respect to the dimension n. For every i, j ∈ N, i <
j, the groups UT(i,K) and UT(j,K) are homomorphic images of each other via
respective projections and embeddings. For instance, the group UT(j,K) may
be mapped onto UT(i,K) using the projection πji, which deletes the last (j− i)
rows and the last (j − i) columns of the matrix. Hence, the groups UT(i,K)
together with the projections πji constitute an inverse system of groups:

UT(1,K)
π21←− UT(2,K)

π32←− UT(3,K)
π43←− . . .

The inverse limit
lim
←

i,j∈N
(UT(i,K), πji)

of the inverse system (UT(i,K), πji) coincides with the group of infinite uni-
triangular matrices UT(∞,K). We note that as an inverse limit the group
UT(∞,K) projects to any of the groups UT(i,K), i ∈ N, via the canonical
projection Πi, which deletes all but the first i rows and columns of the infinite
matrix A ∈ UT(∞,K):

Πi(A) = A[i].
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On the other hand, one can construct also the direct system of groups using
the natural embeddings ϕij : UT(i,K) ↪→ UT(j,K):

UT(1,K)
ϕ12−→ UT(2,K)

ϕ23−→ UT(3,K)
ϕ34−→ . . .

The embedding ϕij maps every matrix a of size i to a block-diagonal matrix ā
of size j, such that ā[n] = a, āk,k = 1 for all i < k ≤ j and all other entries of
ā are zeros. The direct limit of the constructed direct system

lim
−→
i

(
UT(i,K), ϕi,i+1

)
is exactly the group of finitary matrices UTf (∞,K). Every matrixA ∈ UTf (∞,K)
differs from E only in a finite block A[n] for some n.

Let W be a set of words. It is known (see [14], p. 5) that if f : G −→ H
is a epimorphism of groups G and H, then the homomorphic image of the
verbal subgroup W (G) in G is the verbal subgroup in H, defined by the same
generating set of words W , i.e. f(W (G)) = W (H).

If (Gi, fi)i∈I is a direct system of groups with a direct limit group G, then
(W (Gi), f̄i)i∈I, where f̄i is the restriction of the embedding fi to the verbal
subgroup W (Gi), is also a direct system of groups. In this case we have

Lemma 1. Let (Gi, fi)i∈I be a direct system of groups defined above, and let
W be a set of words. Then

lim
→
i

(
W (Gi), f̄i

)
i∈I = W (G).

Moreover, if widW (Gi) = n for all i ∈ I, then widW (G) = n.

The proof may be found in [2].
Now, let (Gi, fij)i,j∈I be an inverse system of groups with projections fij

and the inverse limit group G. Since fij(W (Gi)) = W (fij(Gi)) = W (Gj), then
the verbal subgroups W (Gi), i ∈ I, together with the respective projections fij ,
restricted to W (Gi), constitute an inverse spectrum of groups. Hence, one may
expect that

lim
←
i

(W (Gi), fij)i∈I = W (G).

However, in general this equality may not hold. The following lemma provides
the necessary and sufficient condition for the equality to be satisfied.

Lemma 2. Let (Gi, fij)i∈I be an inverse system of groups with the limit group
G, and let W be a set of words. Then widW (G) = n and

lim
←
i

(W (Gi), fij)i∈I = W (G)

if and only if widW (Gi) ≤ n for every i ∈ I.
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Proof. Assume first that widW (G) = n and lim
←
i

(W (Gi), fij)i∈I = W (G). Let

Πi : G −→ Gi, i ∈ I, be the canonical projections of the inverse limit G onto
the constituent groups Gi. Then for every i ∈ I we have Πi(W (G)) = W (Gi)
and, since every element g ∈W (G) is a product

g = w1(g
1
1, g

1
2, ..., g

1
k(1))w2(g

2
1, g

2
2, ..., g

2
k(2))...wn(gn1 , g

n
2 , ..., g

n
k(n))

of n values from GW , where w1, ...wn ∈W and gsj ∈ G, then we have:

Πi(g) = Πi

(
w1(g

1
1, g

1
2, ..., g

1
k(1))w2(g

2
1, g

2
2, ..., g

2
k(2))...wn(gn1 , g

n
2 , ..., g

n
k(n))

)
=

= w1(Πi(g
1
1),Πi(g

1
2), ...,Πi(g

1
k(1)))...wn(Πi(g

n
1 ),Πi(g

n
2 ), ...,Πi(g

n
k(n))) =

= w1(ḡ
1
1, ḡ

1
2, ..., ḡ

1
k(1))...wn(ḡn1 , ḡ

n
2 , ..., ḡ

n
k(n)),

where ḡsj ∈ Gi for all s and j. That is, for every i ∈ I we have widW (Gi) ≤ n.
Now let H = lim

←
i

(W (Gi), fij)i∈I. We will show both inclusions H ⊆ G and

H ⊇ G. First, take h ∈ H and consider its image under the natural projections
fi : G → Gi. Obviously fi(h) = hi ∈ W (Gi). Since widW (G) = n, then for
every i ∈ I one has

hi =

n∏
k=1

wk(g
(i)
i1,k
, g

(i)
i2,k
, ..., g

(i)
it(k),k

),

and fij(hi) = hj . Let gj be the element in G such that fi(gj) = g
(i)
j for all i ∈ I,

k = 1, ..., n and j ∈ {i1,k, i2,k, ..., it(k),k}. Then

h =

n∏
k=1

wk(gi1,k , gi2,k , ..., git(k),k) ∈W (G).

Moreover, widW (G) = n.
Conversely, take g ∈W (G):

g =
s∏

k=1

wk(gi1,k , gi2,k , ..., git(k),k).

Then

fi(g) =
s∏

k=1

wk(g
(i)
i1,k
, g

(i)
i2,k
, ..., g

(i)
it(k),k

) ∈W (Gi)

for every i ∈ I. Hence g ∈ H and the proof is complete.

The above lemma shows the difference between the inverse and direct lim-
its of verbal subgroups. The direct limit of a system of verbal subgroups is
always a verbal subgroup (generated by the same set of words) and its width is
determined by the width of the verbal subgroups in the defining direct system.

To use our Lemma for characterization of verbal subgroups in UT(∞,K) we
first recall the facts from [2], [3] and [4] on verbal subgroups in groups of finite
and finitary unitriangular matrices. We state them below in a single lemma:
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Lemma 3. Let G be one of the groups UT(n,K) , n ≥ 2, or UTf (∞,K). Then

1. ωk(G) = γk(G) and widωk(G) = 1;

2. ek(G) = γk(G) and widek(G) = 1;

3. If char K = 0 and m 6= 0, then xm(G) = G and widxm(G) = 1;

4. If char K = p 6= 2 and m 6= 0, p - m, then xm(G) = G and widxm(G) = 1;

5. If char K = p 6= 2 and m 6= 0, pα|m, pα+1 - m, then xm(G) = γpα(G)
and widxm(G) = 2.

Note that in all cases in Lemma 3 the width of respective verbal subgroups
is uniformly bounded (either by 1 or 2). Hence, by Lemma 2, the following
proposition holds.

Proposition 1. 1. γm(UT(∞,K)) = UT(∞,m− 1,K);

2. ωk(UT(∞,K)) = γk(UT(∞,K)) and widωk(UT(∞,K)) = 1;

3. ek(UT(∞,K)) = γk(UT(∞,K)) and widek(UT(∞,K)) = 1;

4. If char K = 0 and m 6= 0, then xm(UT(∞,K)) = UT(∞,K) and
widxm(UT(∞,K)) = 1;

5. If char K = p > 0 and m 6= 0, p - m, then xm(UT(∞,K)) = UT(∞,K)
and widxm(UT(∞,K)) = 1;

6. If char K = p > 0 and m 6= 0, pα|m, pα+1 - m, then xm(UT(∞,K)) =
γpα(UT(∞,K)) and widxm(UT(∞,K)) = 2.

3. Powers and power commutators in UT(n,K)

3.1. Power outer commutators in the case charK = 0.

We begin with observations on powers of finite unitriangular matrices. If
the characteristic of field K is zero, then the group UT(n,K) is divisible, i.e.
every matrix in UT(n,K) has k-th roots for all k ≥ 2 (see Lemma 3). Hence,
in this situation as a straightforward consequence we obtain:

Proposition 2. Let char K = 0. Then

ωm1,...,mk
k (UT(n,K)) = ωk(UT(n,K)) = γk(UT(n,K))

and widωm1,...,mk
k

(UT(n,K)) = 1.

Proof. Let a be an arbitrary matrix in γk(UT(n,K)) = UT(n, k − 1,K). By
statement (1) in Lemma 3 there exist matrices b1, ..., bk ∈ UT(n,K) such
that a = ωk(b1, ..., bk). Now, by statement (3) in Lemma 3 we deduce that
all bi, i = 1, ..., k, are arbitrary powers. In particular one can find matri-
ces c1, ..., ck ∈ UT(n,K) such that bi = cmii for i = 1, ..., k. Then obviously
a = ωk(c

m1
1 , ..., cmkk ), i.e. a is a value of the power commutator ωm1,...,mk

k . Thus
γk(UT(n,K)) ⊆ ωm1,...,mk

k (UT(n,K)). As the reverse inclusion is obvious, we
have completed the proof.
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3.2. Power outer commutators in the case charK = p

In the case of matrices over a field of characteristic p > 0, one must take
care of the powers, which are divisible by p. Lemma 3 shows, that in this case
there exist matrices, which cannot be written as such a a power. On the other
hand, there are matrices, for which the representation as an arbitrary power in
UT(n,K) is possible. We characterize them in the following proposition.

Proposition 3. Let char K = p > 0 and m = pα. Then every matrix c ∈
UT(n,m−1,K), such that rank(c−en) = n−m is the m-th power in UT(n,K).
In particular, there exists matrix a ∈ UT(n,K) such that c = am and rank(a−
en) = n− 1.

Proof. Let c be a matrix in UT(n,m− 1,K), such that rank(c− en) = n−m.
If n ≤ m then c = en (see Lemma 3) and for every matrix a ∈ UT(n,K)
we have c = am. In particular, one may choose a satisfying the condition
rank(a− en) = n− 1.

Now, assume that the statement of our proposition holds for all n ≤ N .
Take c̄ ∈ UT(N + 1,m− 1,K) to be the matrix

c̄ =

(
c c
0 1

)
,

where c ∈ UT(N,m − 1,K), cT = (c1, c2, ..., cN−m+1, 0, ..., 0) ∈ KN and 0 is
a zero vector in KN . From the inductive assumption one finds matrix a ∈
UT(N,K) with am = c and rank(a − eN ) = N − 1. Note that the latter

condition is equivalent to saying that
N−1∏
i=1

ai,i+1 6= 0.

Now, let ā ∈ UT(N + 1,K) be defined as follows:

ā =

(
a a
0 1

)
,

with aT = (a1, a2, ..., aN ) ∈ KN . We will show that it is possible to choose a
such that c̄ = ām and rank(ā− eN+1) = N .

We first observe that

ām =

(
am dm(a)a
0 1

)
,

where dm(a) = eN + a+ a2 + ...+ am−1. We note that since m is the power of
the field characteristic p, then dm(a) is not invertible. We calculate the entries
of matrix dm(a):

[dm(a)]ij =


0, if 1 ≤ j < i+m− 1,
j−1∑

t1=i+1

t1−1∑
t2=i+1

...
tm−3−1∑
tm−2=i+1

ai,tm−2 · atm−2,tm−3 · ... · at2,t1 · at1,j , otherwise.

Thus, in particular [dm(a)]i,i+m−1 = ai,i+1 · ai+1,i+2 · ... · ai+m−2,i+m−1 6= 0 for
every i = 1, ..., N −m + 1. This implies that rank(dm(a)) = N −m + 1 and
hence, for every cT = (c1, c2, ..., cN−m+1, 0, ..., 0) ∈ KN the equation

dm(a) · a = c
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has a solution in terms of a. Moreover, since (dm(a))N−m+1,N 6= 0 and cN−m+1 6=
0, we have aN 6= 0. This implies that c̄ = ām with rank(ā− eN+1) = N and by
induction the proof is complete.

Now we discuss the values of commutators of powers in UT(n,K). We will
need the following result from [3]:

Lemma 4. Let K be an arbitrary field. For every matrix c ∈ UT(n, i+j+1,K)
there exist matrices a ∈ UT(n, i,K) and b ∈ UT(n, j,K) such that rank(a −
en) = n− i− 1, rank(b− en) = n− j − 1 and c = [a, b].

Merging the above results, we obtain:

Proposition 4. Let char K = p > 0 and let ωm1,...,mk
k be a power outer com-

mutator, such that mi = pαi · ri, αi ≥ 0 and p - ri for i = 1, 2, ..., k. Then

ωm1,...,mk
k (UT(n,K)) = γs(UT(n,K)),

where s =
k∑
i=1

pαi and widωm1,...,mk
k

(UT(n,K)) = 1.

Proof. Observe that for every a1, a2, ..., ak ∈ UT(n,K) the value of ωm1,...,mk
k (a1, a2, ..., ak)

lies in γs(UT(n,K)) = UT(n, s− 1,K), with s defined in the statement of the
proposition. This can be seen by induction. It is clear that if k = 2 we have

ωm1,m2
2 (a1, a2) = [am1

1 , am2
2 ]

and, by Lemma 3, ωm1,m2
2 (a1, a2) is an element of

[UT(n, pα1 − 1,K),UT(n, pα2 − 1,K)] = UT(n, pα1 + pα2 − 1,K).

Now, if we assume that

ω
m1,...,mj
j (a1, a2, ..., aj) ∈ UT(n,

j∑
i=1

pαi − 1,K)

for all j ≤ k and consider the values of the word ω
m1,...,mk+1

k+1 in UT(n,K),
then we can write any value of the word as a commutator of two power outer
commutators, each of them of weight not greater than k, say i and j respectively.
Hence, due to our inductive assumption we obtain:

ω
m1,...,mk+1

k+1 (UT(n,K)) = [ωm1,...,mi
i (UT(n,K)), ω

mi+1,...,mj
j (UT(n,K))] =

= [UT(n,
i∑
t=1

pαt − 1,K),UT(n,
j∑

t=i+1
pαt − 1,K)] ⊆ UT(n,

i+j∑
t=1

pαt − 1,K),

where i+ j = k + 1. Indeed, by induction we have

ωm1,...,mk
k (UT(n,K)) ⊆ UT(n, s− 1,K).

10



Now, for the reverse inclusion we take an arbitrary matrix c ∈ UT(n, s −
1,K). Let ωm1,...,mk

k = [ωm1,...,mi
i , ω

mi+1,...,mk
j ], where i + j = k. From what we

proved above we have that

ωm1,...,mi
i (UT(n,K)) ⊆ UT(n, si − 1,K),

ω
mi+1,...,mk
j (UT(n,K)) ⊆ UT(n, sj − 1,K),

where si =
i∑
t=1

pαt , sj =
k∑

t=i+1
pαt . Now, applying Lemma 4 we write c = [a, b],

where a ∈ UT(n, si − 1,K), b ∈ UT(n, sj − 1,K) and rank(a − en) = n − si,
rank(b− en) = n− sj . Then we repeat this reasoning for matrices a and b, and
write each of them as a value of a commutator of outer commutators of weights
smaller than i and j, respectively. We perform this step repeatedly until the
weight of every outer commutator is 1. This way we find matrices a1, ..., ak,
ai ∈ UT(n, pαi − 1,K), rank(ai − en) = n− pαi , i = 1, ..., k, such that:

c = [a1, a2, ..., ak].

Note that matrices ai satisfy the assumptions of Proposition 3. Hence every
matrix ai is a power ai = bmii of certain matrix bi ∈ UT(n,K). Thus

c = [bm1
1 , bm2

2 , ..., bmkk ] = ωm1,...,mk
k (b1, ..., bk),

i.e. UT(n, s− 1,K) ⊆ ωm1,...,mk
k (UT(n,K)). This completes the proof.

3.3. Power Engel commutators

For the power Engel commutators we will need a stronger result than those
stated in [4]. The following lemma provides a useful technical observation for
fields with either positive or zero characteristic.

Lemma 5. Assume K is a field with charK 6= 2. Let b ∈ UT(n, i,K) be
a matrix, such that rank(b − en) = n − i − 1. Then for every matrix c ∈
UT(n, i+ j + 1,K), there exists a matrix a ∈ UT(n, j,K), such that c = [a, b].

Proof. We prove the result by induction on the matrix size n. We start with the
smallest n possible, i.e. n = i+j+2. Then the matrix c ∈ UT(n, i+j+1,K) is
the identity matrix and for every matrices a ∈ UT(n, j,K) and b ∈ UT(n, i,K)
we have [a, b] = en = c. Thus, in particular, we may choose b such that
rank(b− en) = n− i− 1.

Now let us assume that the lemma holds for all matrices of sizes not greater
than n. Let us take c̄ ∈ UT(n + 1, i + j + 1,K) and b̄ ∈ UT(n + 1, i,K), such
that rank(b− en+1) = n− i. We represent matrices b̄ and c̄ as:

c̄ =

(
c c
0 1

)
, b̄ =

(
b b
0 1

)
,

where cT = (c1, c2, ..., cn−i−j−1, 0, ..., 0) ∈ Kn, 0 is a zero vector from Kn.
Observe that due to our assumptions on b̄, we have bT = (b1, ..., bn−i, 0, ..., 0) ∈
Kn with bn−i 6= 0. Now, let ā ∈ UT(n+ 1, j,K) be the matrix:

ā =

(
a a
0 1

)
,

11



where a ∈ UT(n, j,K) and aT = (a1, ..., an−j , 0, ..., 0) ∈ Kn. Then we have:

[ā, b̄] =

(
[a, b] x
0 1

)
,

where x = a−1(b−1− en)a+ a−1b−1(a− en)b. By our inductive assumption we
can choose a ∈ UT(n, j,K) such that c = [a, b]. Then we have:

rank(a− en) ≤ n− j − 1,
rank(b−1 − en) = rank(b− en) = n− i− 1.

Let us denote f = a−1b−1(a− 1n) and d = a−1(b−1 − 1n). Since multiplication
by invertible matrices does not affect the matrix rank, we have

rank(f) ≤ n− j − 1,
rank(d) = n− i− 1.

For the equality c̄ = [ā, b̄] to hold it is necessary that

c = da + fb.

Since f and b are already determined, we observe that

fb = f = (f1, f2, ..., fn−j−i−1, 0, ..., 0)T

and we have to solve the system:

w = da,

where w = c − f = (w1, w2, ..., wn−i−j , 0, ..., 0)T . Now, considering the rank of
the augmented matrix of the system

rank(d|w) = max{n− i− 1, n− i− j − 1} = n− i− 1

we have that rank(d|w) = rank(d) hence the system has a solution a. It is
clear that ā ∈ UT(n+ 1, n− j,K) and the lemma follows by induction.

Corollary 1. In the case of charK = 0, for arbitrary powers l,m1, ...,mk ∈
Z \ {0} and an arbitrary matrix c ∈ UT(n, k,K) there exist matrices a, b ∈
UT(n,K) such that c = el,m1,...,mk

k (a, b). In other words

el,m1,...,mk
k (UT(n,K)) = γk+1(UT(n,K))

and the width of any verbal subgroup generated by a power Engel word in
UT(n,K) is equal to 1.

Proof. Let b ∈ UT(n,K) be a matrix such that rank(b − en) = n − 1. Then
it is clear that rank(bm − en) = n − 1 for an arbitrary power m 6= 0. Now let
c ∈ UT(n, k,K) and let l,m1, ...,mk ∈ Z \ {0} be arbitrary powers. Then, by
Lemma 5, there exists a matrix a1 ∈ UT(n, k − 1,K) such that c = [a1, b

mk ].
Then again we find matrix a2 ∈ UT(n, k−2,K) such that a1 = [a2, b

mk−1 ] and,
in the i-th step we find ai ∈ UT(n, k − i,K) such that ai−1 = [ai, b

mk−i ]. After
k steps we come to the conclusion that c = [ak, b

m1 , ..., bmk ]. Thus if a = ak
then c = el,m1,...,mk

k (a, b).

12



Now we discuss the case when charK > 0. We prove the following:

Proposition 5. Let K be a field such that charK = p 6= 2. Then for every
power Engel commutator el,m1,...,mk

k , such that

p - l, mi = pαi · ri, p - ri, i = 1, 2, ..., k,

the verbal subgroup el,m1,...,mk
k (UT(n,K)) coincides with γs+1(UT(n,K)),

where s =
k∑
i=1

pαi, and wid
e
l,m1,...,mk
k

(UT(n,K)) = 1.

Proof. Let us choose matrix b = en +
n−1∑
i=1

ei,i+1 ∈ UT(n,K). It is clear that

rank(b− en) = n− 1,
rank(bw − en) = n− pα, where w = pα · r, p - r. (1)

The detailed explanation of the latter equality the reader finds in Section 3.1
in [3].

Now, let c be an arbitrary matrix in γs+1(UT(n,K)) = UT(n, s,K), where s
is defined as above. By (1) we see that bmi for i = 1, ..., k satisfy the assumptions
of Lemma 5 and hence there exist matrices

ai ∈ UT(n,
k−i∑
j=1

pαj ,K), i = 1, ..., k − 1,

and a matrix ak ∈ UT(n,K) such that

c = [a1, b
mk ], ai = [ai+1, b

mk−i ], i = 1, ..., k − 1.

Hence we obtain
c = [ak, b

m1 , bm2 , ..., bmk ].

Since p is not a divisor of l, then by Lemma 3 there exists a matrix a ∈ UT(n,K)

such that al = ak. Thus c = el,m1,...,mk
k (a, b) and the Proposition follows.

4. Proof of the Theorem

The Propositions 2, 4, 5 and Corollary 1, which we proved in Section 3,
combine together to the statements of our Theorem for groups of finitely dimen-
sional matrices UT(n,K). We proved that for any characteristic of K different
than 2, the width of the verbal subgroups under investigation is regardless of
n is equal to 1 in all of the groups UT (n,K). Thus, by Lemma 1, our theorem
holds also for the finitary groups UTf (∞,K):

ωm1,...,mk
k (UTf (∞,K)) = lim

→
i

(
ωm1,...,mk
k (UT(i,K)), ϕi,i+1

)
i∈N =

= lim
→
i

(γs(UT(i,K)), ϕi,i+1)i∈N = γs(UTf (∞,K))
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and

el,m1,...,mk
k (UTf (∞,K)) = lim

→
i

(
el,m1,...,mk
k (UT(i,K)), ϕi,i+1

)
i∈N

=

= lim
→
i

(γs+1(UT(i,K)), ϕi,i+1)i∈N = γs+1(UTf (∞,K)),

where s = k if K is a field of characteristic 0 and s =
k∑
i=1

pαi , if charK = p 6= 2.

Also, since 1 is the uniform bound for the width of every verbal subgroup in
UT (n,K), n ∈ N, generated by the power outer commutator or a power Engel
commutator, we may apply Lemma 2 to obtain that:

ωm1,...,mk
k (UT(∞,K)) = lim

←
i

(
ωm1,...,mk
k (UT(i,K)), πij

)
i∈N =

= lim
←
i

(γs(UT(i,K)), πij)i∈N = γs(UT(∞,K))

and

el,m1,...,mk
k (UT(∞,K)) = lim

←
i

(
el,m1,...,mk
k (UT(i,K)), πij

)
i∈N

=

= lim
←
i

(γs+1(UT(i,K)), πij)i∈N = γs+1(UT(∞,K)),

where s = k if K is a field of characteristic 0 and s =
k∑
i=1

pαi , if charK = p 6= 2.

Thus the theorem follows. 2.

We conclude with a straightforward consequence of the Theorem for solv-
ability of power commutator equations in groups of unitriangular matrices.
Namely, we have:

Corollary 2. Let K be a field of characteristic not equal to 2 and let G be one
of the groups UT(n,K), UTf (∞,K) or UT(∞,K).

1. If charK = 0 then the equation ωm1,...,mk
k (x1, x2, ..., xk) = a has solution

x1, ..., xk ∈ G if and only if a ∈ γk(G);

2. If charK = 0 then the equation el,m1,...,mk
k (x, y) = a has solution x, y ∈ G

if and only if a ∈ γk+1(G);

3. If charK = p then the equation ωm1,...,mk
k (x1, x2, ..., xk) = a has solution

x1, ..., xk ∈ G if and only if a ∈ γs(G), where s =
k∑
i=1

pαi;

4. If charK = p then the equation el,m1,...,mk
k (x, y) = a has solution x, y ∈ G

if and only if a ∈ γs+1(G), where s =
k∑
i=1

pαi.
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