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Abstract

In the following paper we investigate commutator-type matrix equations and
discuss the existence of their solutions. In particular, we derive the solutions of
the Engel equations A = ek(X, Y ), where ek(x, y) denotes the k-th Engel word,
in the groups of unitriangular and triangular matrices over field K of arbitrary
characteristic. The results directly apply to the discussion on the width of k-
Engel subgroups in the considered groups. We conclude with a few observations
on that matter.
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1. Introduction

Recall that the commutator [x, y] is the word in the free group F defined as
x−1y−1xy. Then we define the k-Engel words recursively as follows:

e1(x, y) = [x, y], ek(x, y) = [ek−1(x, y), y] = [x, y, y, ..., y︸ ︷︷ ︸
k

].

Further, for brevity, we will use the common notation ek = [x,k , y]. An Engel
equation is the equation of the type

ek(x, y) = c,

where k is a fixed natural number, x and y are variables and c is an arbitrary
constant. Given group G and a word w(x, y) ∈ F we may substitute the letters x
and y in w by elements of G and compute the resulting element. This element is
called the value of the word w in group G or simply w-value. Hence the problem
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of finding solutions to Engel equations in a group is closely related to the problem
of determining the Engel ek - values in this group.

Throughout the paper we assume K to be a field of arbitrary characteristic.
By UTn(K), Dn(K) and Tn(K) we denote the subgroups of the general linear
group GLn(K), which are respectively the groups of upper unitriangular, diagonal
and triangular matrices of size n × n with all entries from the field K. In the
group UTn(K) we distinguish subgroups

UTm
n (K) = {1n +

∑
i<j−m≤n

ai,jei,j, ai,j ∈ K}, 0 ≤ m ≤ n− 1,

where 1n denotes the unity matrix of size n× n and ei,j denotes the matrix with
unity in the place (i, j) and zeros elsewhere.

Groups which admit the identity ek(x, y) = 1 for some k ∈ N are called k-
Engel groups. These are exactly the groups in which all values of the given word
ek are trivial (unity). It is an interesting question whether a k-Engel group must
be nilpotent, and if so - what is the dependence of the nilpotency class on k. It
was proved in [4] that every Engel subgroup of the linear group is nilpotent. In
[3] the authors characterized the maximal Engel subgroups of the group Tn(R),
R being a local ring, and calculated their class of nilpotency. The main result of
that paper is that every maximal Engel subgroup of Tn(K) up to conjugacy in
GLn(K) is a direct product of the form

Nn1,n2,...ns(K) = Nn1(K)×Nn2(K)× . . .×Nns(K),

where n = n1 +n2 + . . .+ns and Nni
(K) for every i = 1, 2, ..., s denotes the direct

product Sni
(K∗) × UTni

(K). Here Sni
(K∗) stands for the group of all scalar

matrices of size ni × ni, i.e. the group Sni
(K∗) = {α · 1ni

| α ∈ K∗}. It is clear
from this description, that Nn1,n2,...ns(K) is nilpotent of nilpotency class equal to

c = max{ni | i = 1, 2, ..., s} − 1.

Other examples of Engel subgroups in Tn(K) include the group UTn(K) and its
subgroups UTm

n (K), m = 1, 2, ..., n − 1. In the presented paper we establish
the dependence between the Engel property and the class of nilpotency for these
groups.

The main part of this work covers the problem of characterization of Engel
values in the considered groups by deriving the solutions of the respective Engel
equations. In particular, for UTn(K) we prove:

Theorem 1. Let K be an arbitrary field. Then for every matrix C contained in
UTm

n (K) the Engel equation
em(x, y) = C

has a solution in UTn(K).
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For the group Tn(K) we obtain a similar result with an additional constraint
on the size of the field K.

Theorem 2. Let K be a field containing at least n+ 1 elements. Then for every
matrix C contained in UTn(K) the Engel equation

ek(x, y) = C

has a solution in Tn(K), k ∈ N.

We note that the results of [7] imply that for k = 1 the statement of Theorem 2 is
valid regardless of the size of field K, since e1 = [x1, x2] is an outer commutator
word. However, the methods used for the proof of this result can not be applied
to the k-Engel values for k > 2.

Observe that the above results can be easily generalized to the groups of
finitary matrices. Let ϕn : Tn(K) ↪→ Tn+1(K) denote the natural embedding, i.e.

ϕn(A) =

(
A 0T

0 1

)
for all A ∈ Tn(K),

where 0 denotes a zero vector fromKn. Then obviously ϕn(UTn(K)) ⊆ UTn+1(K)
and ϕn(Dn(K)) ⊆ Dn+1(K).

As a direct consequence of results of Theorems 1 and 2 we may describe
the Engel values in the groups UT∞(K) = lim

−→
n

(UTn(K), ϕn) and T∞(K) =

lim
−→
n

(Tn(K), ϕn) of finitary unitriangular and triangular matrices over field K,

respectively. Namely, we have:

Theorem 3. Let K be an arbitrary field.

1. For every matrix A contained in UTm
∞(K) the Engel equality

em(x, y) = A

has a solution in UT∞(K).

2. If K is infinite, then for every matrix A contained in UT∞(K) and any
natural number k the Engel equation

ek(x, y) = A

has a solution in T∞(K).

It is worth mentioning here that the characterization of word values in other
groups of infinite matrices (such as row-finite or column -finite infinite matrices)
can not be derived from the characterization of the finite case so easily. There are
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however some results concerning the values of commutators in the Vershik-Kerov
group and some of its subgroups (see [5], [6] )

Another straightforward generalization of Theorems 1 and 2 is the following.
We introduce the generalized Engel word e(k1,k2,...,ks)(x, y1, y2, ..., ys) as the word
of the form:

e(k1,k2,...,ks)(x, y1, y2, ..., ys) = [x, y1, y1, ..., y1︸ ︷︷ ︸
k1

, y2, y2, ..., y2︸ ︷︷ ︸
k2

, ..., ys, ys, ..., ys︸ ︷︷ ︸
ks

],

where yi 6= yi+1 for i ∈ {1, 2, ..., s − 1} and they all are different from x. In the
following we will use the notation:

e(k1,k2,...,ks)(x, y1, y2, ..., ys) = [x, k1, y1, k2, y2, ..., ks, ys].

Then we define the generalized Engel equation to be the equation of the form:

e(k1,k2,...,ks)(x, y1, y2, ..., ys) = c,

where k1, k2, ..., ks are fixed natural numbers, x, y1, y2, ..., ys are the unknown
variables and c is a constant. Then we have:

Corollary 1. Let K be an arbitrary field.

1. For every matrix C contained in UTm
n (K) the generalized Engel equation

e(k1,k2,...,ks)(x, y1, y2, ..., ys) = C, where m = k1 + k2 + ...+ ks,

is solvable in UTn(K);

2. If K has at least n + 1 elements, then for every matrix C contained in
UTn(K) and for arbitrary coice of natural numbers k1, k2, ..., ks the gener-
alized Engel equation

e(k1,k2,...,ks)(x, y1, y2, ..., ys) = C

is solvable in Tn(K);

3. For every matrix C contained in UTm
∞(K) the generalized Engel equation

e(k1,k2,...,ks)(x, y1, y2, ..., ys) = C, where m = k1 + k2 + ...+ ks,

is solvable in UT∞(K);

4. If K is infinite, then for every matrix C contained in UT∞(K) and for arbi-
trary choice of natural numbers k1, k2, ..., ks the generalized Engel equation

e(k1,k2,...,ks)(x, y1, y2, ..., ys) = C

is solvable in T∞(K).
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We summarize the paper with a discussion on the presented results in terms
of verbal subgroups and verbal width.

Given group G and a word w(x, y) ∈ F we define the verbal subgroup Vw(G)
of G to be the subgroup generated by all values of w in G. By definition, every
element x ∈ Vw(G) is a product of a finite number of w-values. For a given verbal
subgroup an interesting question is the existence of the least number n such that
every element of Vw(G) can be presented as a product of at most n w-values.
Such number n is then called the width of verbal subgroup (or verbal width) and
denoted by widw(G). There are also known examples of verbal subgroups having
infinite verbal width.

The lattices of verbal subgroups in UTn(K) and Tn(K) have been character-
ized in [1, 2]. In particular, it was proved that every verbal subgroup in UTn(K)
coincides with one of the terms of the lower central series of UTn(K), i.e. with
one of the subgroups γm+1(UTn(K)) = UTm

n (K). In the case of the group Tn(K),
the following characterization of verbal subgroups was introduced: every verbal
subgroup Vw(Tn(K)) is either a verbal subgroup of UTn(K) or can be represented
as a product Vw(Dn(K)) · UTn(K).

Knowing the lattice of verbal subgroups in a group, another interesting ques-
tion is the coincidence of verbal subgroups defined by different sets of words as
well as their corresponding verbal width. For UTn(K) and Tn(K) this problem
has been investigated in [1, 2, 7]. In particular, in [1, 2] it is determined with
which terms of the lower central series of UTn(K) the verbal subgroups generated
by outer commutator words and power words coincide and the respective verbal
width is calculated. Additionally, in [1] it is proved that the width of verbal sub-
groups generated by simple commutators ck in Tn(K), where charK = 0, is equal
to 1. Then in [7] the author calculates the width of verbal subgroups generated
by outer commutator words and power words in Tn(K) for the field of arbitrary
characteristic. He proves that widω(Tn(K)) = 1 for every outer commutator word
ω and widxs(Tn(K)) = 1 for all but two cases of K being finite and the exponent
s being divisible by charK (see [7] for details).

The statements of Theorems 1 and 2 lead to the characterization of verbal
subgroups generated by Engel words in groups UTn(K) and Tn(K) along with
their width. Thus in the last section of the paper we discuss our results in terms
of verbal subgroups and their properties.

2. Solutions to Engel equations in the group of unitriangular matrices.

We shall start our considerations with a simple observation on some commu-
tator equations in UTn(K). A following result will be useful:

Lemma 1. Let B denote the matrix 1n +
n−1∑
i=1

ei,i+1 from UTn(K). For every
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matrix C ∈ UTm
n (K), m ≥ 1 the commutator equation

C = [A,B]

has a solution A ∈ UTm−1
n (K).

Proof. We prove the result by induction on the matrix size n. At first we note
that the smallest possible n is equal to m+1 and then UTm

n (K) = UTm
m+1 = {1n}.

Then C = 1n and for every matrix A ∈ UTn(K) we have [A,B] = 1n = C. Thus,
in particular, we may choose A ∈ UTm−1

n (K) satisfying the statement of the
Lemma.

Now we assume that the Lemma holds for all matrices of sizes not greater
than n. Let us choose C̄ ∈ UTm

n+1(K) and let B̄ denote the matrix

1n+1 +
n∑

i=1

ei,i+1 ∈ UTn+1(K),

where C̄ and B̄ can be represented as

C̄ =

(
C c
0 1

)
, B̄ =

(
B b
0 1

)
,

where cT = (c1, c2, ..., cn−m, 0, ..., 0) ∈ Kn, 0 is a zero vector from Kn and bT =
(0, ..., 0, 1) ∈ Kn.

Now, let Ā ∈ UTn+1(K) be the matrix:

Ā =

(
A a
0 1

)
,

where A ∈ UTn(K). Then we have:

[Ā, B̄] =

(
[A,B] x
0 1

)
,

where x = A−1(B−1 − 1n)a + A−1B−1(A − 1n)b. By our inductive assumption
we can choose A ∈ UTm−1

n (K) such that C = [A,B]. Then we have:

rank(A− 1n) ≤ n−m,
rank(B−1 − 1n) = rank(B − 1n) = n− 1,

and since multiplication by invertible matrices does not affect the matrix rank,
then denoting E = A−1B−1(A− 1n) and D = A−1(B−1 − 1n) we have

rank(E) ≤ n−m,
rank(D) = n− 1.
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For the equality C̄ = [Ā, B̄] to hold it is necessary that

c = Da + Eb.

Since E and b are already determined, then we observe that

Eb = e = (e1, e2, ..., en−m, 0, ..., 0)T

and we have to solve the system:

w = Da,

where w = c− e = (w1, w2, ..., wn−m, 0, ..., 0)T . Now, considering the rank of the
augmented matrix of the system

rank(D|w) = max{n− 1, n−m} = n− 1

we have that rank(D|w) = rank(D) hence the system has a solution a. Moreover,
due to the rank of D we have D1,2 ·D2,3 · ... ·Dn−1,n 6= 0 and hence:

0 = wn−1 = Dn−1,n · an ⇒ an = 0
0 = wn−2 = Dn−2,n−1 · an−1 +Dn−2,n · an ⇒ an−1 = 0
...
0 = wn−m+1 = Dn−m+1,n−m+2 · an−m+2 + ... ⇒ an−m+2 = 0.

Therefore Ā ∈ UTm−1
n+1 (K) and the Lemma is proved. 2

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We will show that for every matrix C from UT k
n (K)

the k-Engel equation ek(A,B) = C has a solution: A ∈ UTn(K) and B =

1n +
n−1∑
i=1

ei,i+1.

The proof is inductive on k. For k = 1 we have e1 = [x, y] and hence
Ve1(UTn(K)) = UT 1

n(K). Moreover, by Lemma 1 we have that for every ma-
trix C ∈ UT 1

n(K) there exists a matrix A ∈ UTn(K) such that C = [A,B] and
the statement holds.

Now, assume that for all i-Engel words, i < k, and for every matrix C from
UT i

n(K) the i-Engel equation ei(A,B) = C has a solution A ∈ UTn(K) and B
defined as above. We consider the values of the word ek. Let us take a matrix
C ∈ UT k

n (K). Then, by Lemma 1, there exists solution A ∈ UT k−1
n (K) such that

C = [A,B]. By the inductive assumption there exists a matrix A′ ∈ UTn(K)
being the solution to A = ek−1(A

′, B). Hence C = [A,B] = [ek−1(A
′, B), B] =

[A′,k−1 , B,B] = [A′,k , B] = ek(A′, B) and the theorem follows by induction. 2
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3. Engel values in the group of triangular matrices.

We begin the considerations with the following observation:

Lemma 2. Let K be a field containing at least n + 1 elements. Then for every
matrix A ∈ UTn(K) the commutator equation

A = [X, Y ],

has a solution X = U , Y = D such that U ∈ UTn(K) is a unitriangular matrix

and D =
n∑

i=1

diei,i is a diagonal matrix satisfying di 6= dj whenever i 6= j.

Proof. We prove the result by induction on the matrix size n. Take n = 2 and
assume |K| > 2. Then K has at least two distinct invertible elements d1 and d2
and we may put

D =

(
d1 0
0 d2

)
.

Now, let A = 12 + aei,2, a ∈ K, be an arbitrary matrix from UT2(K). Take
U = 12 +uei,2 ∈ UTn(K), such that u = (d−11 d2−1)−1a. Then direct calculations
show that

A = [U,D]

and the statement is true.
Now, let us assume that for a given n the statement of the Lemma holds.

Take an arbitrary matrix Ā ∈ UTn+1(K), and assume |K| > n+ 1. Observe that

Ā =

(
A a
0 1

)
,

where A ∈ UTn(K), aT = (a1, a2, ..., an) ∈ Kn and 0 ∈ Kn is a zero vector. By
our inductive assumption there exists a matrix U ∈ UTn(K) such that A = [U,D]
and di 6= dj for i 6= j. Define Ū ∈ UTn+1(K) and D̄ ∈ Dn+1(K) as follows:

Ū =

(
U u
0 1

)
, D̄ =

(
D 0T

0 dn+1

)
,

where uT = (u1, u2, ..., un) ∈ Kn. As |K| > n + 1 then there exists at least one
invertible element k from K, different from all diagonal entries of matrix D. Put
dn+1 = k. Then we have:

[Ū , D̄] =

(
[U,D] U−1(D−1dn+1 − 1n)u

0 1

)
,

and for the equality Ā = [Ū , D̄] it suffices that

a = U−1(D−1dn+1 − 1n)u.
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Since D−1dn+1 =
n∑

i=1

d−1i dn+1ei,i and by our assumptions d−1i dn+1 6= 1 for all

i ∈ {1, 2, ..., n}, then the matrix U−1(D−1dn+1 − 1n) is invertible and hence we
may define

u =
(
U−1(D−1dn+1 − 1n)

)−1
a.

Then Ā = [Ū , D̄] and the Lemma follows by induction. 2

In the proof of Lemma 2 we constructed a matrix D ∈ Tn(K), such that every
element of the derived subgroup UTn(K) of Tn(K) is a value of a commutator
involving D. The sufficient condition for the existence of matrix D is that field
K contains at least n + 1 elements. In the following Lemma we prove that this
condition is also a necessary one.

Lemma 3. If T =
n∑

i=1

n∑
j=i

ti,j ∈ Tn(K) is a triangular matrix with the property

that for every unitriangular matrix A ∈ UTn(K) the equation

A = [U, T ]

has a solution U ∈ UTn(K), then all diagonal entries of matrix T are pairwise
distinct, i.e. ti,i 6= tj,j whenever i 6= j.

Proof. We prove the Lemma by induction on matrix size n. Let T ∈ T2(K)

T =

(
t1,1 t1,2
0 t2,2

)
, ti,i ∈ K∗for i = 1, 2, t1,2 ∈ K

be the matrix with the property assumed in the lemma. We take an arbitrary
matrix A ∈ UT2(K), say

A =

(
1 a
0 1

)
, a ∈ K,

and consider the matrix equation A = [U, T ]. Simple calculations show that for

every matrix U =

(
1 u
0 1

)
∈ UT2(K) we have:

[U, T ] =

(
1 u(t−11,1t2,2 − 1)
0 1

)
,

and the equality A = [U, T ] implies

a = u(t−11,1t2,2 − 1). (1)

As a is arbitrary element of K, it is clear that equation (1) has solution u if and
only if (t−11,1t2,2 − 1) is invertible in K, that is t1,1 6= t2,2. Thus, for n = 2 the
Lemma holds.
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Now, assume that the Lemma holds for matrices of size less than or equal to
n. Let T̄ ∈ Tn+1(K) be the triangular matrix with the property assumed in the
lemma and take an arbitrary matrix Ā ∈ UTn+1(K). Then

Ā =

(
A a
0 1

)
, T̄ =

(
T t
0 tn+1,n+1

)
where aT , tT ∈ Kn, A ∈ UTn(K), T ∈ Tn(K) are fixed.

Again, direct calculations show that for every matrix Ū =

(
U u
0 1

)
, such

that U ∈ UTn(K) and uT ∈ Kn, we have:

[Ū , T̄ ] =

(
[U, T ] Bt+ Cu

0 1

)
,

where B = U−1T−1(U −1n) and C = U−1(T−1tn+1,n+1−1n). Thus, the equation
Ā = [Ū , T̄ ] is equivalent to

A = [U, T ] (2)

a = Bt+ Cu. (3)

From our inductive assumption and (2) we have that T̄i,i = Ti,i 6= Tj,j = T̄j,j
for i 6= j, 1 ≤ i, j ≤ n. In (3) the first part Bt is fixed as T̄ is fixed and U is
determined by (2). Hence it is clear that if (3) has solution for every aT ∈ Kn then
C must be invertible. Thus (T−1tn+1,n+1−1n) ∈ Tn(K) and hence tn+1,n+1 6= T̄i,i
for all i = 1, 2, ..., n. The Lemma follows by induction. 2

The statement of Lemma 3 implies that for the case of small fields (i.e. the
fields containing less then n invertible elements), the search of solutions to the
Engel equations A = ek(X, Y ) for a given unitriangular matrix A and k > 1
require searching for both triangular matrices X and Y in parallel (none of them
can be fixed in the general case).

Proof of Theorem 2. Assume that k ≥ 1 and |K| > n. We will show that for
every matrix C from UTn(K) the k-Engel equation ek(U,D) = C has a solution,

where D =
n∑

i=1

diei,i and di 6= dj for all i 6= j.

The proof is inductive on k. For k = 1 we have e1 = [x, y] and hence,
by results of [1], Ve1(Tn(K)) = UTn(K). Then by Lemma 2 for every matrix
C ∈ UTn(K) there exists a matrix U ∈ UTn(K) which is the solution to the
equation C = [U,D] with

D =
n∑

i=1

diei,i, di 6= dj for all i 6= j. (4)

Now, assume that for all i-Engel words, i < k, and for every matrix C from
UTn(K) the i-Engel equations ei(Ui, D) = C are solvable in UTn(K), with D
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being defined as in (4). Let us take a matrix C ∈ UTn(K) and consider the
Engel equation ek(U,D) = C. Again, by Lemma 2, there exists a matrix U ∈
UTn(K) such that C = [U,D]. By the inductive assumption there exists a matrix
U ′ ∈ UTn(K) such that U = ek−1(U

′, D). Hence C = [U,D] = [ek−1(U
′, D), D] =

[U ′,k−1 , D,D] = [U ′,k , D] = ek(U ′, D) and the Theorem follows by induction. 2

Proof of Theorem 3.
Recall that UTm

∞(K) = lim
−→
n

(UTm
n (K), ϕn), hence for every infinite matrix

Ã ∈ UTm
∞ there exists such N ∈ N that for i > N or j > N the respective

entry Ãij is either zero (if i 6= j) or 1 (if i = j). From Theorem 1 it follows that
for every matrix A ∈ UTm

N (K) there exist matrices B,C ∈ UTN(K) such that

A = em(B,C). Define B̃, C̃ ∈ UT∞(K) such that

B̃ij =


Bij if i ≤ N and j ≤ N,

1 if N < i = j,

0 otherwise.

, C̃ij =


Cij if i ≤ N and j ≤ N,

1 if N < i = j,

0 otherwise.

Then Ã = em(B̃, C̃) and the first statement of Theorem 3 follows (for a detailed
reasoning in this matter check [1], Lemma 2 and proofs of Theorem 3 and 4).

For the proof of statement 2 we observe that if K is infinite field, then by
Theorem 2 we have that for all n ∈ N every matrix A ∈ UTn(K) is a value of
any Engel word ek(x, y). Hence, by the same arguments as above for an arbitrary

matrix Ã ∈ UT∞ we find the appropriate N and use Theorem 2 to solve the given
Engel equation. Having the solution of the finite case, we construct the finitary
solution as in the proof of statement 1. The proof is complete. 2

As a summary of Sections 1 and 2 we prove Corollary 1, which follows easily
from the results of Theorems 1, 2 and 3.

Proof of Corollary 1. For any group G and an elements g, a, b ∈ G observe
that if a and b are solutions of the Engel equation g = em(a, b), then

g = em(a, b) = e(k1,k2,...,ks)(a, b, b, ..., b)

whenever m = k1+k2+...+ks. Thus a and b are solutions to the generalized Engel
equation e(k1,k2,...,ks)(x, y1, y2, ..., ys) = g in G. Now all statements of Corollary 1
follow from Theorems 1, 2 and 3. 2

4. Discussion

In this section we discuss briefly the implications of Theorems 1, 2 and 3 to
verbal subgroups generated by Engel words in the considered linear groups.

By Theorems 1 and 2 we have that all elements of the group UTm
n (K) are m-

Engel values in UTn(K) and , if K is sufficiently large, all elements for UTn(K)
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are m-Engel values in Tn(K) for all m ∈ N. In other words we proved the
inclusions:

Vem(UTn(K)) ⊇ UTm
n (K), Vem(Tn(K)) ⊇ UTn(K). (5)

On the other hand, observe that in any group G

Vek(G) ⊆ Vck(G),

where c2(x1, x2) = e1(x1, x2) and ck(x1, x2, ..., xk) = [ck−1(x1, x2, ...xk−1), xk] are
basic commutator words, in which xi 6= xj for i 6= j. Then the inclusions converse
to (5) follow from the characterization of verbal subgroups in UTn(K) and Tn(K)
given in [1] and we have the following

Corollary 2. Let K be an arbitrary field.

1. The verbal subgroup of group UTn(K) generated by the Engel word ek coin-
cides with γk+1(UTn(K)) and has width equal to 1.

2. If K contains at least n + 1 elements, then the verbal subgroup of group
Tn(K) generated by the Engel word ek coincides with γ2(Tn(K)) and has
width equal to 1.

3. The verbal subgroup of group UT∞(K) generated by the Engel word ek co-
incides with γk+1(UT∞(K)) and has width equal to 1.

4. If K is infinite, then the verbal subgroup of group T∞(K) generated by the
Engel word ek coincides with γ2(T∞(K)) and has width equal to 1.

We note also the nilpotency classes of the Engel subgroups in Tn(K):

Corollary 3. UTn+1(K) is a n-Engel group of nilpotency class n.

Similar consequences are obtained for verbal subgroups generated by the gen-
eralized Engel words:

Corollary 4. Let K be an arbitrary field.

1. The verbal subgroup of group UTn(K) generated by the generalized Engel
word e(k1, k2, ..., ks) coincides with γm(UTn(K)) for m = k1+k2+...+ks+1
and wide(k1,k2,...ks)(UTn(K)) = 1,

2. If K contains at least n + 1 elements, then the verbal subgroup of group
Tn(K) generated by the generalized Engel word e(k1, k2, ..., ks) coincides with
γ2(Tn(K)) and wide(k1,k2,...ks)(UTn(K)) = 1.

12



Proof. For the proof of the first statement take m = k1 + k2 + ...ks and observe
a pair of obvious inclusions:

Vem(UTn(K)) ⊆ Ve(k1,k2,...,ks)(UTn(K)) ⊆ Vcm+1(UTn(K)) = UTm
n (K).

By Corollary 2 we even have the equality

Vem(UTn(K)) = Vcm+1(UTn(K))

which implies Ve(k1,k2,...,ks)(UTn(K)) = Vcm+1(UTn(K)). Moreover, every ele-
ment of Vcm+1(UTn(K)) is a value of the word em = [x,m , y] for certain ma-
trices A,B ∈ UTn(K), hence it is also the value of the word e(k1, k2, ..., ks) =
[x,k1 , y1,k2 , y2, ...,ks , ys] which we obtain by substituting x by A and y1,y2,..., ys by
B. Hence, Ve(k1,k2,...,ks)(UTn) = γm+1(UTn(K)) and wide(k1,k2,...,ks)(UTn(K)) = 1.

The proof of the second statement is analogous. 2.
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