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Abstract. This paper addresses the problem of the propagation of
input data errors in the stereovision process and its influence on the qual-
ity of reconstructed 3D points. We consider only those particular cam-
era calibration and 3D reconstruction algorithms which employ singular
value decomposition (SVD) methods. Using the SVD Jacobian estima-
tion method developed by Papadopoulo and Lourakis, we determine all
the partial derivatives of outputs with respect to the inputs and present
a set of tests applying them in various stereovision conditions in order
to evaluate their impact on the quality of 3D reconstruction.

Keywords: Stereovision, sensitivity, projection matrix, 3D reconstruc-
tion.

1 Introduction

Many applications require stereovision algorithms to work within a given toler-
ance of error. The problem of precision in 3D reconstruction has been studied by
many authors. For example, in [1] the authors investigate the error of a 3D point
reconstructed by triangulation in the case of parallel image planes and derive the
probability that the results are within a specified error margin. The precision
analysis of 3D reconstruction from image sequences including the covariance ma-
trix method and the evaluation of 3D reconstruction error have been thoroughly
discussed in [6]. The latter is also considered in [4] in the sense of confidence in-
tervals for the coordinates of the 3D point reconstructed from the cameras set in
normal configuration and using disparity maps. Another approach is presented
in [9], where the method of bounding boxes is used in the uncertainty analysis
of 3D reconstruction. The sensitivity of 3D reconstruction of a specific kind of
scene is analyzed in [2]. Hartley and Zisserman [3] analyzed the uncertainties in
identifying a homography between two 2D images based on given points, using
the best approximation in terms of the Mahalanobis distance between given and
reconstructed coordinates. While not directly representing stereo vision, their
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findings resemble ours (see Section 3) in that error increases with the distance
of points from the origin of the coordinate system.

In this paper we present yet another approach to the problem by performing
sensitivity analysis of SVD-based stereovision algorithms.

The paper is organized as follows. Section 2 introduces the calculation models
for camera calibration and 3D reconstruction, and gives a detailed sensitivity
analysis of both processes. In Section 3 we evaluate the sensitivity of the algo-
rithm for different configurations of scene images varying with respect to camera
positioning. The paper concludes with a discussion of the results.

2 Sensitivity Analysis of the Stereovision Process

2.1 Calculation Model

A 3D scene and its 2D image are mathematically represented as a set of pairs of
corresponding 2D and 3D points, one being a projection of the other. Throughout
this work, we will denote 2D coordinates with lowercase letters, and the corre-
sponding 3D coordinates with capital letters. The homogeneous coordinates of
x = [sx, sy, s] and X = [X, Y, Z, 1], where x is the projection of X, are related
by the projection matrix P:

s

⎡
⎣

x
y
1

⎤
⎦ = P

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ , (1)

Calibration uses a set of known 3D points and their 2D images to determine
the projection matrix. The equation (1) then leads to a system of equations
which are linear with respect to entries of the projection matrix P and hence
can be written in the form:

MR = 0. (2)

M is a 2p × 12 matrix, where p ≥ 6 is the number of pairs of points (xi, yi)
and (Xi, Yi, Zi, 1), i = 1, 2, ..., p used for calibration, and R is a column vector
composed of the entries of P written row by row:

M =

⎡
⎢⎢⎣

· · · · · · · · ·
Xi 0 0 0 0 −xiXi

0 0 0 0 Xi −yiXi

· · · · · · · · ·

⎤
⎥⎥⎦ , (3)

R = [P1,P2,P3]T . (4)

The equation (2) usually does not have an exact nonzero solution, as in most
cases it is over-determined. An approximate (least-squares) solution is found by
using singular value decomposition.
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The approximate solution Ra to (2) is determined as

M = UDVT (SVD), Ra = [V1,12,V2,12, ...,V11,12,V12,12]T (5)

Ra minimizes the norm

‖MR‖ =
2p∑

i=1

(MR)2i

among all vectors R of unit length.
To restore the matrix P we need only to rearrange the entries of Ra.
The reconstruction of the 3D scene is the process of recovering unknown 3D

coordinates from K ≥ 2 2D images of the scene made from different points of
view. We assume at least two calibrated cameras are used to take pictures of the
scene, and the calibration stage performed for each of the cameras has yielded
the projection matrices P(1),P(2), ...,P(K). Let [x(i), y(i)] be the Euclidean co-
ordinates of the 2D projections of the unknown 3D point [X, Y, Z], in the image
produced by the camera with projection matrix P(i) (i = 1, 2, ..., K).

Recalling equation (1) for each camera and the pair of 2D and 3D coordinate
vectors, we obtain a system of equations

s(i)

⎡
⎣

x(i)

y(i)

1

⎤
⎦ = P(i)

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ , i = 1, 2, ..., K (6)

Usually, having K ≥ 2 views ensures that the system of equations (6) is
(over)determined with respect to the unknown 3D coordinates, and therefore it
has a unique (possibly least-squares approximate) solution. An under-determined
system of equations can result from inappropriate camera positioning and it will
not be covered here. We will, however, deal with ”almost-under-determined” sys-
tems, which appear to be quite frequent in real life 3D reconstruction processes.

After rearranging the system of equations (6), we obtain the following matrix
equation:

L

⎡
⎣

X
Y
Z

⎤
⎦ = B (7)

for L being a matrix of dimension 2K × 3:

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P(1)
1,1 − x(1)P(1)

3,1 P(1)
1,2 − x(1)P(1)

3,2 P(1)
1,3 − x(1)P(1)

3,3

P(1)
2,1 − y(1)P(1)

3,1 P(1)
2,2 − y(1)P(1)

3,2 P(1)
2,3 − y(1)P(1)

3,3

P(2)
1,1 − x(2)P(2)

3,1 P(2)
1,2 − x(2)P(2)

3,2 P(2)
1,3 − x(2)P(2)

3,3

P(2)
2,1 − y(2)P(2)

3,1 P(2)
2,2 − y(2)P(2)

3,2 P(2)
2,3 − y(2)P(2)

3,3

· · · · · · · · ·
P(K)

2,1 − y(K)P(K)
3,1 P(K)

2,2 − y(K)P(K)
3,2 P(K)

2,3 − y(K)P(K)
3,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and B the column vector of size 2K:

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(1)P(1)
3,4 − P(1)

1,4

y(1)P(1)
3,4 − P(1)

2,4

x(2)P(2)
3,4 − P(2)

1,4

y(2)P(2)
3,4 − P(2)

2,4
...

y(K)P(K)
3,4 − P(K)

2,4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Equation (7) can be solved for the unknown Euclidean vector [X, Y, Z] using
the pseudo-inverse matrix, which leads to the least-squares solution:⎡

⎣
X
Y
Z

⎤
⎦

ls

= L+B, (8)

where L+ denotes the Moore-Penrose pseudo-inverse of matrix L. The vector
[X, Y, Z]Tls minimizes the least-squares norm:

2K∑
j=1

(
(L[X, Y, Z]T )j − Bj

)2
.

2.2 Sensitivity of Camera Calibration

At the calibration stage we assume that the 3D coordinates of the points Xi

are known accurately, while the 2D coordinates of their projection xi are read
from the images with some error. We give here the analysis of propagation of
the measurement errors to the entries of the resulting projection matrix.

In Section 2.1 we calibrated the cameras using the SVD method to solve
a system of linear equations (2). Now we will examine the sensitivity of this
method to input errors. The dependencies of SVD outputs (the entries of the
three matrix components) on the entries of the input matrix were thoroughly
discussed in [7]. The method proposed by Papadopoulo and Lourakis allows the
Jacobian of the SVD components to be determined with respect to the entries
of the matrix being decomposed, considering the SVD as a transformation of
the matrix entries. We apply this method to estimate calibration error. Assume
that M = [mij ] defined in Section 2.1 contains both accurate inputs and error-
burdened ones. Let M have the SV decomposition defined in (5). Then, following
Equation (9) in [7], we have:

∂V
∂mi,j

= −VΩij
V,

∂U
∂mi,j

= UΩij
U,

where Ωij
U and Ωij

V are matrices of size 2p × 2p and 12 × 12, respectively, and
their entries can be determined as solutions of the following systems:{

dlΩ
ij
Ukl + dkΩ

ij
Vkl = uikvjl,

dkΩ
ij
Ukl + dlΩ

ij
Vkl = −uilvjk.

(9)
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In this notation, di is the i-th diagonal entry of the D component in SVD, while
ui,j and vi,j are the entries of matrices U and V.

If dk �= dl, then the obtained entries of matrix Ωij
V have the form:

Ωij
Vkl =

dluilvjk + dkuikvjl

d2
k − d2

l

If two or more singular values are equal, then - as suggested in [7] - the equations
(9) related to those values have to be solved with a least squares method in
order to obtain the Jacobian with the smallest possible norm. Then the partial
derivatives can be determined from the equation:

∂vkl

∂mij
= −

12∑
s=1

vksΩ
ij
Vsl. (10)

Returning to the notation of the projection matrix we have:

∂Pk,l

∂mi,j
=

∂v4(k−1)+l,12

∂mi,j
, (11)

hence, if (xs, ys) is the 2D image of the s-th 3D point (Xs, Ys, Zs, 1),

∂Pk,l

∂xs
=
∑
(i,j)

∂Pk,l

∂mi,j
· ∂mi,j

∂xs
=

= −Xs · ∂Pk,l

∂m2s−1,9
− Ys · ∂Pk,l

∂m2s−1,10
− Zs · ∂Pk,l

∂m2s−1,11
− ∂Pk,l

∂m2s−1,12
=

= −Xs · ∂v4(k−1)+l,12

∂m2s−1,9
− Ys · ∂v4(k−1)+l,12

∂m2s−1,10
− Zs · ∂v4(k−1)+l,12

∂m2s−1,11
−

−∂v4(k−1)+l,12

∂m2s−1,12

(12)

and

∂Pk,l

∂ys
=
∑
(i,j)

∂Pk,l

∂mi,j
· ∂mi,j

∂ys
=

= −Xs · ∂v4(k−1)+l,12

∂m2s,9
− Ys · ∂v4(k−1)+l,12

∂m2s,10
− Zs · ∂v4(k−1)+l,12

∂m2s,11
−

−∂v4(k−1)+l,12

∂m2s,12
,

(13)

where the partial derivatives ∂v4(k−1)+l,12

∂m2s−1,9
, ∂v4(k−1)+l,12

∂m2s−1,10
, ∂v4(k−1)+l,12

∂m2s−1,11
, ∂v4(k−1)+l,12

∂m2s−1,12
,

∂v4(k−1)+l,12

∂m2s,9
, ∂v4(k−1)+l,12

∂m2s,10
, ∂v4(k−1)+l,12

∂m2s,11
and ∂v4(k−1)+l,12

∂m2s,12
are determined from equa-

tions (10).

2.3 Sensitivity of 3D Reconstruction

Having determined the projection matrices of the cameras and given the 2D
coordinates, in the images, of a feature point, we can use formula (8) to recover
its 3D coordinates. Note that projection matrices as well as 2D coordinates are
burdened with errors. The uncertainty of the entries of the projection matrices
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were derived in the previous section. For now, we assume that the projection
matrices are given with their uncertainties as P(i) ±�P(i) and we are not inter-
ested in the sourceof these errors. At the same time, we consider the errors of
reading the 2D coordinates (x(i), y(i)) of a feature point X = [X, Y, Z]T .

Recall the solution (8) to the 3D reconstruction problem given in section 2.1.
We are now interested in the partial derivatives of the reconstructed coordinates
with respect to any of the inputs that can be burdened with errors.

∂X
∂r

=
∂(L+B)

∂r
=

∂L+

∂r
B + L+ ∂B

∂r
, (14)

where r represents any of the parameters Pk,l, x(i), y(i). Clearly, vector ∂B
∂r can

be determined directly from the vector B, as for i = 1, 2, ..., K we have

∂B2i−1

∂P
(i)
3,4

= x(i), ∂B2i−1

∂P
(i)
1,4

= −1, ∂B2i

∂P
(i)
3,4

= y(i), ∂B2i

∂P
(i)
1,4

= −1,

∂B2i−1

∂x(i) = P3,4
(i), ∂B2i

∂y(i) = P3,4
(i),

and
∂Bj

∂P(i)
k,l

=
∂Bj

∂x(i)
=

∂Bj

∂y(i)
= 0

elsewhere. Likewise, the derivatives for the entries of the matrix L are:

∂L2i−1,j

∂P
(i)
1,j

= 1,
∂L2i,j

∂P
(i)
2,j

= 1,
∂L2i−1,j

∂P
(i)
3,j

= −x(i),
∂L2i,j

∂P
(i)
3,j

= −y(i), j = 1, 2, 3,

∂L2i−1,1

∂x(i) = −P3,1
(i),

∂L2i−1,2

∂x(i) = −P3,2
(i),

∂L2i−1,3

∂x(i) = −P3,3
(i),

∂L2i,1

∂y(i) = −P3,1
(i),

∂L2i,2

∂y(i) = −P3,2
(i),

∂L2i,3

∂y(i) = −P3,3
(i),

while all other derivatives ∂Ls,t

∂P
(i)
k,l

, ∂Ls,t

∂x(i) , ∂Ls,t

∂y(i) are zeros.

The study of ∂L+

∂r needs more complicated analysis. Recall from section 2.1
that L+ = VΣ+UT, hence for every pair of indices (i, j):

∂L+

∂li,j
=

∂V
∂li,j

Σ+UT + V
∂Σ+

∂li,j
UT + VΣ+ ∂UT

∂li,j
. (15)

Since all entries of the diagonal matrix Σ+ are the reciprocals of the entries
of matrix Σ, except for those equal to zero, which remain unchanged, we obtain:

∂Σ+
k,k

∂li,j
= − 1

(Σk,k)2
· ∂Σk,k

∂li,j
,

if Σk,k �= 0, and
∂Σ+

k,k

∂li,j
= 0

otherwise. Additionally, for the case of Σk,k �= 0, following the relations in [7]
we have:

∂Σ+
k,k

∂li,j
= − 1

(Σk,k)2
·Ui,kVj,k.
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The rest we get from [7]:

∂U
∂li,j

= UΩij
U,

∂V
∂li,j

= −VΩij
V,

where Ωij
U and Ωij

V are matrices defined for the decomposition L = UΣV T and
their entries can be obtained from the systems of equations analogous to (9).

Applying all these relations to the formula (15), we determine the derivatives
of the entries of L+ with respect to particular entries of matrix L. Now, for
parameter r, which represents one of parameters Pk,l, x(i), y(i), we obtain:

∂L+

∂r
=

∂L+

∂L
· ∂L

∂r
, (16)

and more precisely
∂L+

∂r
=
∑
(i,j)

∂L+

∂Li,j
· ∂Li,j

∂r
.

Finally, we have all the derivatives needed to compute ∂X
∂r using equation (14):

∂X
∂r

=

⎛
⎝∑

(i,j)

∂L+

∂Li,j
· ∂Li,j

∂r

⎞
⎠B + L+ ∂B

∂r
. (17)

3 Practical Applications

The purpose of the tests performed on the simulated 3D scene and its images is to
confront the theory presented in the previous section with an actual stereovision
process. We used POV-Ray (Persistence of Vision Ray-Tracer) to generate photo-
realistic images from descriptions of scenes and camera positions. An important
advantage of a virtual scene is that accurate 3D coordinates are known and can
be used as a reference when evaluating the results of 3D reconstruction.

Fig. 1. Images obtained in POV-Ray
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Fig. 2. Image 11.jpg and vertex
labels

Our test scene consisted of a tetrahedron, a
cuboid and a cube, all of a similar size, standing
on a plane. For testing purposes, 11 pictures of
the scene were created in POVRay, each from a
different point of view and camera direction. Ten
of them are presented in Figure 1. The eleventh
is shown in Figure 2 along with the labeling of
the vertices.

All the resulting images were next subjected
to calibration. The seven visible vertices of the
cube served as calibration points. Using formulas
12 and 13 derived in the previous section, we de-
termined the derivatives ∂P(i)

∂xj
and ∂P(i)

∂yj
, which

are the derivative matrices of the i-th projection
matrix with respect to the x and y coordinate of
the j-th calibration point in the i-th image.

In the following analysis, the measure of the sensitivity Sj(P (i)) of the pro-
jection matrix P(i) to error in the j-th calibration point is defined as the sum of
squares of all entries of matrices ∂P(i)

∂xj
and ∂P(i)

∂yj
:

Sj(P (i)) :=
∑
k,l

⎡
⎣
(

∂P(i)
k,l

∂xj

)2

+

(
∂P(i)

k,l

∂yj

)2
⎤
⎦ .

Such definition seems reasonable as it gathers the influence of both coordinates
on the whole projection matrix. It has, however, some drawbacks. As the compo-
nents in the sum are taken with equal weights, their impact on further processing
is not taken into account. This sum cannot therefore be regarded as a measure
of calibration quality, which should be considered from the point of view of the
quality of the whole stereovision process.

Table 1 presents the sensitivities of projection matrices to all calibration points
separately and combined sensitivity to errors in coordinates of all calibration
points, calculated as square root of the sum of squares of sensitivities to partic-
ular points.

The implementation of the differential method presented in the previous sec-
tion allowed us to determine those of all eleven projection matrices which are
the most sensitive to input errors, and those calibration points which influence
the most and the least the precision of calibration. One can observe that some
calibration points have significantly smaller impact on projection matrices than
others. Moreover, the three worst calibration sensitivity measures are achieved
for the images for which the calibration process is performed with all cube ver-
tices except the one which is least distant to the origin of the scene.

Considering the distances of those particular calibration points from the origin
of the 3D scene coordinate system, a general tendency can be observed. The
points lying furthest from the origin have the greatest impact on the projection
matrix entries, in other words, calibration is more sensitive to the points lying
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Table 1. Calibration sensitivity to individual calibration points and combined sensi-
tivity to all calibration points (multiplied by 104)

Image \ Point E F G H M N O P Combined

01.jpg 2 3 21 1 - 5 1 5 22.5
02.jpg 31 92 19 25 17 50 17 - 116.15
03.jpg 21 3 6 14 - 10 17 2 32.8
04.jpg 16 2 0 5 4 - 3 1 17.63
05.jpg 12 1 0 4 4 - 5 1 14.25
06.jpg 2 1 0 1 1 - 0 0 2.65
07.jpg 7 6 1 1 2 6 - 3 12.04
08.jpg 1 2 2 2 0 0 - 2 4.12
09.jpg 0 13 1 8 9 5 - 1 18.47
10.jpg 18 10 3 50 5 24 10 - 60.28
11.jpg 288 115 8 27 2 112 35 - 332.8

further from the origin. A possible reason for this is that the absolute values
of coordinates are multipliers in the formulas for projection matrix derivatives.
Therefore, if they are smaller, they lead to smaller derivatives. Indeed, translating
the system of 3D coordinates so that the center of the base of the cube was close
to the origin resulted in a calibration error that was a fraction of its previous
value, i.e. the projection matrix entries appeared to be less sensitive to input
errors. Conversely, setting the system of 3D coordinates so that the cube was
standing further from the origin resulted in a calibration error that was a multiple
of its original value.

A more detailed examination of the results revealed that for almost all images
and points the entries P1,4 and P2,4 are the most sensitive to errors in the x(k)

and y(k) coordinate.
The tests can however only serve as an illustration of the observed tendency

and cannot be treated as a proof for the hypothesis. Even if the tendency is con-
sidered as a rule, one can ask whether a small sensitivity of the projection matrix
to calibration inputs is desirable or not. Moreover, if the calibration points are
located far from the camera, a small difference in 2D image coordinates results
in a large difference in 3D scene coordinates. This especially applies to picture
06.jpg, where the distance between the cube vertices used for calibration and
the camera is definitely the greatest among all the images. ¿From the presented
point of view, a small sensitivity to input errors works against the quality of the
process in the sense of precise reconstruction. This feature of camera calibration
should then be taken into account, when choosing the camera position for best
reconstruction results.

3D reconstruction was performed for every pair among the 11 views, i.e. for
a total of 55 pairs. In general, 8 feature points - the vertices of the tetrahedron
and cuboid - were subject to 3D reconstruction. However, due to the fact that
not all of these points are visible in all pictures, the number of reconstructed
points varied from five to eight. Each pair of images was used for reconstruction
and yielded data which we used to evaluate error propagation.
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We begin the analysis of results by comparing the reconstructed 3D coordi-
nates with the ideal ones taken from POVRay. In order to measure the quality
of each 3D reconstruction, we calculated the mean-square error of all 3D coor-
dinates reconstructed for a given pair. The results are shown in Table 2.

Table 2. The quality of 3D reconstruction

Image 01.jpg 02.jpg 03.jpg 04.jpg 05.jpg 06.jpg 07.jpg 08.jpg 0.9.jpg 10.jpg 11.jpg

01.jpg 0.0018 0.0017 0.0101 0.0022 0.0202 0.0025 0.0062 0.0025 0.0018 0.0016
02.jpg 0.0018 0.0004 0.0021 0.0013 0.0286 0.0020 0.0007 0.0019 0.0011 0.0104
03.jpg 0.0017 0.0004 0.0017 0.0005 0.0098 0.0018 0.0005 0.0013 0.0002 0.0009
04.jpg 0.0101 0.0021 0.0017 1.2742 0.2662 0.0041 0.0011 0.0015 0.0010 0.0013
05.jpg 0.0022 0.0013 0.0005 1.2742 0.0867 0.0031 0.0005 0.0018 0.0003 0.0005
06.jpg 0.0202 0.0286 0.0098 0.2662 0.0867 0.0219 0.0133 0.0160 0.0114 0.0198
07.jpg 0.0025 0.0020 0.0018 0.0041 0.0031 0.0219 0.0115 0.0026 0.0021 0.0020
08.jpg 0.0062 0.0007 0.0005 0.0011 0.0005 0.0133 0.0115 0.0127 0.0001 0.0007
09.jpg 0.0025 0.0019 0.0013 0.0015 0.0018 0.0160 0.0026 0.0127 0.0058 0.0016
10.jpg 0.0018 0.0011 0.0002 0.0010 0.0003 0.0114 0.0021 0.0001 0.0058 0.0017
11.jpg 0.0016 0.0104 0.0009 0.0013 0.0005 0.0198 0.0020 0.0007 0.0016 0.0017

Two facts can be observed. First, the pair of images taken from points of view
that differed least (04.jpg and 05.jpg) resulted in the least precise reconstruction.
The reason for this is that narrowly spaced viewpoints lead to small angles
between gaze directions. Therefore, a slight inaccuracy in image coordinates
results in a large change of reconstructed 3D location, especially the depth. In
the extreme case of coincident cameras, 3D reconstruction is impossible.

The theoretically calculated sensitivity of reconstructed points to errors in
the input 2D coordinates - according to formula (16) - is also highest for this
image pair.

The second observation regarding the quality of reconstruction with use of
picture 06.jpg, the one with the projection matrix least sensitive to input data
errors, is quite surprising. This image yields the worst performance (in terms of
overall error in pairs with every other image). This shows that a small sensitivity
of the estimated projection matrix to input data errors does not guarantee a
good reconstruction. We should emphasize that while talking about calibration
precision, we mean the precision of the estimation of the projection matrix and
disregard the impact of its entries on the reconstruction quality.

All the 11 projection matrices obtained in the calibration stage were examined
regarding the sensitivity of their entries to input 2D coordinates of the calibration
points. The most sensitive entry was identified for every image, feature point,
and coordinate. In 133 cases out of 154, this was either P1,4 or P2,4. Most of
the rest have single deviations from that rule and there are only two projection
matrices having more than two. A question arises how this influences the quality
of reconstruction.
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We also considered the accuracy of 3D reconstruction of individual points. We
found that the points most distant from origin were reconstructed less accurately.
Using the differential method as above, the sensitivity of these reconstructed 3D
points (points J and K on Fig. 1) to errors in the 2D inputs was determined for
all reconstruction image pairs. Pairs including picture 06.jpg turned out to be
slightly more sensitive to the errors than others. The same was true, to a lesser
extent, about reconstructed points other than J and K.

Our next experiment used an analytical model of camera pairs and a scene.
The scene consisted of a cube and tetrahedron, each with an edge length of 13

cm, both centered at the origin of the 3D coordinate system. This meant they
overlapped, but in a simulated environment this was not a problem.

The intrinsic parameters of the cameras represented a focal distance (35mm
equivalent) of 52mm and an image sensor with 3072 x 2048 pixels (for an aspect
ratio of 3:2), placed symmetrically with respect to the optical axis.

The extrinsic parameters positioned the camera to look directly at the origin
of the 3D coordinates from a distance of 100 cm. 72 such virtual cameras were
placed on a horizontal circle (the Y axis being vertical) around the origin.

Each camera was virtually calibrated using seven of the vertices of the cube,
imitating a real scene where it is impossible to see all 8. The first camera was
then paired with every other one, resulting in 71 pairs. For each pair, the 3D
position of the vertices of the tetrahedron were reconstructed from their coordi-
nates projected by the two cameras. The camera parameters and the simulation
results were substituted to the formulas of Sections 2.2 and 2.3 to compute the
sensitivities of reconstructed 3D points to errors in the 2D coordinates used for
either calibration or reconstruction. Results are presented in Figure 3.

Fig. 3. Sensitivity of reconstruction as function of choice of second camera

The horizontal axis is the number (2 through 72) of the camera forming a pair
with Camera 1. The central point (camera 37) represents a pair of cameras facing
each other across the scene. The sensitivity on the vertical axis is expressed in
centimeters of reconstruction error per pixel of error in image coordinate.
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It can be seen that the sensitivity increases dramatically when the optical
axes of the two cameras are close to each other, whether gazing in the same or
opposite directions. There is also an unexpected, smaller increase in sensitivity to
2D coordinate error in calibration, occurring for perpendicular cameras. In this
position, the optical axes of both cameras are parallel to edges of the calibration
cube, which may have affected the stability of our matrix computations. Further
experiments will be needed to clarify this.

To summarize: the experiments and theoretical analysis have brought some
valuable observations, which may serve as material for further and more detailed
discussion of the factors that condition the quality of the whole stereovision
process, as well as its particular stages. The main observations are:

– The choice of calibration points influences the precision of the recovered
projection matrix. Points closer to the origin of the assumed system of 3D
coordinates have a smaller impact on the projection matrix entries.

– Increasing the distance between the camera and the scene increases the im-
pact of 2D reconstruction input errors on the quality of the process.

– Bringing the two cameras closer together, or facing each other, decreases
the 3D reconstruction quality and increases the impact of 2D reconstruction
input errors on the quality of the process.
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