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ON EXISTENCE OF FIXED POINTS 
FOR AUTOMORPHISMS OF ORDER TWO 

In this note we use standard terminology and notations from group the­
ory ((2]). For example [a, b] = a - 1b-1 ab and (a, kb] = [a, b, b, . .. , b]. 

"--v-" 
k 

DEFINITION 1 [3]. An automorphism a in a group G, which leaves only 
the neutral element fixed is called regular . 

In the case of abelian groups all regular automorphisms of order 2 are 
completely described by the following simple observation. 

LEMMA 1. Let G be abelian. Then the group AutG contains a regular 
automorphism, say a, of order 2 if and only if G contains no elements of 
order 2. In this case a is given by gcx = g- 1 for every g E G. 

P ro of. Let a E A utG be a regular au tomorphism of order two. Since 
ggcx is a fixed point we have gcx = g - 1 for any g E G. By assumption it 
means that G has no elements of order two. 

The converse implication is clear. 

THEOREM 1. Let G be an arbitrary group and let a be a regular auto-
morphism of order 2 in G. Then G is abelian in any of the following cases: 

1. G is finite; 
2. G is locally nilpotent; 
3. For every g E G, the subgroup gp(g ,gcx) is finite; 

F or every g E G, the subgroup gp(g, gcx) is nilpotent. 

Proof. The first case was established in [5] and the second in [1]. Since 
the automorphism a is of order two, any subgroup gp(g , gcx ) is a -invariant. If 
gp(g, gcx) is finite (nilpotent ), then by [5] ([1]) it is abelian. Now the third and 
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fourth cases follow immediately from one of the two first cases respectively 
and from the above Lemma. 

For a non-abelian group G with an automorphism a of order two G. 
Higman proved that if G is locally nilpotent, then a has non-trivial fixed 
points in G. We proved that if for every g E G, the subgroup gp(g,got) is 
nilpotent, then a has non-trivial fixed points in G. To see that our condition 
is weaker we show that if g and got commute, then the group G need not be 
locally nilpotent. 

EXAMPLE 1. The group G = (x, Yi[x2 , y]) has an automorphism a of 
order two, such that every g E G commutes with got, while G is neither 
nilpotent nor finite. 

Proof. The group G is neither nil potent nor finite, because it has as 
a quotient the infinite dihedral group D = (x,yix 2,y2 ). The map x -t 

x-1 , y -t y defines the required automorphism, because it maps the rela­
tion [x2 , y] = 1 into [x-2 , y] = [x2 , y]-x-

2 = 1. Since x 2 belongs to the center 
of G, we have x-1 = x modulo center. Then also got equals g modulo center 
and hence g and got commute as required. 

The next aim of this note is a simple proof of Theorem 1 without using 
the G. Higman's result, based on Lie rings methods. 

We start with a Lemma, which by itself can be useful. 

LEMMA 2. If [a, b2 ] = 1, then [a, b)(-2)k =[a, k+lb]. 

P roof. We shall denote 

ti =[a, b]( - 2)' fori~ 0. 

The following properties of symbols ti are obvious: 
(i) ti, tj commute, 
(ii) ti = t'i!1. 

We have to prove the equality 

tk = [a, k+1b]. 

For k = 1, since [a, b2 ] = 1, the equality follows from the commutator 
identity [a, b]-2 = [a, b, b][a, b2]-1 . To proceed by induction, we assume, that 

(1) ti =[a, i+lb], for i < k. 

It follows from the assumption that 

(2) 

We need also 

(3) 

.. 

I 
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which follows from the identity [a-1, b] = a[ a, b]-la- 1 , (2) and property (i): 

[t;~2' b] = tk-2[tk-2, b]-1 tk~2 = tk-2 t;:1 t;:2 = t;:l. 
To make the inductive step to tk = [a, k+1 b], we use the assumption 

(1), the property (ii), the identity [a2
, b] =[a, b]a[a, b], and the equality (3), 

" then [a, k+Ib] = [a, kb, b] = [tk-1 , b] = [t;_:2 , b] = [t;:2 , b]ti:22 [t;:2, b] = 

! 

( -1 )t-l -l t- 2 t h" h fi . h h f tk-l k-2 tk-l = k-l = k, w IC ms es t e proo . 

CoROLLARY 1. If a is a regular automorphism of order two in a group 
G and for some k, [a, aa]<-2l = 1, then [a, aa] = 1. 

Proof. An automorphism a is regular if and only if the following holds: 

(4) (gag-1 = 1) ==* (g = 1), 'Vg E G. 

In the above notation ti =[a, ac.J(-2)', we have to show that if tk = 1, 
then to= 1. Since [a, aa]-1 =[a, aa]a, we have t;~1 = tk'_1 , and by (ii), 

tk = (tk"~ 1 )2 = tk-1 t;:1. Now by (4), if tk = 1 then tk-1 = 1. By repeating 
the step we get to = 1. 

NoTATION. Let G be a group with a regular automorphism a of order two, 
then for every g E G we define a sequence of elements cl = g' c2 = C1 er 
and fori> 2: 

(5) 

It follows for i > 1 that 

(6) 

We need two more properties of elements Ci. 

LEMMA 3. Let a be a regular automorphism of order two in a group G. 
If g E G, we denote H = gp(g, ga). Then in the above notation the following 
holds: 

(7) 

(8) 

cia Ci E li(H), 

[ci+b ci .. \J = [ci-1, c;~1l· 
Proof. If i = 2, then by (6), czac2 = [c1 , cf] E 12(H). Now by (6), by 

the identity [a, b] = [b-1 a, b], and by the inductive assumption we get 

ciaci = [ci-1, cf- 1] = [ci_c;ci-1, cf_1 ] E bi-1(H), H] ~ {i(H), 

which proves (8). 
To prove (8) we note, that by (5), ci+1 can be written as ci+1 

Ci-1cf~1 Ci-11 which, by the identity [ab2a, a- 1] =[a, b2], gives required (8). 

THEOREM 2. Let a be a regular automorphism of order two in a group 
G. If for every g E G, the subgroup gp(g,ga) is nilpotent then G is abelian. 
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Proof. By assumption for every g E G there exists n = n(g), such that 
the subgroup H = gp(g, ga) is n-nilpotent and hence by (7), c;;~1 Cn+l E 
'Yn+t (H) = 1. Since a is regular, it follows by ( 4 ), that Cn+l = 1. 

To show by induction that Cn+l = 1 implies c2 = 1, we perform the 
inductive step. Let ci+1 = 1, then because of (8), we get [ci-t, c7~1 ] = 1. By 
Lemma 2, we obtain [ci-1, cf_1]< - 2)"-

1 
E 'Yn+t (H)= 1, and since a is reg- 1" 

ular, it follows by Corollary 1, that [ci-b cf_tJ = 1. Now by (6), c-;aci = 1 
and again, since a is regular, we get Ci = 1. By repeating this step we obtain 
c2 = 1, which means that for every g E G, gga = 1, and hence G is abelian 
as required. 

We note now that in spite of the fact that nil potent non-abelian groups do 
not have regular automorphisms of order two, there exist soluble non-abelian 
groups with regular automorphisms of order two. 

EXAMPLE 2. The infinite dihedral group D = (x, Yi x 2 , y~) is metabelian, 
but not nilpotent. The automorphism permuting generators is of order two 
and regular. 

In [4] we gave an example of "the biggest" two-generator metabelian 
group G, where the automorphism permuting generators is regular. By "the 
biggest" we mean that any other group with the same properties is a quo-
tient group of G. A natural question arises: f 

In which varieties non-abelian groups have no regular automor-
1 phisms? p 
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