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Analysis and modelling

Abstract
Purpose: The aim of the work is to employ the artificial neural networks for prediction of hardness  
of the alloyed copper like CuTi, CuFe, CuCr and CuNiSi.
Design/methodology/approach: It has been assumed that the artificial neural networks can be used to assign 
the relationship between the chemical compositions of alloyed copper, temperature and time of solution heat 
treatment, degree of cold working deformation and temperature and time of ageing. In order to determine the 
relationship it has been necessary to work out a suitable calculation model. It has been proved that employment 
of genetic algorithm to selection of input neurons can be very useful tool to improve artificial neural network 
calculation results. The attempt to use the artificial neural networks for predicting the effect of the chemical 
composition and parameters of heat treatment and cold working deformation degree on the hardness succeeded, 
as the level of the obtained results was acceptable.  
Findings: Artificial neural networks, can be applied for predicting the effect of the chemical composition, 
parameters of heat treatment and cold working deformation degree on the hardness.  
Research limitations/implications: Worked out model should be used for prediction of hardness only  
in particular groups of alloyed copper, mostly because of the discontinuous character of input data.
Practical implications: The results of research make it possible to calculate with a certain admissible error the 
hardness value basing on combinations of concentrations of the particular elements, heat treatment parameters 
and cold working deformation degree.
Originality/value: In this paper it has been presented an original trial of prediction of the required hardness  
of the alloyed copper like CuTi, CuFe, CuCr and CuNiSi.
Keywords: Computational material science; Artificial neural networks; Alloyed copper; Heat treatment; Cold 
plastic deformation
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1. Introduction 
 
A widely used method of increasing the strength properties of 

metal alloys is the strengthening of the new phase particles 
separated during aging. 

The precipitation process in alloyed copper like a CuCr, 
CuFe, CuNiSi and CuTi was examined in some detail with respect 
to the classical heat treatment, which consists of solutioning and 
aging. The kinetics of this process has been studied in detail [1-5]. 
It was found that the solutioning whose function is to dissolve in 
the matrix component of the alloy during aging emit phase, which 
are responsible for the effect of strengthening the alloy. These 
phase are Cu4Ti- ’, Ni2Si-  oraz Fe- . 

Attempts have also been efforts to investigate the kinetics of 
precipitation and recrystallization in these alloys using other, 
more complicated alternative version of methods involving a 
sequence of operations on a combination of heat treatment and 
cold plastic deformation [6-14], the intermediate roll in the liquid 
nitrogen bath [15], the aging in the atmosphere hydrogen [16,17], 
and heat treatment and hot plastic deformation [18,19], insert to 
the alloy CuTi other alloying addition [20-24], or produced using 
methods other than classical [25]. 

However, the most effective way to increase the mechanical 
properties of the alloys is hardening combined with the 
strengthening of the deformation in different variants [26]. For 
this reason, extensive research conducted effect of combined 
(alternating) heat treatment and hot plastic deformation or heat 
treatment and plastic cold deformation. 

An analysis of published studies indicates that the experiment 
of combining alternating heat treatment and cold plastic 
deformation is long and laborious. Ability to predict properties on 
the basis of previous studies performed by the model-developed is 
the basis to work in this direction. This paper is an attempt to 
develop such a model. As shown in previous publications of the 
work undertaken in this direction have great chances of success 
[27-34]. 

The key information for optimizing the production process 
and the chemical composition in order to obtain the desired 
properties for any commercial application has a relationship 
between chemical composition and heat treatment parameters and 
the degree of cold plastic deformation and hardness. In the 
process of analysis of the specific properties, which are 
characterized by different types of copper alloy, because of the 
need for generalization of experimental data of residual often 
initially used an approximation that is used to replace some other 
mathematical size having approximate. 

Sub-analysis performed using the approximation, to estimate 
the approximate degree of influence of heat treatment parameters 
and the degree of cold plastic deformation on the hardness of 
selected copper alloys. 

The nature of the hardness of alloys under heat aging depends 
largely on whether the alloy is subjected to cold plastic 
deformation after solutioning. For example, industry alloy CuTi4 
subjected to standard heat treatment (solutioning and aging) has a 
different hardness than the alloy saturated, cold-rolled and then 
aged. The results of hardness measurement of CuTi4 
supersaturated alloy and then aged shown in Fig. 1. However, the 
results of hardness measurement CuTi4 supersaturated alloy, cold 
deformed (Z=50%) and aged shown in Fig. 2. The hardness of the 

alloy after solution is CuTi4 HV=125, while the deformation after 
solution and HV=250. 

The aging of the investigated alloy over 120 minutes in the 
temperature range 450°C results loss in partial of coherence of the 
second phase precipitates and reduction of dislocation density in 
the matrix in the deformed cold worked alloy before aging 
(Z=50%) which leads to a reduction in hardness. To undeformed 
alloy recorded the continuous growth of hardness in range 
investigated. The other hand the deformed alloy, aging at 500°C 
over 30 minutes result in the decrease of hardness while the for 
undeformed alloy after 120 min. [35].  

Then, with increasing aging temperature drop in hardness for 
the deformed alloy is, even after 30 minutes, but quite generally: 
the value of 265 HV to 150 HV. 

 

 
 

Fig. 1. Changes in hardness of the supersaturated alloy CuTi4 
depending on temperature and aging time [35] 

 

 
 

Fig. 2. Changes in hardness of supersaturated and deformed 
(50%) alloy CuTi4 depending on temperature and aging time [35] 

 
The influence on hardness in CuTi alloys after the supersaturation 

have a titanium content what was shown in Fig. 3. Approximated by 
the author of this work on the basis [6,36] of simple with R2 = 0.94 

 

indicates that the tested range of concentrations of Ti additive effect is 
a linear term, which is given by: 
 

222,21354,58 xy    (1) 
 

 
 

Fig. 3. Effect of the concentration of titanium in a alloyed copper 
CuTi for hardness after solutioning at 900°C for 120 minutes, on 
the basis of data from the [6,36] 

 
The paper presents an attempt to apply artificial neural 

networks to predict the effects of chemical composition, 
supersaturation and aging parameters and the degree of cold 
plastic deformation on the hardness of the alloys CuTi, CuFe, 
CuCr and CuNiSi. 

It has been shown that on the basis of the chemical 
composition, heat treatment and plastic deformation can use 
artificial neural network set, with an acceptable error, the 
hardness value of the selected low-alloy copper alloy. 

 
 

2. Material and experimental 
methodology 

 
Develop a model allowing to calculate the hardness of copper 

alloys using artificial neural networks, require preparation, on the 
basis of the literature [36-38], a corresponding set of 
representative experimental data. Our study began with the 
creation of the data sheet containing the chemical compositions of 
copper alloys collected at that time, degree of deformations, heat 
treatment parameters and their corresponding values of hardness 
tested. 

The concentration range of atomic elements, heat treatment 
parameters, deformation and hardness values shown in Table 1 
and Table 2 All collected data were used to develop a regression 
equation. Of the available data, half of the cases was used to 
modify the network weights in the learning process by creating a 
set of learners. 

Spent the rest of the data to evaluate the prediction errors 
during learning (25% of the data - a set of validation) and to an 
independent determination of the correctness of the network after 
it has been created (25% of the data - a set of test). Split into 

individual collections were made at random, whereas the 
arithmetic mean and standard deviation for each of the sets. 
 
Table 1. 
The range of concentrations of atomic elements analyzed alloys 

Range Atomic concentration of the element, % 
Cu Ti Fe Cr Ni Si 

min. 94.6 0 0 0 0 0 
max. 99.3 5.4 2.34 1 2.08 0.89 

 
 

3. Determination of hardness 
 
If between the two variables is correlative relationship and 

one of the variables (y) may be considered dependent, and the 
other (x) as an independent, one can attempt to formulate 
a relationship function which represents the value of y depending 
on the value x of a random variable additional  which represents 
random variability of the variable y is independent of x. 

In order to establish between the physical quantities (the alloy 
composition and processing parameters) the relation of the type: 

 
baxy  (2) 

 
one should find the method of least squares relationship 

between y and x and y. Pairs of numbers are not repeated 
measurements of the same size, that there is no measure of 
dispersion measurements. It is known, however, that the result 
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normally distributed, so the deviation from the true relationship 
(1) be directed by the rules of a normal distribution. However, it 
isn’t known the true relationship only approximate the 
coefficients a and b. The number of degrees of freedom in this 
case equal to the number of measurements minus the number of 
designated coefficients, that is n-2. Thus, uncertainty in the results 
yi is: 
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Table 2. 
Heat treatment temperature and duration time ranges, and hardness of the analyzed alloys 

Range 

Treatment parameters 

Hardness, HVSolution treatment 
temperature, T [°C] 

Solution treatment 
time, t 

[s] 

Degree of deformation 
(cold work), Z [%] 

Ageing temperature, 
T [°C] 

Ageing time,  
t [s] 

min. 900 60 20 400 1 55.2 
max. 1050 120 90 650 10140 454 

 
To determine the degree of dependence of one quantity on the 

other is the correlation coefficient, denoted by R, which is defined 
as: 
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To develop the relationship between the chemical 

composition of the alloy, heat treatment parameters and the 
degree of cold deformations data analysis tool has been used in 
MS Excel and artificial neural networks using the package 
Statistica Neural Network UK 4.0 F StatSoft.  

On the basis of data made regression fit is R2=0.92 and 
standard error of 28.1. The analysis gave the following equation: 

 
enxcxbxaxy m...321    (8) 

 
The calculated coefficients (x1, x2, …) are presented in 

Table 3. Based on the calculated coefficients can be concluded 
that the largest effect on the hardness value of the alloying 
elements are copper, iron, and chromium. However, nickel and 
silicon, according to the calculated parameters (x5 and x6, 
respectively) did not have any effect. It is puzzling and requires 
further detailed analysis. 

Fig. 3 presents an analysis of the structure of individual error 
for regression analysis. 

However, heat treatment parameters (temperature and time) 
and the draft degree not have a significant influence. In particular, 
it should be noted that the aging time has a minimal, almost zero 
influence on the hardness (x11=0.001), which is contrary to the 
basic knowledge on the results of the heat treatment. Therefore, 
this issue also requires further analysis. 

The Fig. 4 shows comparison of the calculated and 
experimental hardness valuse. 

Due to the serious inaccuracies resulting from regression 
analysis it was decided to analyze the data using a neural network. 

In the design phase for each network, the following 
parameters: 

 error function - the sum of the squares, 
 activation function: I layer - a linear function, the second 

layer-logistic function, the third layer - a linear function of 
saturation. 
 

 
 
Fig. 3. Histogram of individual error for regression analysis 
 
A set of input has been randomly divided into the following 

collections: 
 learners (184 cases), 
 validation (92 cases), 
 test (92 cases). 

In the structure of each of the analyzed network set 11 input 
neurons, and 6 correspond to the alloying element present in the 
tested alloys, and 5 corresponding to the parameters of the heat 
treatment and degree of cold deformation. The resulting output 
neuron shows the hardness value to be searched. 

The search for an optimal neural network is initially limited to: 
 radial basis functions neural network RBF,  
 generalized regression neural networks GRNN,  
 multilayer perceptron MLP. 

Number of hidden layers, the number of nodes in these layers 
of weights, thresholds values, method and parameters learning, 
the parameters of the proposed network architecture has been 
made taking into account the influence of the size of the value of 
indicators to assess the quality of the proposed network. Modeling 
was carried out on the basis of 368 test cases. 

 
Table 3. 
The calculated parameters of Equation (8) 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 
Cu Ti Fe Cr Ni Si stt, T [°C] stt, t [s] Z [%] at, T [°C] at, t [s]

-44.74 3.51 43.55 33.03 0 0 -0.08 0.67 0.63 0.38 0.001

 
 

Used to analyze the quality of comparison: the average 
absolute error, the ratio deviation and correlation coefficient. On 
the basis of this analysis is the choice of the optimal 11-5-1 MLP 
network, which trained by error back propagation through method 
for 50 epochs and using the conjugate gradients for 130 epochs. 
 

 
Fig. 4. Comparison of the experimental and calculated hardness 
values for regression 

 
Table 4.  
Quality assessment coefficients of the MLP 11-5 neural network 

Assessment 
coefficient Training Validating Testing 

Average absolute 
error [HV] 19.14 17.02 16.15 

Quotient of standard 
deviations 0.23 0.22 0.24 

Pearson correlation 
coefficient 0.97 0.97 0.969 

 

 
 

Fig. 5. Schema of MLP 11-5-1 network 

 
 
Fig. 6. Analysis of the unit errors of MLP 11-5-1 network with: 
bar graph, values of the unit errors 

 
The selected network has a relatively low average absolute 

error and high correlation coefficient, while at the same time low 
amplitude between sets: learning, validation and test. In Table 4 
are complete regression statistics 11-5-1 MLP selected network in 
Fig. 5 is the diagram, and Fig. 6 presents an analysis of the 
structure of individual errors. 

 

 
 

Fig. 7. Comparison of the experimental and calculated 
hardness values for MLP 11-5-1 network sets: training, validating, 
testing 

 
Developed an artificial neural network model has been 

subjected to verification of compliance of comparing the hardness 
calculations with experimental results (Fig. 7). The consequence 
of an incorrect designation looking hardness values is 
inappropriate for the data mapping diagram calculated in 
comparison with the experimental values. 

MLP networks are trained in supervised mode, so the required 
values are known patterns and weight selection should ensure the 
best possible fit for the network outputs of these patterns. MLP 
network training algorithms are the gradient methods whose use is 
possible and effective only if the activation function is 
a continuous function. 
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of an incorrect designation looking hardness values is 
inappropriate for the data mapping diagram calculated in 
comparison with the experimental values. 

MLP networks are trained in supervised mode, so the required 
values are known patterns and weight selection should ensure the 
best possible fit for the network outputs of these patterns. MLP 
network training algorithms are the gradient methods whose use is 
possible and effective only if the activation function is 
a continuous function. 
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Fig. 8 presents comparison of histograms of individual error 
for artifical neural network (MLP-5-1) and regression analysis. 

 
 

 
 

Fig. 8. Comparison of individual error histograms for artificial 
neural networks and regression analysis 

 
 
Determination of the structure of the MLP network is usually 

difficult. This primarily applies to the selection of the number of 
neurons in the hidden layer. Modeling of more complex processes 
can increase the number of hidden neurons. However, this results 
in slow network performance and learning disabilities, especially 
the tendency to over-fitting to the training data. 

 
 

4. Conclusions  
 
In assessing verification the best designed 11-5-1 MLP 

networks characterized by average absolute error of 17.43, 
average deviation of the ratio - 0.23 and the average correlation 
coefficient - 0.97, it should be noted that the use of artificial 
neural networks allows the a set of data covering the chemical 
composition and heat treatment parameters, the calculation of the 
allowable error with some copper alloy hardness values. The 
correctness of the results is highly dependent on the proper 
preparation of a representative set of experimental data, the use of 
simplification or even miss some data. Since, as shown by the 
results of previous studies [27-34] in the majority of cases, good 
results can be achieved using a simple structure of the MLP 
network regardless of the analyzed area [39]. 

Although according to theorem Hecht-Nielsen neural network 
can approximate any continuous function (with any accuracy) 
where N neurons in the input, (2N +1) hidden neurons and one 
output neuron as a result of the tests it was found that the best 
properties is characterized by a network of MLP 11-5-1. It was 
also found that, in order to provide a good correlation to solve 
complex problems requires not only the interference in the 
training set, but also the structure of the network. 

Analysis of the issues and the nature of the evidence that the 
problem is worthy of further interest and thus further research and 
analysis. The most appropriate suggestion that comes to mind is 
the recommendation to maximize the input data set, both in terms 
of the number of different alloys, but also a greater diversity in 
terms of the conditions of heat treatment. 
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Fig. 8 presents comparison of histograms of individual error 
for artifical neural network (MLP-5-1) and regression analysis. 

 
 

 
 

Fig. 8. Comparison of individual error histograms for artificial 
neural networks and regression analysis 
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difficult. This primarily applies to the selection of the number of 
neurons in the hidden layer. Modeling of more complex processes 
can increase the number of hidden neurons. However, this results 
in slow network performance and learning disabilities, especially 
the tendency to over-fitting to the training data. 
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In assessing verification the best designed 11-5-1 MLP 

networks characterized by average absolute error of 17.43, 
average deviation of the ratio - 0.23 and the average correlation 
coefficient - 0.97, it should be noted that the use of artificial 
neural networks allows the a set of data covering the chemical 
composition and heat treatment parameters, the calculation of the 
allowable error with some copper alloy hardness values. The 
correctness of the results is highly dependent on the proper 
preparation of a representative set of experimental data, the use of 
simplification or even miss some data. Since, as shown by the 
results of previous studies [27-34] in the majority of cases, good 
results can be achieved using a simple structure of the MLP 
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Although according to theorem Hecht-Nielsen neural network 
can approximate any continuous function (with any accuracy) 
where N neurons in the input, (2N +1) hidden neurons and one 
output neuron as a result of the tests it was found that the best 
properties is characterized by a network of MLP 11-5-1. It was 
also found that, in order to provide a good correlation to solve 
complex problems requires not only the interference in the 
training set, but also the structure of the network. 

Analysis of the issues and the nature of the evidence that the 
problem is worthy of further interest and thus further research and 
analysis. The most appropriate suggestion that comes to mind is 
the recommendation to maximize the input data set, both in terms 
of the number of different alloys, but also a greater diversity in 
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