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AbstrAct
Purpose: The aim of this study was to investigate the effect of cold plastic deformation of the supersaturation 
on the structure and properties of the CuTi4 alloy after aging.
Design/methodology/approach: CuTi4 alloy of supersaturation temperature of 900°C after heating for 1 hour. 
After solutioning alloy was processed in two ways: first aged in the temperature range 450-600°C and the second 
stage rolling reduction with Z=50%, and then aged in the temperature range 450-600°C.
Findings: The results confirmed that the temperature within the range 500-600ºC, the hardness increases with 
increasing aging time until reaching the maximum, but then with increasing aging time the hardness decreases. 
By using methods of electron microscopy (SEM, EDS, EBSD, TEM) after aging at 550°C after 1 minute of 
modulated microstructure was observed - characteristic for the spinodal transformation and lamellar, formed by 
nucleation and growth.  
Research limitations/implications: A widely used method for increasing the strength properties of metal alloys, 
in addition to cold plastic deformation, is the strengthening of new phases separated particles during aging. 
The effect of cold rolling operation between solutioning and aging on microstructure and properties of alloyed 
copper CuTi4. Further examination also included the effect of time and aging temperature.
Practical implications: On the basis of conductivity, the influence of cold plastic deformation and subsequent 
aging on the hardness and electrical conductivity of the alloy CuTi4. It was found that with increasing aging time 
and with increasing aging temperature increases electrical conductivity of the alloy. On the basis of X-rays can 
be concluded that in alloyed copper containing 4% Ti and precipitation hardening metastable phase β’-Cu4Ti is 
separated, which occurs both in the previously deformed and undeformed cold worked alloy.
Originality/value: 
Keywords: Metallic alloys; Electron microscopy; Heat treatment; Cold deformation; CuTi4 alloy
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1. Introduction 
 
Both copper and copper alloys are very flexible and can be 

plastically cold deformed with severe draft what causes the 
strengthening of the alloy. To remove the effects of strain 
annealing is used, whose parameters depend on the degree of draft 
and chemical composition of the alloy. Large impact on the 
selection of parameters are also the dimensions of intermediates 
and type of the furnace [1,2].  

Except the cold working a small addition of alloying elements 
(up to 2%) increases the mechanical properties of copper with 
a slight reduction in conductivity. These alloys are called alloyed 
copper. Commonly used copper and a little silver, phosphorus, 
arsenic, chromium, nickel, tin, zinc, cadmium, beryllium, 
titanium, sulfur, manganese, iron, silicon, tellurium, and 
zirconium. In general, these alloys are classified as low-alloyed 
copper alloys [3-12].  

A special group is a copper-beryllium, chromium, titanium 
and iron and multicomponent alloys - copper-nickel-silicon-
chrome. A good application properties such as high tensile 
strength, good electrical conductivity, stable mechanical 
properties at elevated and high temperatures now provide a wide 
range of applications [13]. 

The best properties of strength and good electrical 
conductivity of copper alloys are characterized by beryllium 
bronzes [14]. These alloys are called traditionally beryllium 
bronzes [15], which, despite the high toxicity and difficulties in its 
production technology and processing [13] are widely used due to 
high mechanical properties and resistance to corrosion and 
abrasion. One of the major advantages of these alloys are not 
prone to arcing. This advantage predisposes CuBe alloys for 
industrial production of inflammable and explosive materials, the 
non-sparking tools in chemical, petroleum, and the inserts for 
molds [16]. 

A major disadvantage of eliminating the Cu-Be alloys in 
industrial applications is the toxicity of beryllium oxides that 
cause heart and lung disease. Recent studies confirm the 
deleterious effects of beryllium compounds on the human body 
even during hot forming and during welding, cutting or grinding 
of Cu-Be alloys. For this reason, a number of years a total ban on 
melting of beryllium bronze in the European Union [17]. 

The result of search for alternative replacements for Cu-Be 
alloys are working on the CuNiSi and CuTi alloys [18-20]. CuTi 
alloys compared beryllium bronzes are characterized by similar 
electrical properties and comparable mechanical properties. The 
most effective way to increase the strength properties of alloys is 
precipitation hardening CuTi. 

Analysis of microstructure development in alloys Cuti 
solutioning and aging made based on a literature review, allows 
the systematization of knowledge about the mechanisms that 
control recrystallization and precipitation in copper alloy CuTi. 
Work is also underway on the evolution of the microstructure by 
the introduction of micro (and even ppm) of alloying elements 
mainly micro-addition of boron, zirconium, etc.. influencing 
fragmentation of the microstructure and stability of grain size and 

sub-grains during use under varying conditions of thermal or 
mechanical loads [21-24]. 

Literature data [25-28] allow the conclusion that the most 
commonly used method of increasing the strength properties of 
alloys CuTi is precipitation hardening, resulting in the metastable 
phase Cu4Ti is separated, which determines the properties of 
utility these alloys. The CuTi alloys solutioning is carried out in 
the temperature range 800-950°C for 10 hours with subsequent 
aging at 400-600°C for 1 to 48 hours [29-31]. 

In addition, work is underway on a variant of combined 
treatment consisting of heat treatment and hot plastic deformation 
[32], which heavily increases the strength properties of copper 
alloy CuTi. However, the greatest strengthening guarantees 
alternating heat treatment and plastic deformation involving 
operations sequence solutioning-cold rolling-aging-cold rolling [13]. 

Despite numerous studies and publications on the changes 
that occur during heat treatment (solutioning and aging), there is 
still a need to clarify the description of the separation and 
recrystallization mechanisms occurring during aging, which was 
preceded by cold plastic deformation with a high degree piece of 
draft. As demonstrated by studies [33-35] so carried out 
alternating heat and cold plastic deformation is beneficial to 
increase the functional properties of these alloys. The few works 
devoted to this variant treatment [36-39] make it necessary to 
clarify the description of the mechanisms of recrystallization and 
precipitation in alloys subjected to alternating CuTi heat treatment 
and plastic deformation. 

Knowledge of the mechanisms of precipitation and 
recrystallization is necessary to determine the microstructural 
changes that should be considered in assessing the functional 
properties of alloys CuTi. 

 
 

2. Material and methods 
 
Investigations were carried out on the commercially available 

CuTi4 alloy. Chemical composition of the industrial CuTi4 alloy 
is presented in Table 1.  

The material preparation procedure for investigation of CuTi4 
alloy included: 
 hot working with 80% draft to 3.0 mm thickness, 
 supersaturation (920°C/1h) in water, 
 cold working with 50% draft, 
 ageing at temperature of 550°C for 1 min, 60 min, and 

420 minutes. 
Examinations of microstructure and grains misorientation 

were made on ZEISS SUPRA 25 scanning electron microscope 
(SEM) using the EBSD (Electron Backscatter Diffraction 
Analysis) method and with JEOL 3010 transmission electron 
microscope (TEM). 

X-ray phase analysis of the specimens was made on 
Panalytical X’Pert diffractometer using filtered radiation of the 
lamp with cobalt anode. The measurement step was 0.05° and the 
impulse counting time was 10 sec.   

 
Table 1.  
Chemical composition of CuTi4 alloy 

Cu Ti Zn P Pb Sn Mn Ni Sb Bi As Cd 
95.83 3.95 0.13 0.065 0.003 0.009 0.030 0.01 0.001 0.001 0.001 0.001 

 
 

3. Results and discussion 
 

According to study feature, the obtained results can be given 
in discussion part and/or in the conclusion section. 
 
 
3.1. Hardness 

 
The results of hardness measurement of CuTi4 supersaturated 

alloy and then aged shown in Fig. 1. However, the results of 
hardness measurement CuTi4 supersaturated alloy, cold deformed 
(Z=50%) and aged shown in Fig. 2. The hardness of the alloy 
after solution is CuTi4 HV=125, while the deformation after 
solution and HV=250. 

 

 
 
Fig. 1. Changes in hardness of the supersaturated alloy CuTi4 
depending on temperature and aging time 
 
 

The aging of the investigated alloy over 120 minutes in the 
temperature range 450°C results loss in partial of coherence of the 
second phase precipitates and reduction of dislocation density in 
the matrix in the deformed cold worked alloy before aging 
(Z=50%) which leads to a reduction in hardness. To undeformed 
alloy recorded the continuous growth of hardness in range 
investigated. The other hand the deformed alloy, aging at 500°C 
over 30 minutes result in the decrease of hardness while the for 
undeformed alloy after 120 min.  

Then, with increasing aging temperature drop in hardness for 
the deformed alloy is, even after 30 minutes, but quite generally: 
the value of 265 HV to 150 HV (Fig. 1, Fig. 2).  

The microstructure formed as a result of aging in the CuTi 
alloy, which consists of hardened grains and soft nucleus of 
recrystallization is unfavorable due to the mechanical properties. 
The best microstructure, which determines the favorable 
properties of the alloy obtained after aging at 400°C [11,31] 
because of the runs much slower recrystallization process 
compared to the process of precipitation. After aging, during 
which ensures maximum hardness was observed in the 
microstructure only single nucleuses of recrystallization. 

Recrystallization process is slow due to low mobility boundaries 
of subgrains. 

 

 
 
Fig. 2. Changes in hardness of supersaturated and deformed 
(50%) alloy CuTi4 depending on temperature and aging time 
 

Similar result was obtained in [22,24,29]. The optimal 
structure ensuring the most favorable mechanical properties and 
especially the hardness was obtained after aging at 400°C. In 
addition, with increasing titanium additive increases hardness 
against aging, or in the initial stage of aging. With increasing 
concentration of titanium as one of the major copper alloy  
(Al, Be, Ni, Si, Sn, Zn), most strengthens the solid solution 
resulting, inter alia, increased fatigue strength. Later, however, 
with increasing aging time and temperature the hardness 
decreases after 32 hours of reaching the hardness of the alloy aged 
at 400°C. However, it should be noted that the alloy aged at 
400°C is characterized by a more favorable structure in terms of 
mechanical properties. 

With the strengthening of supersaturated CuTi alloys and cold 
deformed corresponds to metastable, coherent with the matrix 
phase Cu4Ti [38,39] and the strengthening due to alternating heat 
treatment and cold plastic deformation [22]. Strengthening during 
aging causes an increase in wavelength and amplitude 
modulation. In alloys subjected to alternating heat treatment and 
plastic surgery wavelength modulation increases faster than the 
heat treated alloys. This results in a greater increase in hardness of 
the deformed alloys during aging. 
 
 
3.2. Electrical conductivity 

 
On the basis of data drawn the graphics dependences, which 

are contained in Figure 3 & 4. Effect of cold plastic deformation 
and subsequent aging on the electrical conductivity of the alloy 
CuTi4 shows on Figure 4. It is clear that with increasing aging 
time and with increasing aging temperature electrical conductivity 
increases. However, at 600°C after 100 minutes of aging with 
increasing aging time electrical conductivity decreases. 

1.  Introduction

2.  Material and methods
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Fig. 1. Changes in hardness of the supersaturated alloy CuTi4 
depending on temperature and aging time 
 
 

The aging of the investigated alloy over 120 minutes in the 
temperature range 450°C results loss in partial of coherence of the 
second phase precipitates and reduction of dislocation density in 
the matrix in the deformed cold worked alloy before aging 
(Z=50%) which leads to a reduction in hardness. To undeformed 
alloy recorded the continuous growth of hardness in range 
investigated. The other hand the deformed alloy, aging at 500°C 
over 30 minutes result in the decrease of hardness while the for 
undeformed alloy after 120 min.  

Then, with increasing aging temperature drop in hardness for 
the deformed alloy is, even after 30 minutes, but quite generally: 
the value of 265 HV to 150 HV (Fig. 1, Fig. 2).  

The microstructure formed as a result of aging in the CuTi 
alloy, which consists of hardened grains and soft nucleus of 
recrystallization is unfavorable due to the mechanical properties. 
The best microstructure, which determines the favorable 
properties of the alloy obtained after aging at 400°C [11,31] 
because of the runs much slower recrystallization process 
compared to the process of precipitation. After aging, during 
which ensures maximum hardness was observed in the 
microstructure only single nucleuses of recrystallization. 

Recrystallization process is slow due to low mobility boundaries 
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Fig. 2. Changes in hardness of supersaturated and deformed 
(50%) alloy CuTi4 depending on temperature and aging time 
 

Similar result was obtained in [22,24,29]. The optimal 
structure ensuring the most favorable mechanical properties and 
especially the hardness was obtained after aging at 400°C. In 
addition, with increasing titanium additive increases hardness 
against aging, or in the initial stage of aging. With increasing 
concentration of titanium as one of the major copper alloy  
(Al, Be, Ni, Si, Sn, Zn), most strengthens the solid solution 
resulting, inter alia, increased fatigue strength. Later, however, 
with increasing aging time and temperature the hardness 
decreases after 32 hours of reaching the hardness of the alloy aged 
at 400°C. However, it should be noted that the alloy aged at 
400°C is characterized by a more favorable structure in terms of 
mechanical properties. 

With the strengthening of supersaturated CuTi alloys and cold 
deformed corresponds to metastable, coherent with the matrix 
phase Cu4Ti [38,39] and the strengthening due to alternating heat 
treatment and cold plastic deformation [22]. Strengthening during 
aging causes an increase in wavelength and amplitude 
modulation. In alloys subjected to alternating heat treatment and 
plastic surgery wavelength modulation increases faster than the 
heat treated alloys. This results in a greater increase in hardness of 
the deformed alloys during aging. 
 
 
3.2. Electrical conductivity 

 
On the basis of data drawn the graphics dependences, which 

are contained in Figure 3 & 4. Effect of cold plastic deformation 
and subsequent aging on the electrical conductivity of the alloy 
CuTi4 shows on Figure 4. It is clear that with increasing aging 
time and with increasing aging temperature electrical conductivity 
increases. However, at 600°C after 100 minutes of aging with 
increasing aging time electrical conductivity decreases. 

3.  results and discussion

3.1.  Hardness

3.2.  Electrical conductivity
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Fig. 3. Changes in electrical conductivity of the supersaturated 
alloy CuTi4 depending on temperature and aging time 
 

 
 
Fig. 4. Changes in electrical conductivity supersaturated and 
deformed (50%) alloy CuTi4 depending on temperature and aging 
time 
 
 
3.3. Microstructure 
 

Figure 5 shows the microstructure of the alloy after solution 
CuTi4 and subsequent cold rolling with a draft degree Z=50%. 
The bright field image (Fig. 5a) clearly shows deformation twins 
in addition also shown in the picture in the dark field (Fig. 5c), 
which comes from the Cu matrix reflexes. Solution diffraction has 
identified the second phase - Cu3Ti. 

In the Cu4Ti alloy saturated and cold rolled with a draft 
degree Z=50% can be seen in micro recrystallized subgrains (A) 
at the grain boundary (Fig. 6a). A subgrains border on the right, 
downwards as dislocations are visible (indicated by an arrow in 
the figure). 

 
 

 
 

 
 

Fig. 5. The structure of the alloy CuTi4 a) bright field image,  
b) diffraction pattern from the area as shown in a); with the 
solution of the diffraction pattern, c) dark field image of the 
reflexes of Cu matrix lattice (space group Fm-3m) 

a) 

b) 

c) 

 
 

  
 
Fig. 6. Microstructure of CuTi4 alloy supersaturated at 930°C then cold rolled with 50% draft degree a) bright field image,  
b) dark field image phase with reflexes 222  CuTi2 crystallization in the cubic lattice (space group Fd-3m) with diffraction pattern from 
the area as shown in a) 
 

  
 

Fig. 7. Area of a continuous precipitation a), and discontinuous in the alloy CuTi4 aged for 1 minute at 550°C b) 
 

  
 

Fig. 8. The border area of discontinuous and continuous precipitation in the alloy CuTi4 aged for 1 minute at 550°C 

A 

a) b) 

a) b) 

3.3.  Microstructure

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org


335

Properties

Influence of cold working on microstructure and properties of annealing CuTi4 alloy  

 
 

Fig. 3. Changes in electrical conductivity of the supersaturated 
alloy CuTi4 depending on temperature and aging time 
 

 
 
Fig. 4. Changes in electrical conductivity supersaturated and 
deformed (50%) alloy CuTi4 depending on temperature and aging 
time 
 
 
3.3. Microstructure 
 

Figure 5 shows the microstructure of the alloy after solution 
CuTi4 and subsequent cold rolling with a draft degree Z=50%. 
The bright field image (Fig. 5a) clearly shows deformation twins 
in addition also shown in the picture in the dark field (Fig. 5c), 
which comes from the Cu matrix reflexes. Solution diffraction has 
identified the second phase - Cu3Ti. 

In the Cu4Ti alloy saturated and cold rolled with a draft 
degree Z=50% can be seen in micro recrystallized subgrains (A) 
at the grain boundary (Fig. 6a). A subgrains border on the right, 
downwards as dislocations are visible (indicated by an arrow in 
the figure). 

 
 

 
 

 
 

Fig. 5. The structure of the alloy CuTi4 a) bright field image,  
b) diffraction pattern from the area as shown in a); with the 
solution of the diffraction pattern, c) dark field image of the 
reflexes of Cu matrix lattice (space group Fm-3m) 

a) 

b) 

c) 
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the area as shown in a) 
 

  
 

Fig. 7. Area of a continuous precipitation a), and discontinuous in the alloy CuTi4 aged for 1 minute at 550°C b) 
 

  
 

Fig. 8. The border area of discontinuous and continuous precipitation in the alloy CuTi4 aged for 1 minute at 550°C 
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Fig. 9. CuTi4 alloy structure after aging at 550°C for 120 min:  
a) bright field image;b) diffraction pattern from the area as shown 
in a), d) the solution of the diffraction pattern Figure b, c) dark 
field image of the reflex phase crystallization in the lattice Cu4Ti 
orthorhombic (space group Pnma), the diffraction pattern is also 
visible Cu matrix network - crystal zone [112] 

The next stage of the experiment was to stop aging. After 
aging at 550°C per 1 minute the modulated microstructure was 
observed (which was not observed after 15, 30, 120 or 420 
minutes of aging) - characteristic for spinodal transition (Fig. 7.a) 
and the plate, formed by nucleation and growth (Fig. 7.b). In 
Figure 8 shows the boundaries between areas of discontinuous 
and continuous precipitation. Based on the analysis of these 
microstructures were found in both the secretion process of 
continuous and discontinuous precipitation proceed at 550°C after 
1 min of aging already. Similar results were obtained in [40]. 

Changes in properties of the alloy as a result of precipitation 
hardening is the result of ongoing structural changes [41-45]. 
Precipitation-hardened alloys are characterized by a continuous 
phase which is the significant part of the volume of the alloy and 
the occurrence of the second phase (separated particles) 
strengthening the alloy (Fig. ). Enhancing particles should be 
hard, as well as small, high density, uniformly distributed in the 
volume of the alloy and at least partially coherent. Separation 
should not have sharp edges and should not form the matrix grain 
boundaries continuous film. This prevents the nucleation of 
cracks and their spread. 
 
 
4. Conclusions 
 

The study shows that the use of cold plastic deformation after 
solution of the following aging promotes the precipitation 
process, as well as contribute significantly to the value of the 
hardness and electrical conductivity. In this variant, technology in 
many ways overlapping processes of precipitation and 
recrystallization. 

The process of precipitation and dispersion strengthening to a 
much lesser extent, decreases the electrical conductivity of 
copper. The reason is that the value of the mean free path in the 
presence of these precipitates is higher in comparison to the 
distance between the dissolved atoms. 

Nucleation of particles of size much less than 1 minute of 
aging is undoubtedly related to the primary recrystallization 
process taking place, which occurs in the solid state without 
changing the composition of input and output phase 
transformation. 

Obtained in this study results may provide a basis for further 
research on the mechanisms of recrystallization and precipitation 
in other species of copper alloy and copper alloys as well as the 
basis for searching the optimal bands of their functional 
properties. 
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Fig. 9. CuTi4 alloy structure after aging at 550°C for 120 min:  
a) bright field image;b) diffraction pattern from the area as shown 
in a), d) the solution of the diffraction pattern Figure b, c) dark 
field image of the reflex phase crystallization in the lattice Cu4Ti 
orthorhombic (space group Pnma), the diffraction pattern is also 
visible Cu matrix network - crystal zone [112] 

The next stage of the experiment was to stop aging. After 
aging at 550°C per 1 minute the modulated microstructure was 
observed (which was not observed after 15, 30, 120 or 420 
minutes of aging) - characteristic for spinodal transition (Fig. 7.a) 
and the plate, formed by nucleation and growth (Fig. 7.b). In 
Figure 8 shows the boundaries between areas of discontinuous 
and continuous precipitation. Based on the analysis of these 
microstructures were found in both the secretion process of 
continuous and discontinuous precipitation proceed at 550°C after 
1 min of aging already. Similar results were obtained in [40]. 

Changes in properties of the alloy as a result of precipitation 
hardening is the result of ongoing structural changes [41-45]. 
Precipitation-hardened alloys are characterized by a continuous 
phase which is the significant part of the volume of the alloy and 
the occurrence of the second phase (separated particles) 
strengthening the alloy (Fig. ). Enhancing particles should be 
hard, as well as small, high density, uniformly distributed in the 
volume of the alloy and at least partially coherent. Separation 
should not have sharp edges and should not form the matrix grain 
boundaries continuous film. This prevents the nucleation of 
cracks and their spread. 
 
 
4. Conclusions 
 

The study shows that the use of cold plastic deformation after 
solution of the following aging promotes the precipitation 
process, as well as contribute significantly to the value of the 
hardness and electrical conductivity. In this variant, technology in 
many ways overlapping processes of precipitation and 
recrystallization. 

The process of precipitation and dispersion strengthening to a 
much lesser extent, decreases the electrical conductivity of 
copper. The reason is that the value of the mean free path in the 
presence of these precipitates is higher in comparison to the 
distance between the dissolved atoms. 

Nucleation of particles of size much less than 1 minute of 
aging is undoubtedly related to the primary recrystallization 
process taking place, which occurs in the solid state without 
changing the composition of input and output phase 
transformation. 

Obtained in this study results may provide a basis for further 
research on the mechanisms of recrystallization and precipitation 
in other species of copper alloy and copper alloys as well as the 
basis for searching the optimal bands of their functional 
properties. 
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