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Analysis and modelling

AbstrAct
Purpose: The main purpose of this work is developing a methodology, using non-classical methods, of 
modelling the complex mechanical systems with the continuous and discrete-continuous distribution of 
parameters. A simple task of dynamics can be solved by using this method, without limitations deriving from 
the type and number of the elements of a mechanical system.
Design/methodology/approach: By using the non-classical methods of modelling, it was possible to develop 
a method of determining the matrices (flexibilities) of multi-link vibration mechanical systems with the 
continuous distribution of parameters that are able to perform longitudinal and flexural vibrations. The method 
is focused on broadening graphs method by mechanical systems and improving their description and design 
methods so that the mathematical formalism can reflect the essence of the problem involved in the designation 
of dynamic characteristics of such systems.
Findings: The knowledge of the dynamic characteristics of a system determined for any inputs and outputs in 
form of kinematic and dynamic excitations is underlying the determination of frequency characteristics of the 
class of the systems under consideration.
Research limitations/implications: The class of the systems considered refers to investigating into the dynamic 
and vibration characteristics of mechanical systems with the discrete-continuous distribution of parameters 
performing small vibrations around the adopted state of equilibrium.
Practical implications: The presented method of this study is that the main point can be the introduction to 
e.g. additional kinematic excitations in form of a function of speed and accelerations or extending the method 
presented to cover the investigation of non-linear systems.
Originality/value: The modelling and analysis of discrete–continuous vibration systems with conjugations using 
the non-classical method is a more general approach as compared to modelling and analysis in classical terms.
Keywords: Graphs; Vibrating mechanical systems

Reference to this paper should be given in the following way: 
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1. Introduction 
 
An important field playing a major role in mechanical 

engineering is the field dealing with the vibrations of systems. 
The issue of the vibrations of physical systems is very important 

for practical implications. For this reason it is necessary to conduct 
research the main aim of which is to understand the phenomena 
related to the vibrations of complex systems and also to determine 
the influence of a change to the parameters of the system on its 
behaviour during vibrations. A phenomenon of vibration occurs 
in each mechanical object, therefore, it is the key issue both, in the 
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area of purely practical concepts, scientific and research concepts 
as well as in the area of didactics. The primary purpose of a 
dynamic analysis is to understand, predict and, sometimes, correct 
the behaviour of an object subjected to dynamic and kinematic 
interactions. Vibration systems can be generally grouped into: 
systems with the continuous distribution of parameters, systems 
with the discrete distribution of parameters and systems with the 
discrete and continuous distribution of parameters. This grouping 
is of mathematical character and takes the research methodology 
into account. This is why information acquired from the simplified 
models of real systems is used in many cases only. Nearly every 
machine nowadays, in the era of advanced technologies, 
incorporates the components being mechanical or electrical 
vibration systems. For this reason an analysis of mechanical 
systems is still an important stage of designing and operating the 
technical systems. Considering that mechanical objects are more 
and more complicated in constructional and functional terms, 
difficulties often arise when applying a classical mathematical 
apparatus for creating and solving the relevant systems of the 
differential equations of motion. The analytical solving of 
differential equations, referred to in the literature as “classical 
methods”, representing a mathematical model, is time-consuming 
or may be impossible, at all. When creating a physical model and 
then a mathematical model of the analysed mechanical object, 
versatile knowledge on its properties and the processes and 
relationships occurring in the model is indispensable. The knowl-
edge must be supported by the knowledge of the laws of physics 
(mechanics, electrical engineering or thermodynamics) determining 
the behaviour of the system. When analysing a system made up of 
multiple subsystems, a great deal of work-consuming and time-
consuming activities is required to determine dynamic charac-
teristics. Where it is necessary to modify the structure of the 
system, the differential equations of motion have to be formulated 
each time from the beginning or the matrices of stiffness, 
dampening and others have to be constructed anew. Non-classical 
methods are helpful then. The methods are often characterised by 
a high degree of algorithmisation which makes it easier to 
implement them in computer calculation systems, especially when 
determining dynamic characteristics. They also enable to present 
the structure of the modelled system graphically [1-9, 16-19]. 

This article concentrates on developing a methodology – 
using non-classical methods – of modelling the complex mechan-
ical systems with the continuous and discrete-continuous distri-
bution of parameters. The class of the systems considered refers 
to investigating into the dynamic and vibration characteristics 
of mechanical systems with the discrete-continuous distribution 
of parameters performing small vibrations around the adopted 
state of equilibrium. 

The knowledge of the dynamic characteristics of a system 
determined for any inputs and outputs in form of kinematic and 
dynamic excitations is underlying the determination of frequency 
characteristics of the class of the systems under consideration. 
 
 

2. Subsystems with the continuous 
distribution of parameters 

 
 
The method, presented in this chapter, of determining a stiffness 

matrix of multi-link systems with the continuous distribution 

of parameters performing longitudinal or torsional, represents an 
original solution serving to determine the dynamic characteristics 
of the considered class of systems. The process of determining 
a stiffness matrix has been shortened substantially by applying 
this method for analysing mechanical systems with the continuous 
distribution of parameters where a system constructed of multiple 
links is analysed. 

 
 

2.1. Systems with the continuous distribution 
of parameters vibrating longitudinally 

 
 
The subject of the considerations are multi-section, mechan-

ical rod systems vibrating longitudinally in form of models with 
their parameters distributed in a continuous manner and with 
sectionally constant cross-section. Two basic pools of physical 
values are used for describing the adopted model. S1 and S2  

(where the S1 – is a pool of generalised system displacement 

values; the S2 – is a pool of the generalised values of forces). The 

relationships between the amplitudes of generalised forces js2  

S2  and generalised displacements is1  S1 are expressed by 
applying a concept of dynamic flexibility ijY , i.e. an amplitude, 
bearing a relevant sign, of generalised displacement in the 
direction of the i-th generalised coordinate, caused by a generalised 
force in form of a harmonic function with the unit amplitude, 
corresponding to the j-th of this generalised coordinate, i.e.: 

jiji s Ys 21  (1) 

where: ta
j es2 , a = 1 ,  – frequency. 

When considering the longitudinal vibrations of the free rod 
(Fig. 1), the amplitudes of displacements  is11  and is21 assigned 
to its extreme positions are used for description. 
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Fig. 1. A continuous and limited model of a longitudinally 
vibrating rod 
 
The meanings of the symbol in Fig. 1 are: 

is11 , is21  – the values of linear displacements of the rod ends,  
is12 , is22  – the values of linear forces , 

iE  – elastic modulus, 

iA  – the rod cross-section field,  

i  – the rod material density. 
 
The pools of the generalised values of displacements and the 

values of forces of the considered link assume the following form: 
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The relationships between the values of generalised displacements 
and the values of generalised forces for a single link in the system 
are recorded as follows: 
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By assuming that the Y flexibility matrix is non-singular, they 
have been converted to the following form: 
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or 
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Digital indices were replaced by literal indices to simplify the 
notation: 
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The subject of the considerations is the K structure of a me-

chanical system, with the continuous distribution of parameters 
and with sectionally constant cross-section and vibrating longi-
tudinally (Fig. 2), defined as: 

 
K = S, Rz  (7) 
 
where: 
S is a pool of generalised variables (the values of displacement 
and values of forces), Rz – a bilateral relation referred to as 
follows: 

SssssSss jijipji 2121
P

21 ,})({,  (8) 

where: 
p   (i, j = 1, 2, …, n; p = 1, 2, …, card ),  – a pool of p 

functions determined with the S pool. 
The form of a matrix flow graph representing the structure of 

the considered system (Fig. 2) was obtained by making the 
mappings and assignments described in [11, 12] 
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Fig. 2. Matrix signal flow graph 
 
where: 

S2 – a column matrix of the generalised forces of the system, 
S1 – a column matrix of the generalised displacement of the system, 

Z – a stiffness matrix of the considered system. 

It is not necessary to draw a flow graph in order to determine 
the stiffness matrix of the systems made up of the l – rod 
elements. It is enough to use the method of summing stiffness 
matrices for the next links [11, 12], recorded with the relationship 
(9). This method makes it easier to determine the stiffness matrix 
of the considered system, therefore, it allows for the determination 
of the system’s flexibility anywhere in the abrupt change of section. 
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The final result of the (9) relationship is the Z stiffness matrix 

dimensioned [ns-1] [ns-1], where: n – the number of subsystems 
of the continuous system, s – the number of coordinates of the 
generalised system.  

Ultimately, the stiffness matrix of a multi-link mechanical 
system vibrating longitudinally assumes the following form: 
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The stiffness matrix of the l – link systems (10) obtained 
constitutes a basis for analysing the system further, i.e. for 
determination of the Y flexibility matrix of the rod system 
vibrating longitudinally. By assuming that the Z matrix is non-
singular, the Y flexibility matrix is the inverse of the Z stiffness 
matrix. 

Z
Z

Y ijji
ij det

det
)1(  (11) 

where: 
Yij – an element entered in the i–th row and in the j–th column of 
the system flexibility matrix, 
det Z – a determinant of the stiffness matrix, 
det Zij – a determinant of the stiffness matrix without the i–th row 
and the j–th column. 

The appropriate flexibilities of the longitudinally vibrating 
rods have to be provided to obtain the sought dynamic flexibilities 
with the specific boundary conditions. Various boundary conditions 
imposed on the ends of links need to be taken into account 

to determine the dynamic characteristics of real mechanical 
systems. The dynamic stiffness matrices of the system do not 
have to be modified when changing the boundary conditions. It is 
sufficient to provide the relevant flexibilities of the system for the 
stiffness matrix of the system. 
 
 
2.2. Systems with the continuous distribution 
of parameters vibrating flexurally 

 
 
The subject of the considerations are flexurally vibrating, 

multi-section rod systems with their parameters distributed 
continuously and with sectionally constant cross-section. It is 
assumed that the vibrations of the link occur in a single plane. 
A movement of any link element is determined by two 
coordinates. The coordinates include: bending is1  = y(x, t) and 

bending angle 
x

y(x,t)si1  (in any element of the link). It is also 

assumed that the link may be exerted with a generalised force 
(a harmonically-variable force or a harmonically-variable bending 
moment). This means that the notion of dynamic flexibility 
is considered in this case in a broader sense as if it were done for 
longitudinal vibrations. Dynamic flexibility is recorded as a rela-
tionship between bending and a bending moment or a lateral force 
or between a bending angle and a bending moment or a lateral 
force. This relationship, which is in line with the definition 
of dynamic flexibility, can be recorded with words, using the 
following diagram:  

 

momentbendingofamplitude
forcelateralofamplitude

yflexibilit
dynamic

anglerotationsectionofamplitude
bendingofamplitude

 (12) 

 
Displacement amplitudes ( 11 s  and 31 s ) and section rotation 

angles ( 21 s  and 41 s ) assigned to the extreme points are used for 
considering the flexural free vibrations of the link presented 
in Fig. 3. It is considered that the counter clockwise section 
torsional angle is positive. 
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Fig. 3. Continuous and finite model of a flexurally vibrating link 

The meanings of the symbol in Fig. 3 are: 
Ii – moment of inertia of cross-section, 

iE  – elastic modulus, 

iA  – the rod cross-section field,  

i  – link material density, 
ii ss
3111  , – linear displacements of the link ends, 

ii ss
4121  , – angular displacements of the link ends, 

ii ss 3212  , – values of shearing forces moments, 

ii ss 4222  , – values of shearing bending moments. 
The relationships between the generalised displacements of 

the rod ends and the forces causing such displacements are 
recorded in the following form by inversing the Z matrix of link 
stiffness. 
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The subject of the considerations is the K structure of a 
mechanical system, with the continuous distribution of parameters 
and with sectionally constant cross-section and vibrating 
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K = S, Rz  (14) 
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where: 
p   (i, j = 1, 2, …, n; p = 1, 2, …, card ),  – a pool of p 

functions determined with the S pool. 
The form of a matrix flow graph representing the structure of 

the considered system (Fig. 4) was obtained by making the 
mappings and assignments described in [*] 
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Fig. 4. Matrix signal flow graph 
 
where: 

S2 – a column matrix of the generalised forces of the system, 
S1 – a column matrix of the generalised displacement of the 

system, 
Z – a stiffness matrix of the considered system. 
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recorded in the following form by inversing the Z matrix of link 
stiffness. 

.s, s s, s S 
,s, s, s, s S 

423222122

413121111  (13) 

The subject of the considerations is the K structure of a 
mechanical system, with the continuous distribution of parameters 
and with sectionally constant cross-section and vibrating 
longitudinally (Fig. 3), defined as: 
K = S, Rz  (14) 
where: 
S is a pool of generalised variables (the values of displacement 
and values of forces), Rz – a bilateral relation referred to as 
follows: 

SssssSss jijipji 2121
P

21 ,})({,  (15) 

where: 
p   (i, j = 1, 2, …, n; p = 1, 2, …, card ),  – a pool of p 

functions determined with the S pool. 
The form of a matrix flow graph representing the structure of 

the considered system (Fig. 4) was obtained by making the 
mappings and assignments described in [*] 

 
Z 2S 1S  

 
 

Fig. 4. Matrix signal flow graph 
 
where: 

S2 – a column matrix of the generalised forces of the system, 
S1 – a column matrix of the generalised displacement of the 

system, 
Z – a stiffness matrix of the considered system. 

The relationships between the values of generalised 
displacements and the values of generalised forces for a single 
link in the system are recorded as follows: 
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2.2.  systems with the continuous 
distribution of parameters 
vibrating flexurally
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or 
SZS 12   (17) 

 
The relationships between the generalised displacements of 

the rod ends and the forces causing such displacements are 
recorded in the following form by inversing the Z matrix of link 
stiffness. 
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or 

SYS 21   (19) 
 

Digital indices were replaced by literal indices to simplify the 
notation: 
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As generalised displacements are not homogenous (linear 

displacements or bending angles), flexibilities are expressed with 
different units:  

m/N – in case of flexibility Ya, Ys, Ym, Yc,  
m/Nm – in case of flexibility Ye, Yt, Yn, Yg, 
rad/N – in case of flexibility Yf, Yk, Yo, Yh, 
rad/Nm – in case of flexibility Yb, Yl, Yp, Yd. 
In order to determine the stiffness matrix of the n – link 

systems, the system under consideration can be treated as an 
assembly of a two-link system with another link, etc [12]. 
By knowing that the forces acting at the end of the first link, 
in the place where the subsequent subsystems are connected (21), 
are also the forces acting at the beginning of the second link, and 
the forces acting at the end of the second link are the forces acting 
at the beginning of the third link, etc., therefore: 
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Nevertheless, the principle of the inseparability of displacements 
provides that: 
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The stiffness matrix of the n – link system is determined by 
summing the elements of the Z stiffness matrix corresponding to 
the individual links of the system, by means of coordinates, 
connected in the places of the abrupt changes of section. In case 
of a system consisting of multiple links, with sectionally constant 
cross-section, and performing flexural vibrations, these are the 
four coordinates resulting from the physical properties of the 
system: the values of linear displacements, angular displacements, 
linear forces and bending moments. 

The relationship (23) presents the construction of the stiffness 
matrix representing the n-link system. 
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where: 
The Z1 matrix of the first subsystem is expressed as follows: 
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The Z2 matrix of the first subsystem is expressed as follows:  
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The Zn matrix of the first subsystem is expressed as follows: 
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The final result of the (23) relationship is the Z stiffness 

matrix dimensioned n s, where: n – the number of subsystems of 
the continuous system, s – the number of coordinates of the 
generalised system. Various boundary conditions imposed on the 
ends of links need to be taken into account to determine the 
dynamic characteristics of real mechanical systems. The dynamic 
stiffness matrices of the system do not have to be modified when 
changing the boundary conditions. It is sufficient to provide the 
relevant flexibilities of the system for the stiffness matrix of the 
system. 

 
 

3. Systems with the discrete-continuous 
distribution of parameters 
 
 

A mechanical system needs to be discomposed to two 
subsystems to present a vibration mechanical system with the 
discrete-continuous distribution of parameters as a hybrid graph 
[14, 15], i.e. a subsystem with aggregated parameters modelling 
with hybrid graphs and a subsystem with the continuous 
distribution of parameters modelled with flow graphs and then 
reduced to the edge of a hybrid graph. Dynamic flexibility 
corresponding to the edge of coincidence with a discrete system 
is assigned to this edge, whereas a continuous subsystem may 
contain elements vibrating longitudinally, torsionally, flexurally, 
longitudinally–flexurally or longitudinally–flexurally–torsionally. 
The idea of analysing the systems with the discrete-continuous 
distribution of parameters with the non-classical method is shown 
in Fig. 5. Note that each of the subsystems of a complex 
mechanical system can be considered separately. 

A phenomenological model of a discrete-continuous mechan-
ical system was adopted without influencing the generality of the 
considerations. The following was distinguished between for a 
physical model: l elements with the parameters distributed 
continuously and with sectionally constant cross-section connected 
in the n2 coincidence points with a subsystem with the discrete 

distribution of parameters, n1 inertial elements, n3 kinematic 
excitations, n4 elastic and dampening elements (of the c and b 
type) and the n5 force excitations. A general form of a matrix flow 
graph was obtained by using the theory of hybrid graphs and 
matrix hybrid graphs [10, 13, 14]. 
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Fig. 5. An idea of an analysis of systems with the discrete-
continuous distribution of parameters with the hybrid graphs 
method 
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Fig. 6. A general form of a matrix flow graph 

 
The meanings of the symbol in Fig. 6 are: 11S – the matrix of 

the polar coordinates of the passive branches of the graph, 12S – 
the matrix of the generalized polar coordinates of the active 
branches of the graph (generated by the kinematical excitations), 
13S – the matrix of linear and angular displacements of the 
elements of type of c and b, 14S – the matrix of linear and angular 
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or 
SZS 12   (17) 

 
The relationships between the generalised displacements of 

the rod ends and the forces causing such displacements are 
recorded in the following form by inversing the Z matrix of link 
stiffness. 
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As generalised displacements are not homogenous (linear 

displacements or bending angles), flexibilities are expressed with 
different units:  

m/N – in case of flexibility Ya, Ys, Ym, Yc,  
m/Nm – in case of flexibility Ye, Yt, Yn, Yg, 
rad/N – in case of flexibility Yf, Yk, Yo, Yh, 
rad/Nm – in case of flexibility Yb, Yl, Yp, Yd. 
In order to determine the stiffness matrix of the n – link 

systems, the system under consideration can be treated as an 
assembly of a two-link system with another link, etc [12]. 
By knowing that the forces acting at the end of the first link, 
in the place where the subsequent subsystems are connected (21), 
are also the forces acting at the beginning of the second link, and 
the forces acting at the end of the second link are the forces acting 
at the beginning of the third link, etc., therefore: 
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The stiffness matrix of the n – link system is determined by 
summing the elements of the Z stiffness matrix corresponding to 
the individual links of the system, by means of coordinates, 
connected in the places of the abrupt changes of section. In case 
of a system consisting of multiple links, with sectionally constant 
cross-section, and performing flexural vibrations, these are the 
four coordinates resulting from the physical properties of the 
system: the values of linear displacements, angular displacements, 
linear forces and bending moments. 

The relationship (23) presents the construction of the stiffness 
matrix representing the n-link system. 
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where: 
The Z1 matrix of the first subsystem is expressed as follows: 
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The Zn matrix of the first subsystem is expressed as follows: 
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The final result of the (23) relationship is the Z stiffness 

matrix dimensioned n s, where: n – the number of subsystems of 
the continuous system, s – the number of coordinates of the 
generalised system. Various boundary conditions imposed on the 
ends of links need to be taken into account to determine the 
dynamic characteristics of real mechanical systems. The dynamic 
stiffness matrices of the system do not have to be modified when 
changing the boundary conditions. It is sufficient to provide the 
relevant flexibilities of the system for the stiffness matrix of the 
system. 

 
 

3. Systems with the discrete-continuous 
distribution of parameters 
 
 

A mechanical system needs to be discomposed to two 
subsystems to present a vibration mechanical system with the 
discrete-continuous distribution of parameters as a hybrid graph 
[14, 15], i.e. a subsystem with aggregated parameters modelling 
with hybrid graphs and a subsystem with the continuous 
distribution of parameters modelled with flow graphs and then 
reduced to the edge of a hybrid graph. Dynamic flexibility 
corresponding to the edge of coincidence with a discrete system 
is assigned to this edge, whereas a continuous subsystem may 
contain elements vibrating longitudinally, torsionally, flexurally, 
longitudinally–flexurally or longitudinally–flexurally–torsionally. 
The idea of analysing the systems with the discrete-continuous 
distribution of parameters with the non-classical method is shown 
in Fig. 5. Note that each of the subsystems of a complex 
mechanical system can be considered separately. 

A phenomenological model of a discrete-continuous mechan-
ical system was adopted without influencing the generality of the 
considerations. The following was distinguished between for a 
physical model: l elements with the parameters distributed 
continuously and with sectionally constant cross-section connected 
in the n2 coincidence points with a subsystem with the discrete 

distribution of parameters, n1 inertial elements, n3 kinematic 
excitations, n4 elastic and dampening elements (of the c and b 
type) and the n5 force excitations. A general form of a matrix flow 
graph was obtained by using the theory of hybrid graphs and 
matrix hybrid graphs [10, 13, 14]. 
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Fig. 5. An idea of an analysis of systems with the discrete-
continuous distribution of parameters with the hybrid graphs 
method 
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Fig. 6. A general form of a matrix flow graph 

 
The meanings of the symbol in Fig. 6 are: 11S – the matrix of 

the polar coordinates of the passive branches of the graph, 12S – 
the matrix of the generalized polar coordinates of the active 
branches of the graph (generated by the kinematical excitations), 
13S – the matrix of linear and angular displacements of the 
elements of type of c and b, 14S – the matrix of linear and angular 
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displacements of the active branches of the graph (generated by 
the dynamic excitations), 21S – the matrix of the flow coordinates 
of the passive branches of the graph, 22S – the matrix of the flow 
coordinates of the active branches of the graph (generated by the 
kinematical excitations), 23S – the matrix of the flow coordinates 
of the passive principal branches of the graph, 24S – the matrix of 
the flow coordinates of the active branches of the graph 

(generated by the dynamic excitations), 
B~

1s  – polar variable 

distribution matrix, 
B~

2 s  – flow variables matrix, o1
W

 – tree 

elements dynamic flexibility matrix, 
o

W  – co-tree elements 
dynamic ridigidy matrix. 

4 formulas (transition functions) can be distinguished between 
based on the flow graph obtained that are expressing the matrix-
based dynamic characteristics of the studied vibration mechanical 
system with the discrete-continuous distribution of parameters. 
The characteristics are described with the following relationships: 
 The operational, matrix-based, dynamic characteristic of force 

excitations’ transformation into the variable flow branches of 
a hybrid graph. 
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excitations’ transformation into the variable flow principal 
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 The operational, matrix-based, dynamic characteristic of force 

excitations’ transformation into the variable polar principal 
branches of a hybrid graph. 
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Accordingly, on the bases of the information on the dynamic 

characteristics of the system for any inputs or outputs in the form 
of kinematical and dynamic excitations it is possible to designate 
the frequency characteristics for the discussed class of systems. 
 
 
4. The system of the research 
 

The system considered is made up of two rod elements with 
sectionally constant cross-section, performing flexural vibrations 
and of two inertial elements excited with kinematic excitations. 
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Fig. 7. The analysed system with the characteristic values provided 
 

The parameters provided in Table 1 (parameters of a subsystem 
with the continuous distribution of parameters), 2 (inertial 
parameters), 3 (elasticity and dampening parameters) and 4 and 5 
(geometric parameters) were adopted for the model presented in 
the Figure 7. 

 
Table 1. 
Parameters of a subsystem with the continuous distribution of 
parameters 

mL md  material 

1L 2L 1d 2d   
0.5 0.75 0.05 0.03 steel 

 
Table 2. 
Inertial parameters 

kgm 2 mkgI

1m 2m 1I  2I
10 14 1.0416 1.365 

 
Table 3. 
Elasticity and dampening parameters 

m
Nc  

 1c  2c  3c   4c   5c
1·106 1.1·106 1.2·106 1.1·106 1·106 

m
sNb  

 1b  2b  3b   4b
0.18·104 0.2·104 0.17·104 0.15·104 

4.  the system of the research

Table 4. 
Geometric parameters 

the distance of coincidence points EST* from the centre of 
mass of an inertia element 1. 

1l  2l  3l  4l
0.3 0.4 0.3 0.4 

*EST – an elastic-dampening element. 
 
Table 5. 
Geometric parameters 

the distance of coincidence points EST* from the centre of 
mass of an inertia element 2. 

5l  6l  7l  
0.4 0.45 0.2 

*EST – an elastic-dampening element. 
 

 
 

Fig. 8. A diagram of the dynamic flexibility of a subsystem with 
the continuous distribution of parameters in the first point of 
coincidence with the subsystem with the discrete distribution of 
parameters 

 

 
 

Fig. 9. A diagram of the dynamic flexibility of a subsystem with 
the continuous distribution of parameters in the second point of 
coincidence with the subsystem with the discrete distribution of 
parameters 

 
A diagram of the dynamic flexibility of a subsystem with the 

continuous distribution of parameters in the first and second point 
of coincidence with the subsystem with the discrete distribution of 
parameters is shown in Figures 8 and 9, while Figure 10 shown 
diagram of dynamic flexibility between a force acting in the 

second point of coincidence of subsystems and the displacement 
in the first point of coincidence. 

 

 
 

Fig. 10. A diagram of dynamic flexibility between a force acting 
in the second point of coincidence of subsystems and the 
displacement in the first point of coincidence 
 
 

5. Conclusions 
 

By using the non-classical methods of modelling, it was 
possible to develop a method of determining the matrices 
(flexibilities) of multi-link vibration mechanical systems with the 
continuous distribution of parameters that are able to perform 
longitudinal and flexural vibrations. This has shortened and 
simplified the computing process markedly. The modelling and 
analysis of discrete–continuous vibration systems with conju-
gations using the non-classical method is a more general approach 
as compared to modelling and analysis in classical terms. 
A simple task of dynamics can be solved by using this method, 
without limitations deriving from the type and number of the 
elements of a mechanical system. The considerations presented in 
the paper are obviously not exhausting all the issues associated 
with an analysis of the considered class of systems, therefore, 
other, open issues for future research arise, as well, and the 
considerations may either generalise or represent an assumption 
for undertaking new considerations. The issues may concern: 
extending the considered class of systems with spatial systems; 
introducing additional kinematic excitations in form of a function 
of speed and accelerations; enabling the generation of time 
responses to any excitations; extending the method presented 
to cover the investigation of non-linear systems. 
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4 formulas (transition functions) can be distinguished between 
based on the flow graph obtained that are expressing the matrix-
based dynamic characteristics of the studied vibration mechanical 
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The characteristics are described with the following relationships: 
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Accordingly, on the bases of the information on the dynamic 

characteristics of the system for any inputs or outputs in the form 
of kinematical and dynamic excitations it is possible to designate 
the frequency characteristics for the discussed class of systems. 
 
 
4. The system of the research 
 

The system considered is made up of two rod elements with 
sectionally constant cross-section, performing flexural vibrations 
and of two inertial elements excited with kinematic excitations. 
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Fig. 7. The analysed system with the characteristic values provided 
 

The parameters provided in Table 1 (parameters of a subsystem 
with the continuous distribution of parameters), 2 (inertial 
parameters), 3 (elasticity and dampening parameters) and 4 and 5 
(geometric parameters) were adopted for the model presented in 
the Figure 7. 

 
Table 1. 
Parameters of a subsystem with the continuous distribution of 
parameters 

mL md  material 

1L 2L 1d 2d   
0.5 0.75 0.05 0.03 steel 

 
Table 2. 
Inertial parameters 

kgm 2 mkgI

1m 2m 1I  2I
10 14 1.0416 1.365 

 
Table 3. 
Elasticity and dampening parameters 

m
Nc  

 1c  2c  3c   4c   5c
1·106 1.1·106 1.2·106 1.1·106 1·106 

m
sNb  

 1b  2b  3b   4b
0.18·104 0.2·104 0.17·104 0.15·104 

Table 4. 
Geometric parameters 

the distance of coincidence points EST* from the centre of 
mass of an inertia element 1. 

1l  2l  3l  4l
0.3 0.4 0.3 0.4 

*EST – an elastic-dampening element. 
 
Table 5. 
Geometric parameters 

the distance of coincidence points EST* from the centre of 
mass of an inertia element 2. 

5l  6l  7l  
0.4 0.45 0.2 

*EST – an elastic-dampening element. 
 

 
 

Fig. 8. A diagram of the dynamic flexibility of a subsystem with 
the continuous distribution of parameters in the first point of 
coincidence with the subsystem with the discrete distribution of 
parameters 

 

 
 

Fig. 9. A diagram of the dynamic flexibility of a subsystem with 
the continuous distribution of parameters in the second point of 
coincidence with the subsystem with the discrete distribution of 
parameters 

 
A diagram of the dynamic flexibility of a subsystem with the 

continuous distribution of parameters in the first and second point 
of coincidence with the subsystem with the discrete distribution of 
parameters is shown in Figures 8 and 9, while Figure 10 shown 
diagram of dynamic flexibility between a force acting in the 

second point of coincidence of subsystems and the displacement 
in the first point of coincidence. 

 

 
 

Fig. 10. A diagram of dynamic flexibility between a force acting 
in the second point of coincidence of subsystems and the 
displacement in the first point of coincidence 
 
 

5. Conclusions 
 

By using the non-classical methods of modelling, it was 
possible to develop a method of determining the matrices 
(flexibilities) of multi-link vibration mechanical systems with the 
continuous distribution of parameters that are able to perform 
longitudinal and flexural vibrations. This has shortened and 
simplified the computing process markedly. The modelling and 
analysis of discrete–continuous vibration systems with conju-
gations using the non-classical method is a more general approach 
as compared to modelling and analysis in classical terms. 
A simple task of dynamics can be solved by using this method, 
without limitations deriving from the type and number of the 
elements of a mechanical system. The considerations presented in 
the paper are obviously not exhausting all the issues associated 
with an analysis of the considered class of systems, therefore, 
other, open issues for future research arise, as well, and the 
considerations may either generalise or represent an assumption 
for undertaking new considerations. The issues may concern: 
extending the considered class of systems with spatial systems; 
introducing additional kinematic excitations in form of a function 
of speed and accelerations; enabling the generation of time 
responses to any excitations; extending the method presented 
to cover the investigation of non-linear systems. 
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