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Analysis and modelling

Abstract
Purpose: The goal of the research carried out was evaluation of alloying elements effect on high-speed steels 
hardness and fracture toughness and austenite transformations during continuous cooling of structural steels.
Design/methodology/approach: Multi-layer feedforward neural networks with learning rule based on the 
error backpropagation algorithm were employed for modelling the steels properties. Then the neural networks 
worked out were employed for the computer simulation of the effect of particular alloying elements on the 
steels’ properties.
Findings: Obtained results show that neural network are useful in evaluation of synergic effect of alloying 
elements on selected materials properties when classical investigations’ results do not provide evaluation of the 
effect of two or more alloying elements.
Practical implications: Numerical simulation presented in the work, based on using the adequate material models 
may feature an alternative for classical investigations on effect of alloying elements on steels’ properties.
Originality/value: The use of the neural networks as an tool for evaluation of the chemical composition effect 
on steels’ properties.
Keywords: Steels; Artificial Intelligence Methods; Modelling; Simulation
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1. Introduction 

 
Progress in the area of materials engineering is connected 

inseparably with employment and development of mathematical 
modelling, numerical methods, computational intelligence 
methods, and artificial intelligence. Computer modelling and 
simulation make improvement of engineering materials properties 
possible, as well as prediction of their properties, even before the 
materials are fabricated, with the significant reduction of 
expenditures and time necessary for their investigation and 
application. Modelling becomes, therefore, the indispensable tool 
in materials science and in materials engineering [1-10]. 

The artificial neural networks are a universal tool for a 
numerical modelling capable of mapping of complex functions. 
The adaptation of neural networks to fulfilling a definite 
assignment does not require the determination of an algorithm or 
recording it in the form of a computer program. This process 
replaces learning using a series of typical stimulations and 
corresponding to them desirable reactions. The basic feature of 
neural networks is their capability to a generalization of 
knowledge for the new data not presented in the learning process. 
The neural networks do not require collecting and direct access to 
the knowledge about the issue; they present a tolerance towards 
discontinuity, accidental disturbances or lacks in the learning set. 

1.	�Introduction

http://www.journalamme.org
http://www.journalamme.org


Research paper72

Journal of Achievements in Materials and Manufacturing Engineering

W. Sitek, J. Trzaska

Volume 45 Issue 1 March 2011

This fact allows applying them whenever there are problems with 
data processing and analysis, their classification, prediction or 
control. For several years, neural networks are more and more 
often used in the material engineering [11-15]. This growing 
popularity of neural networks results from the possibilities of 
creating relations between the examined quantities without any 
knowledge concerning a physical pattern of described 
phenomena. The results delivered by the neural network very 
often present bigger compatibility with the empirical data than 
with the results obtained thanks to the empirical interrelations or 
mathematic models of the analysed processes. 

The paper presents the application of artificial neural network 
for evaluation of alloying elements effect on hardness and fracture 
toughness of high speed steels and austenite transformations 
during continuous cooling. 

 
 

2. The effect of alloying elements on 
properties of HSS steels 

 
 
Simulations of the alloying elements effect on steels 

properties has been made with use of suitable neural network 
models which make it possible calculation of the hardness and 
fracture toughness of high-speed steels. 

For modelling of the high-speed steels secondary hardness 
basing only on steels chemical composition and austenitizing and 
tempering temperatures, the 8-7-1 multi-layer feedforward neural 
network with learning rule based on the error backpropagation 
algorithm and conjugate gradient were employed. There are eight 
nodes on the input of the network and 6 of them represent the 
values of the concentration of particular alloying element 
occurring in the analysed steels (C, Cr, Mo, V, W and Co). Next 
two inputs represent austenitising and tempering temperatures. 
The node on the output network layer represents the value of the 
secondary steel hardness.  

The base of calculations are: 
results of investigations of newly developed high-speed steels 
[16-18], 
data included in standards [19], 
data included in suppliers catalogue [20] containing 
information about these steels. 
Ranges of the alloying elements occurring in analysed steels 

and heat-treatment parameters are presented in Table 1. 
 

Table 1. 
Ranges of mass concentrations of the alloying elements occurring 
in the analysed high-speed steels 
 Mass concentration of alloying element, % 

 C Cr W Mo V Co 
Minimum 0.72 3.7 0 0 1 0 
Maximum 1.41 4.7 18 9.5 4.5 11 

 
This way the appropriate set of data has been obtained which 

describes the secondary steel hardness’ values depending on the 
chemical composition and heat–treatment parameters containing 

2716 results. The model developed was experimentally verified. 
The verification procedure consists of the evaluation of the 
conformity of the computational results with the experimental 
data. As a criterion, an average error for a tested data set has been 
accepted: 
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where: N – testing set size, Hci – calculated hardness, Hmi – 
measured hardness.  

The calculation results obtained indicate good conformity of 
the secondary hardness calculations with the experimental data. 
The average value of the calculation error was R=0.59 HRC. 

The methodology of modelling of the high-speed steels fracture 
toughness KIC is analogous to presented above. The 8-6-1 multi-
layer feedforward neural network with learning rule based on the 
error backpropagation algorithm and conjugate gradient were 
employed. There are eight nodes on the input of the network and 
6 of them represent the values of the concentration of particular 
alloying element occurring in the analysed steels (C, Cr, Mo, V, 
W and Co). Next two inputs represent austenitising and tempering 
temperatures. The node on the output network layer represents the 
value of the fracture toughness of steel. The average value of the 
calculation error was R=0.39 MPa m ). 

The neural network models developed within the framework 
of the research make computer simulations possible pertaining, 
among others, to: 

effect of the selected element on steel properties or increase of 
this property value for the fixed concentrations of the other 
alloy elements and constant austenitizing- and tempering 
temperatures, 
analysis of the simultaneous effect of two selected elements 
on steel properties, for 6 fixed concentrations of the other 
alloy elements and constant austenitizing- and tempering 
temperatures. 
Simulation investigations were carried out in the 

concentration ranges of the alloy elements occurring in the 
investigated steels, specified in Table 1. 
 

 
2.1. Simulation of a single element effect on 

the high-speed steels hardness 
 
 

In this example the developed neural network model was used 
for simulation of the effect of a single selected alloy element on 
hardness growth, with the fixed concentrations of the other 
elements. The exemplary analysis was carried out of the effect of 
the selected elements (tungsten and molybdenum) with and 
without the alloy addition of cobalt in steels. 

It is also possible, apart from the presented examples, to carry 
out extended simulation analyses of the effect of the chemical 
composition on the secondary hardness effect within the range of 
concentrations of the alloy elements occurring in the analysed 
group of steels. 

Examples of the analyses carried out of the effect of the 
selected alloy element with the fixed concentrations of the other 
alloy elements given in Table 2 are presented in Figures 1-6. 

 

Table 2. 
Fixed concentrations of alloy elements used in calculations 

Mass concentration of alloying element, % 
C Cr W Mo V Co 

1.0 4.2 6.5 4 2 0 
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Fig. 1. Effect of tungsten on the high-speed steel hardness growth 
(Ta=1150°C) 
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Fig. 2. Effect of tungsten on the high-speed steel hardness growth 
(Ta=1240°C) 
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Fig. 3. Effect of tungsten on the high-speed steel hardness growth, 
Co=5.5% (Ta=1240°C) 
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Fig. 4. Effect of molybdenum on the high-speed steel hardness 
growth (Ta=1150°C) 
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Fig. 5. Effect of molybdenum on the high-speed steel hardness 
(Ta=1240°C) 
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Fig. 6. Effect of molybdenum on the high-speed steel hardness 
growth, Co=5.5% (Ta=1240°C) 

2.	�The effect of alloying 
elements on properties  
of HSS steels

2.1.	�Simulation of a single element 
effect on the high-speed steels 
hardness
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This fact allows applying them whenever there are problems with 
data processing and analysis, their classification, prediction or 
control. For several years, neural networks are more and more 
often used in the material engineering [11-15]. This growing 
popularity of neural networks results from the possibilities of 
creating relations between the examined quantities without any 
knowledge concerning a physical pattern of described 
phenomena. The results delivered by the neural network very 
often present bigger compatibility with the empirical data than 
with the results obtained thanks to the empirical interrelations or 
mathematic models of the analysed processes. 

The paper presents the application of artificial neural network 
for evaluation of alloying elements effect on hardness and fracture 
toughness of high speed steels and austenite transformations 
during continuous cooling. 

 
 

2. The effect of alloying elements on 
properties of HSS steels 

 
 
Simulations of the alloying elements effect on steels 

properties has been made with use of suitable neural network 
models which make it possible calculation of the hardness and 
fracture toughness of high-speed steels. 

For modelling of the high-speed steels secondary hardness 
basing only on steels chemical composition and austenitizing and 
tempering temperatures, the 8-7-1 multi-layer feedforward neural 
network with learning rule based on the error backpropagation 
algorithm and conjugate gradient were employed. There are eight 
nodes on the input of the network and 6 of them represent the 
values of the concentration of particular alloying element 
occurring in the analysed steels (C, Cr, Mo, V, W and Co). Next 
two inputs represent austenitising and tempering temperatures. 
The node on the output network layer represents the value of the 
secondary steel hardness.  

The base of calculations are: 
results of investigations of newly developed high-speed steels 
[16-18], 
data included in standards [19], 
data included in suppliers catalogue [20] containing 
information about these steels. 
Ranges of the alloying elements occurring in analysed steels 

and heat-treatment parameters are presented in Table 1. 
 

Table 1. 
Ranges of mass concentrations of the alloying elements occurring 
in the analysed high-speed steels 
 Mass concentration of alloying element, % 

 C Cr W Mo V Co 
Minimum 0.72 3.7 0 0 1 0 
Maximum 1.41 4.7 18 9.5 4.5 11 

 
This way the appropriate set of data has been obtained which 

describes the secondary steel hardness’ values depending on the 
chemical composition and heat–treatment parameters containing 

2716 results. The model developed was experimentally verified. 
The verification procedure consists of the evaluation of the 
conformity of the computational results with the experimental 
data. As a criterion, an average error for a tested data set has been 
accepted: 
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where: N – testing set size, Hci – calculated hardness, Hmi – 
measured hardness.  

The calculation results obtained indicate good conformity of 
the secondary hardness calculations with the experimental data. 
The average value of the calculation error was R=0.59 HRC. 

The methodology of modelling of the high-speed steels fracture 
toughness KIC is analogous to presented above. The 8-6-1 multi-
layer feedforward neural network with learning rule based on the 
error backpropagation algorithm and conjugate gradient were 
employed. There are eight nodes on the input of the network and 
6 of them represent the values of the concentration of particular 
alloying element occurring in the analysed steels (C, Cr, Mo, V, 
W and Co). Next two inputs represent austenitising and tempering 
temperatures. The node on the output network layer represents the 
value of the fracture toughness of steel. The average value of the 
calculation error was R=0.39 MPa m ). 

The neural network models developed within the framework 
of the research make computer simulations possible pertaining, 
among others, to: 

effect of the selected element on steel properties or increase of 
this property value for the fixed concentrations of the other 
alloy elements and constant austenitizing- and tempering 
temperatures, 
analysis of the simultaneous effect of two selected elements 
on steel properties, for 6 fixed concentrations of the other 
alloy elements and constant austenitizing- and tempering 
temperatures. 
Simulation investigations were carried out in the 

concentration ranges of the alloy elements occurring in the 
investigated steels, specified in Table 1. 
 

 
2.1. Simulation of a single element effect on 

the high-speed steels hardness 
 
 

In this example the developed neural network model was used 
for simulation of the effect of a single selected alloy element on 
hardness growth, with the fixed concentrations of the other 
elements. The exemplary analysis was carried out of the effect of 
the selected elements (tungsten and molybdenum) with and 
without the alloy addition of cobalt in steels. 

It is also possible, apart from the presented examples, to carry 
out extended simulation analyses of the effect of the chemical 
composition on the secondary hardness effect within the range of 
concentrations of the alloy elements occurring in the analysed 
group of steels. 

Examples of the analyses carried out of the effect of the 
selected alloy element with the fixed concentrations of the other 
alloy elements given in Table 2 are presented in Figures 1-6. 

 

Table 2. 
Fixed concentrations of alloy elements used in calculations 

Mass concentration of alloying element, % 
C Cr W Mo V Co 
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Fig. 1. Effect of tungsten on the high-speed steel hardness growth 
(Ta=1150°C) 
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Fig. 2. Effect of tungsten on the high-speed steel hardness growth 
(Ta=1240°C) 
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Fig. 3. Effect of tungsten on the high-speed steel hardness growth, 
Co=5.5% (Ta=1240°C) 
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Fig. 4. Effect of molybdenum on the high-speed steel hardness 
growth (Ta=1150°C) 
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Fig. 5. Effect of molybdenum on the high-speed steel hardness 
(Ta=1240°C) 
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Fig. 6. Effect of molybdenum on the high-speed steel hardness 
growth, Co=5.5% (Ta=1240°C) 

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org


Research paper74

Journal of Achievements in Materials and Manufacturing Engineering

W. Sitek, J. Trzaska

Volume 45 Issue 1 March 2011

2.2. Simulation of two elements effect on the 
high-speed steels hardness and fracture 
toughness 
 
 

The second simulation example presents the effect of two 
selected alloy elements on steel hardness with the fixed 
concentrations of the other elements and heat treatment 
parameters, as well as the fracture toughness. In case of fracture 
toughness, results of the effect of two elements are presented as 
well as of the heat treatment temperature. Fixed concentration was 
used and heat treatment parameters presented in Table 3. 
 Results of the simulation for various combinations of 
elements are presented in Figures 7-12. 
 
Table 3. 
Fixed concentrations of alloy elements used for simulation of the 
effect of two elements 
Mass concentration of alloying element, % Temperature, oC  

C Cr W Mo V Co Ta Tt 
0.95 4.1 6.5 4.5 1.8 0 1220 550 

 

 
 

Fig. 7. Effect of molybdenum and cobalt on hardness of steel 
 

 
 

Fig. 8. Effect of vanadium and molybdenum on hardness of steel 

 
 

Fig. 9. Effect of chromium and molybdenum on hardness of steel 
 
 

 
 
Fig. 10. Effect of molybdenum and vanadium on fracture 
toughness of steel 
 
 

 
 
Fig. 11. Effect of molybdenum and tempering temperature on 
fracture toughness of steel 

 

 
Fig. 12. Effect of austenitising and tempering temperature on 
fracture toughness of steel 
 
 

3. The effect of chemical composition on 
CCT diagrams shape  
 
 

The CCT diagrams containing the quantitative data pertaining 
to the dependence of steel structure and hardness on temperature 
and time of the supercooled austenite transformations are used for 
determination of the structure and hardness of the quenched, 
normalised, or fully annealed steels. Locations and shapes of the 
supercooled austenite transformations’ curves, plotted on the CCT 
diagrams, depends mostly on the chemical composition of the 
steel, extent of austenite homogenising, austenite grain size, as 
well as on austenitizing temperature and time. Fluctuations of the 
chemical composition of steel, allowable even within the same 
steel grade, and also changes of the austenitizing conditions make 
that using the CCT diagrams published as catalogues does not 
provide reliable information on austenite transformations during 
cooling. In papers [21-23] the authors’ method of CCT diagrams 
calculation has been described. 

The data set was developed on the basis of on literature data, 
including chemical compositions, austenitising temperature (TA) 
and the CCT diagrams of the constructional and engineering 
steels. The obtained curves were worked out, assuming mass 
fractions of the alloying elements as the criterion. Basing on the 
collected data it was assumed in addition that total of the mass 
fractions of manganese, chromium, nickel, and molybdenum does 
not exceed 5%. The ranges of the assumed mass fractions of 
elements and austenitising temperature are included in Table 4. 

 
 

Table 4. 
Ranges of mass fractions of elements for the analysed steels 

 Mass concentration of alloying 
element, % 

  

 C Mn Si Cr Ni Mo V Cu 
Min 0.08 0.13 0.12 0 1 0 0 0 
Max 0.77 2.04 1.90 2.08 3.65 1.24 0.36 0.3 

The algorithm has been based on four modules. The task of 
the data entry module is receiving information like chemical 
composition and austenitizing temperature and linking them with 
the cooling rates. The classification module composed of 
classifiers based on the neural networks carries out the task of 
identification of the structural elements occurring in the steel after 
completing its continuous cooling at a pre-determined rate. The 
calculation module employs neural networks for determining the 
critical values of the time and temperature of transformations, 
temperatures of beginning and end of transformations, hardness, 
as well as concentrations of the structural elements. Some 
information from the classification and calculation modules is 
processed using rules included in the fourth module, safe-
guarding from errors that may occur because of splitting the 
general task. The outputs from the particular modules feature the 
data that unequivocally defines the form of the CCT diagram and 
are the basis for its graphical representation. Total of 20 neural 
network models are used for calculating the CCT diagram for the 
assumed chemical composition, their task is to: determine the 
types of the occurring transformations at given cooling rates 
(classification), calculate the critical temperatures of 
transformations (Ac1, Ac3, Ms, Bs), calculate time to start and end 
of the particular transformations as functions of cooling rate, 
calculate hardness and volume fraction of the particular structural 
elements as functions of cooling rate. Computer program for 
forecasting anisothermic diagrams of supercooled austenite based 
on artificial neural networks model was presented in [23]. The 
developed neural network models make it possible to carry out 
computer simulation of the effect of chemical composition, 
austenitising temperature and/or cooling rate on a selected 
quantity describing austenite transformations in the CCT diagram 
i.e.: time to the start of the bainitic transformation, referring to the 
point of the shortest supercooled austenite life in the bainitic 
occurrence zone tBs, CCT diagrams shape.  

Figures 13-22 present examples of diagrams illustrating the 
particular alloying elements’ effects on the CCT diagrams shape 
and time to the bainitic transformation start. 
 
 

 
 
Fig. 13. Effect of molybdenum on CCT diagram shape of the steel 
austenitized at the temperature of 850°C with concentrations: 
0.38%C, 0.64%Mn, 0.23%Si, 0.99%Cr, 0.08%Ni 

2.2.	�Simulation of two elements 
effect on the high-speed 
steels hardness and fracture 
toughness
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2.2. Simulation of two elements effect on the 
high-speed steels hardness and fracture 
toughness 
 
 

The second simulation example presents the effect of two 
selected alloy elements on steel hardness with the fixed 
concentrations of the other elements and heat treatment 
parameters, as well as the fracture toughness. In case of fracture 
toughness, results of the effect of two elements are presented as 
well as of the heat treatment temperature. Fixed concentration was 
used and heat treatment parameters presented in Table 3. 
 Results of the simulation for various combinations of 
elements are presented in Figures 7-12. 
 
Table 3. 
Fixed concentrations of alloy elements used for simulation of the 
effect of two elements 
Mass concentration of alloying element, % Temperature, oC  

C Cr W Mo V Co Ta Tt 
0.95 4.1 6.5 4.5 1.8 0 1220 550 

 

 
 

Fig. 7. Effect of molybdenum and cobalt on hardness of steel 
 

 
 

Fig. 8. Effect of vanadium and molybdenum on hardness of steel 

 
 

Fig. 9. Effect of chromium and molybdenum on hardness of steel 
 
 

 
 
Fig. 10. Effect of molybdenum and vanadium on fracture 
toughness of steel 
 
 

 
 
Fig. 11. Effect of molybdenum and tempering temperature on 
fracture toughness of steel 

 

 
Fig. 12. Effect of austenitising and tempering temperature on 
fracture toughness of steel 
 
 

3. The effect of chemical composition on 
CCT diagrams shape  
 
 

The CCT diagrams containing the quantitative data pertaining 
to the dependence of steel structure and hardness on temperature 
and time of the supercooled austenite transformations are used for 
determination of the structure and hardness of the quenched, 
normalised, or fully annealed steels. Locations and shapes of the 
supercooled austenite transformations’ curves, plotted on the CCT 
diagrams, depends mostly on the chemical composition of the 
steel, extent of austenite homogenising, austenite grain size, as 
well as on austenitizing temperature and time. Fluctuations of the 
chemical composition of steel, allowable even within the same 
steel grade, and also changes of the austenitizing conditions make 
that using the CCT diagrams published as catalogues does not 
provide reliable information on austenite transformations during 
cooling. In papers [21-23] the authors’ method of CCT diagrams 
calculation has been described. 

The data set was developed on the basis of on literature data, 
including chemical compositions, austenitising temperature (TA) 
and the CCT diagrams of the constructional and engineering 
steels. The obtained curves were worked out, assuming mass 
fractions of the alloying elements as the criterion. Basing on the 
collected data it was assumed in addition that total of the mass 
fractions of manganese, chromium, nickel, and molybdenum does 
not exceed 5%. The ranges of the assumed mass fractions of 
elements and austenitising temperature are included in Table 4. 

 
 

Table 4. 
Ranges of mass fractions of elements for the analysed steels 

 Mass concentration of alloying 
element, % 

  

 C Mn Si Cr Ni Mo V Cu 
Min 0.08 0.13 0.12 0 1 0 0 0 
Max 0.77 2.04 1.90 2.08 3.65 1.24 0.36 0.3 

The algorithm has been based on four modules. The task of 
the data entry module is receiving information like chemical 
composition and austenitizing temperature and linking them with 
the cooling rates. The classification module composed of 
classifiers based on the neural networks carries out the task of 
identification of the structural elements occurring in the steel after 
completing its continuous cooling at a pre-determined rate. The 
calculation module employs neural networks for determining the 
critical values of the time and temperature of transformations, 
temperatures of beginning and end of transformations, hardness, 
as well as concentrations of the structural elements. Some 
information from the classification and calculation modules is 
processed using rules included in the fourth module, safe-
guarding from errors that may occur because of splitting the 
general task. The outputs from the particular modules feature the 
data that unequivocally defines the form of the CCT diagram and 
are the basis for its graphical representation. Total of 20 neural 
network models are used for calculating the CCT diagram for the 
assumed chemical composition, their task is to: determine the 
types of the occurring transformations at given cooling rates 
(classification), calculate the critical temperatures of 
transformations (Ac1, Ac3, Ms, Bs), calculate time to start and end 
of the particular transformations as functions of cooling rate, 
calculate hardness and volume fraction of the particular structural 
elements as functions of cooling rate. Computer program for 
forecasting anisothermic diagrams of supercooled austenite based 
on artificial neural networks model was presented in [23]. The 
developed neural network models make it possible to carry out 
computer simulation of the effect of chemical composition, 
austenitising temperature and/or cooling rate on a selected 
quantity describing austenite transformations in the CCT diagram 
i.e.: time to the start of the bainitic transformation, referring to the 
point of the shortest supercooled austenite life in the bainitic 
occurrence zone tBs, CCT diagrams shape.  

Figures 13-22 present examples of diagrams illustrating the 
particular alloying elements’ effects on the CCT diagrams shape 
and time to the bainitic transformation start. 
 
 

 
 
Fig. 13. Effect of molybdenum on CCT diagram shape of the steel 
austenitized at the temperature of 850°C with concentrations: 
0.38%C, 0.64%Mn, 0.23%Si, 0.99%Cr, 0.08%Ni 
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Fig. 14. Effect of alloying elements on CCT diagram shape of the 
17CrNi6-6 steel grade 
 

 
 

Fig. 15. Effect of carbon and manganese on tBs time of the steel 
austenitized at the temperature of 870°C with concentrations: 
0.31% Si, 1.50% Cr, 1.55% Ni 
 

 
 

Fig. 16. Effect of carbon and nickel on tBs time of the steel 
austenitized at the temperature of 870°C with concentrations 
0.51%Mn;0.31%Si;1.50%Cr 

 
Fig. 17. Effect of chromium and nickel on tBs time of the steel 
austenitized at the temperature of 870°C with concentrations: 
0.14%C, 0.51%Mn, 0.31% Si 
 

 
Fig. 18. Effect of carbon and chromium on tBs time of the steel 
austenitized at the temperature of 870°C with concentrations: 
0.51%Mn, 0.31% Si, 1.55% Ni 
 

Fig. 19. Effect of carbon and molybdenum on tBs time of the steel 
with concentrations: 1.5%Mn, 0.15%Si, 0.02%Cr, 1.5%Ni 

 

 
 
Fig. 20. Effect of carbon and molybdenum on tBs time of the steel 
with concentrations: 1.5%Mn, 0.15%Si, 1.5%Cr, 0.02%Ni 
 
 
 

 
 
Fig. 21. Effect of carbon and chromium on tBs time of the steel 
with concentrations: 1.5%Mn, 1.3%Si, 0.02%Ni, 0.02%Mo 
 
 
 

 
Fig. 22. Effect of carbon and chromium on tBs time of the steel 
with concentrations: 1.5%Mn, 0.15%Si, 1.5%Ni, 0.02%Mo 

4. Final remarks 
 

The paper presents the application of artificial neural network 
for evaluation of alloying elements effect on selected materials 
properties and austenite transformations during continuous 
cooling. Obtained results show that neural network are useful in 
evaluation of synergic effect of alloying elements on selected 
materials properties when classical investigations’ results do not 
provide evaluation of the effect of two or more alloying elements. 
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