O. Macedońska, W. Tomaszewski

ON THE FORM OF FIXED POINTS FOR INVOLUTIONS IN A FREE ABELIAN GROUP

If α is an automorphism of order two in an abelian group then each element of the form $u u^{\alpha}$ is a fixed point for α. The question is for which α each fixed point is of the form $u u^{\alpha}$. There are examples of relatively free groups of rank two where the automorphism σ permuting generators has this property. We describe the automorphisms of order two with all fixed points of the form $u u^{\alpha}$ in a free abelian group of rank two.

Let F be a relatively free group of rank two generated by x, y, and σ be the automorphism of F, permuting the generators. If F is abelian, $w=x^{s} y^{t}$ then $w=w^{\sigma}$ implies $s=t$ and $w=\left(x^{s}\right)\left(x^{s}\right)^{\sigma}$, so each fixed point of σ has a form $u u^{\sigma}$, and hence the group of fixed points is cyclic, generated by $x x^{\sigma}$. It can be deduced from [5] that in a free two-nilpotent group of rank two the group of fixed points for σ is also cyclic, generated by $(\mathrm{xy})(\mathrm{xy})^{\sigma}$. In a free metabelian group of rank two the group of fixed points for σ also consists of elements $u u^{\sigma}$ for all u in a commutator subgroup [3], and is infinitely generated, which also shows that the Gersten's Theorem, which says that in a free group of a finite rank each automorphism has a finitely generated group of fixed points [1], can not be extended to a two-generated free metabelian group. We describe here automorphisms α of order two in a free abelian group A generated by x and y, having all fixed points of the form $u u^{\alpha}$. This property of fixed points is (or is not) satisfied for all conjugate automorphisms simultaneously. We show that there are three conjugacy classes for automorphisms of order two in A only one of which

[^0]has all fixed points of the form $u u^{\alpha}$ (though in the free group of rank two there are four conjugacy classes of automorphisms of order two [2], none of which has all fixed points of the form $u u^{\alpha}$).

Each automorphism α in A is given by $x^{\alpha}=x^{k} y^{l}, y^{\alpha}=x^{m} y^{n}$, and with respect to x, y, α is defined by the matrix $M=\left[\begin{array}{cc}k & l \\ m & n\end{array}\right]$. We assume that $\alpha^{2}=i d \neq \alpha$ then $M^{2}=I$, and hence $k^{2}=n^{2}=1-m l,(k+n) l=$ $(k+n) m=0$. If $m=l=0$ we get two not conjugate automorphisms of order two, $-i d$ and δ defined by the matrix $D=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. Obviously, $-i d$ has no fixed points $(\neq 1)$ and δ has a cyclic groups of fixed points generated by x where only $x^{2 k}$ are of the form $u u^{\alpha}$.

Lemma 1. In a free abelian group generated by x, y, an automorphism $\alpha\left(\alpha^{2}=i d \neq \alpha\right)$ is conjugate to either -id, or δ, or σ, respectively defined by matrices $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, and $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.

Proof. We note first that the matrix of σ is conjugate to that of δ over $\mathbf{Z}[1 / 2]$ by $C=\left[\begin{array}{cc}1 & 1 \\ -1 / 2 & 1 / 2\end{array}\right]$, but not over \mathbf{Z}. Let now $\alpha \neq-i d, \delta$, then m, l are not both zeros, $n=-k$ and α is defined by $M=\left[\begin{array}{cc}k & l \\ m & -k\end{array}\right]$, $k^{2}=1-m l$. Hence $\operatorname{det}(M)=-1$. Since $M^{2}=I$, the Jordan form of M is diagonal and $\operatorname{det} M=-1$ implies that M has eigenvalues 1 and -1 . So α has a fixed point a, say. Since A is torsion free, it follows from the Theorem on Subgroups in Abelian Groups ([4], 3.5.2) that there exists b such that a, b form a base where α has the matrix $M_{1}=\left[\begin{array}{cc}1 & 0 \\ t & -1\end{array}\right]$. If t is even, $t=2 n$ say, then for $C=\left[\begin{array}{cc}1 & 0 \\ n & -1\end{array}\right], C M_{1} C^{-1}=D$ and hence α is conjugate to δ. If $t=2 n+1$, then $C M_{1} C^{-1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ for $C=\left[\begin{array}{cc}-n & 1 \\ 1+n & -1\end{array}\right]$ and α is conjugate to σ which finishes the proof. ■

Lemma 2. Each fixed point for α is of the form $u u^{\alpha}$ if and only if α is conjugate to σ.

Proof. We assume that $\alpha \neq-i d$, then as in Lemma 1, α is conjugate to an automorphism β with the matrix $M_{1}=\left[\begin{array}{cc}1 & 0 \\ t & -1\end{array}\right]$, that is $x^{\beta}=x, y^{\beta}=$ $x^{t} y^{-1}$. Let $w=x^{r} y^{s}$ be a fixed point for β, then $w=w^{\beta}=x^{r} x^{s t} y^{-s}$, implies $s=0$ and each fixed point is $x^{r}, r \in \mathbf{Z}$. So β would have all fixed points of the form $u u^{\beta}$, if and only if there exists u such that $x=u u^{\beta}$. If
$u=x^{\mu} y^{\nu}$ then $x=u u^{\beta}=\left(x^{\mu} y^{\nu}\right)\left(x^{\mu} y^{\nu}\right)^{\beta}=x^{\mu} y^{\nu} x^{\mu}\left(x^{t} y^{-1}\right)^{\nu}$ and hence $\{\mu, \nu\}$ should be an integer solution of the equation $1=2 \mu+t \nu$ which exists if and only if t is coprime to 2 . It follows from Lemma 1 that β, and hence α, is conjugate to σ as required.

The situation with fixed points for $-i d$ and δ is clear, so we consider α defined by $M=\left[\begin{array}{cc}k & l \\ m & -k\end{array}\right], k^{2}=1-m l$, where m, l are not both zeros. We can assume that $m \neq 0$, and if m, l are not both even we assume that m is odd, because othervise we consider the automorphism $\sigma \alpha \sigma$ (obtained by interchanging x and y), with the matrix $\left[\begin{array}{cc}k^{\prime} & l^{\prime} \\ m^{\prime} & -k^{\prime}\end{array}\right]=\left[\begin{array}{cc}-k & m \\ l & k\end{array}\right]$, where $m^{\prime}=l$, and use the fact that w is a fixed point for α if and only if w^{σ} is a fixed point for $\sigma \alpha \sigma$. In the following theorem we denote $d=\operatorname{gcd}(m, 1-k), e=\operatorname{gcd}(m, l)$.

THEOREM. In a free abelian group of rank two an automorphism α, given by $x^{\alpha}=x^{k} y^{l}, y^{\alpha}=x^{m} y^{-k}, k^{2}+m l=1, m \neq 0$, has the cyclic group of fixed points generated by $a=x^{m / d} y^{(1-k) / d}$, which is of the form $a=u u^{\alpha}$ if and only if e is odd. Then $u=x^{\mu} y^{\nu}$ for μ, ν satisfying $\mu(k+1)+\nu m=m / d$.

Proof. The fixed points for α in A correspond to eigenvectors, with integer coordinates, for $\lambda=1$. In our notation $x^{\alpha}=x^{k} y^{l}$ corresponds to $[0,1]\left[\begin{array}{cc}k & l \\ m & -k\end{array}\right]=(k, l)$. So, to find an eigenvector for $\lambda=1$ we solve a system $\left\{\begin{array}{ll}x(k-1)+y m & =0 \\ x l & -y(k+1)\end{array}=0\right.$ which has an integer solution $[m, 1-k]$. To find an eigenvector for $\lambda=1$ we solve a system with the determinant $\left|\begin{array}{cc}k-1 & l \\ m & -k-1\end{array}\right|=0$, which has an integer solution $\{m, 1-k\}$. So the group of fixed points is cyclic, generated by $a=x^{m / d} y^{(1-k) / d}$. If take $b=x^{r} y^{s}$, where s, r satisfies $s m-r(1-k)=d$, then since for $p=m / d, q=(1-k) / d$, we get $\left|\begin{array}{ll}p & q \\ r & s\end{array}\right|=p s-q r=1$, the elements a, b form a new base, where α has the matrix $M_{1}=C M C^{-1}=\left[\begin{array}{cc}1 & 0 \\ t & -1\end{array}\right]$ for $C=\left[\begin{array}{ll}p & q \\ r & s\end{array}\right]$. By calculation we get $t=2 k r s+s^{2} m-r^{2} l$. By Lemma $2, \alpha$ has all fixed points of the form $u u^{\alpha}$, if and only if t is odd, which is not so if m and l are both even. Let now m be odd, then d is odd. We denote $t_{1}=s^{2} m-r^{2} l$ and consider $t_{1} m=(s m)^{2}-r^{2}(m l)$. As we know, $s m=r(1-k)+d$, and $m l=1-k^{2}$. This implies $t_{1} m \equiv d^{2} \bmod 2$ and hence $t_{1}($ and $t)$ is odd. So by Lemma 1, α is conjugate to σ, and hence, by Lemma 2, it has all fixed points of the form $u u^{\alpha}$. We conclude that α has all fixed points of the form $u u^{\alpha}$, if and only if m, l are not both even, that is e is odd. If now $a=u u^{\alpha}, u=x^{\mu} y^{\nu}$
then $a=u u^{\alpha}=\left(x^{\mu} y^{\nu}\right)\left(x^{k} y^{l}\right)^{\mu}\left(x^{m} y^{n}\right)^{\nu}$ and $\{\mu, \nu\}$ is an integer solution of a system which is equivalent to one equation $\mu(k+1)+\nu m=m / d$.

Corollary. In a free abelian group of rank two an automorphism α $(\neq i d,-i d)$, given by $x^{\alpha}=x^{k} y^{l}, y^{\alpha}=x^{m} y^{-k}, k^{2}+m l=1$, is conjugate to δ if m, l are both even, othervise it is conjugate to σ.

To give examples we denote $\alpha^{\prime}=\sigma \alpha \sigma$. An element w is a fixed point for α if and only if w^{σ} is a fixed point for α^{\prime} and $w=u u^{\alpha}$ if and only if $w^{\sigma}=\left(u^{\sigma}\right)\left(u^{\sigma}\right)^{\alpha^{\prime}}$.

Example 1. Let $x^{\alpha}=x^{3} y^{-2}, y^{\alpha}=x^{4} y^{-3}$. Here $m=4, k=3, d=2$, so the subgroup of fixed points is generated by $a=x^{m / d} y^{(1-k) / d}=x^{2} y^{-1}$ which is not of the form $u u^{\alpha}$ because m, l are both even.

Example 2. Let $x^{\alpha}=x^{6} y^{-7}, y^{\alpha}=x^{5} y^{-6}$. Here $m=k-1=d=5$, so the subgroup of fixed points is generated by $x y^{-1}$. Since m is odd $x y^{-1}=$ $u u^{\alpha}$. To find u we solve $7 \mu+5 \nu=1$, so $u=x^{3} y^{-4}$. $■$

Example 3. Let $x^{\alpha}=x y^{3}, y^{\alpha}=y^{-1}$. Since $m=0$, we consider the automorphism $\alpha^{\prime}=\sigma \alpha \sigma$ which maps $x \rightarrow x^{-1}, y \rightarrow x^{3} y$. Here $m^{\prime}=3, k^{\prime}=-1$, $d^{\prime}=\operatorname{gcd}(3,-2)=1$. The subgroup of fixed points for α^{\prime} is generated by $a^{\prime}=x^{3} y^{2}$, which is of the form $u u^{\alpha^{\prime}}$ where $u=y$. So for the initial automorphism α the subgroup of fixed points is generated by $a=x^{2} y^{3}=x x^{\alpha}$.

EXAmple 4. Let $x^{\alpha}=x y^{2}, y^{\alpha}=y^{-1}$. Since $m=0$, we consider the automorphism $\alpha^{\prime}=\sigma \alpha \sigma$ which maps $x \rightarrow x^{-1}, y \rightarrow x^{2} y$. Here $m^{\prime}=2, k^{\prime}=$ $-1, d^{\prime}=2$, so the subgroup of fixed points for α^{\prime} is generated by $x y$ (the same for α), which is not of the form $u u^{a}$ because m, l are both even.

References

[1] S. M. Gersten, On fixed points of automorphisms of finitely generated free groups, Bull. Amer. Math. Soc. 8 (1983), 451-454.
[2] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory. Dover, New York, 1977.
[3] O. Macedońska, D. Solitar, On binary σ-invariant words in a group, Contemporary Math., 169 (1994), 431-449.
[4] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory. Dover, New York, 1970.
[5] E. Plonka, Symmetric words in nilpotent groups of class \leq 3, Fund. Math. 97 (1977), 95-103.

INSTITUTE OF MATHEMATICS,
SILESIAN TECHNICAL UNIVERSITY,
Kaszubska 23
44-100 GLIWICE, POLAND
Received November 12, 1993.

[^0]: This paper has been presented at the Conference on Universal Algebra and its Applications, organized by the Institute of Mathematics of Warsaw University of Technology held at Jachranka, Poland, 8-13 June 1993.

