ON SŁOTA-WITUŁA PROBLEM CONCERNING THE VALUE OF SOME DETERMINANTS

> Summary. The paper presents the partial solution of a problem, formulated by Słota and Wituła, concerning the form of some determinants.

O PROBLEMIE SŁOTY-WITUŁY O POSTACI PEWNYCH WYZNACZNIKÓW

Streszczenie. W artykule podane jest częściowe rozstrzygnięcie problemu sformułowanego przez Słotę i Witułę o postaci pewnych wyznaczników.

In the paper entitled "On the sum of some alternating series" [1] Wituła and Słota discuss the sums of series of the form

$$
S_{r, n}:=\sum_{k=0}^{\infty}\left(\frac{1}{k r+n}-\frac{1}{(k+1) r-n}\right)
$$

[^0]where $r=3,4, \ldots$ and $n=1,2, \ldots,\left\lfloor\frac{r-1}{2}\right\rfloor$. By using the Fourier series theory for prime number $r=p \geqslant 3$ the Authors obtained in [1] the system of linear equations
\[

$$
\begin{equation*}
\frac{\pi}{2 p}(p-2 k)=\sum_{n=1}^{\lfloor p / 2\rfloor} S_{p, n} \sin \frac{2 k n \pi}{p} \tag{1}
\end{equation*}
$$

\]

for $1 \leqslant k \leqslant\lfloor p / 2\rfloor$.

Remark 1. Restricting the discussion on the system of equations (1) only to the prime numbers is associated with the fact that this system is determined only for p being prime numbers.

To obtain the values $S_{p, n}$ from the system of equations (1), according to the Cramer's rule one has to evaluate the expression

$$
\operatorname{det} \Delta_{p}
$$

where

$$
\Delta_{p}:=\left[\sin \frac{2 i j \pi}{r}\right]_{\lfloor p / 2\rfloor \times\lfloor p / 2\rfloor}
$$

Authors of the cited above paper presented there the formula

$$
\operatorname{det} \Delta_{p}= \begin{cases}\left(-\frac{p}{4}\right)^{(p-1) / 4}, & p \equiv 1(\bmod 4) \tag{2}\\ (-1)^{(p-3) / 4}\left(\frac{p}{4}\right)^{(p-1) / 4}, & p \equiv 3(\bmod 4)\end{cases}
$$

which has been positively verified by them, with the aid of computer, for all prime numbers $p<1051$. However, the following question arises:

Is the above formula correct for every prime number?

Before answering this question let us notice yet that the formula (2) can be presented in the following unified form

$$
\begin{equation*}
\operatorname{det} \Delta_{p}=(-1)^{(p-1)(p-3) / 8}\left(\frac{p}{4}\right)^{(p-1) / 4} \tag{3}
\end{equation*}
$$

It results from the fact that for $p=4 k+1$, where $k \in \mathbb{N}$, we have

$$
(-1)^{(p-1)(p-3) / 8}=(-1)^{k(2 k-1)}=(-1)^{k}=(-1)^{(p-1) / 4},
$$

and for $p=4 k+3$, where $k \in \mathbb{N}$, we have

$$
(-1)^{(p-1)(p-3) / 8}=(-1)^{k(2 k+1)}=(-1)^{k}=(-1)^{(p-3) / 4}
$$

which is compatible with relation (2).

Moreover, we note that the multiplier

$$
(-1)^{(p-1)(p-3) / 8}
$$

is connected with the change of value of determinant of the matrix Δ_{p}, if we reverse the order of columns of this matrix (or its rows, respectively).

Formulated above question led us to investigate the matrices of form

$$
\Delta_{r}:=\left[\sin \frac{2 i j \pi}{r}\right]_{\lfloor r / 2\rfloor \times\lfloor r / 2\rfloor}
$$

where $r \geqslant 3$ is an odd number. If r would be an even number, then matrix Δ_{r} would be singular and this is the reason to restrict the discussion only for odd numbers r.

Our goal is to calculate the value $\left|\Delta_{r}\right|$. To this aim let us evaluate the expression

$$
\begin{aligned}
& \Delta_{r}^{2}=\left[\sin \frac{2 i j \pi}{r}\right]_{\lfloor r / 2\rfloor \times\lfloor r / 2\rfloor} \cdot\left[\sin \frac{2 i j \pi}{r}\right]_{\lfloor r / 2\rfloor \times\lfloor r / 2\rfloor}= \\
&=\left[\sum_{k=1}^{\lfloor r / 2\rfloor} \sin \frac{2 i k \pi}{r} \sin \frac{2 k j \pi}{r}\right]_{\lfloor r / 2\rfloor \times\lfloor r / 2\rfloor}
\end{aligned}
$$

We note that

$$
\sum_{k=1}^{\lfloor r / 2\rfloor} \sin \frac{2 i k \pi}{r} \sin \frac{2 k j \pi}{r}=\frac{1}{2} \sum_{k=1}^{\lfloor r / 2\rfloor} \cos \frac{2(i-j) k \pi}{r}-\frac{1}{2} \sum_{k=1}^{\lfloor r / 2\rfloor} \cos \frac{2(i+j) k \pi}{r}
$$

We use now the identity [2]:

$$
\begin{equation*}
\sum_{k=1}^{n} \cos k \theta=-\frac{1}{2}+\frac{\sin \left(n+\frac{1}{2}\right) \theta}{2 \sin \frac{\theta}{2}} \tag{4}
\end{equation*}
$$

which is true for $\theta \neq 2 l \pi$, where $l \in \mathbb{Z}$.
Let us suppose that $i \neq j$. From identity (4) we get

$$
\sum_{k=1}^{\lfloor r / 2\rfloor} \sin \frac{2 i k \pi}{r} \sin \frac{2 k j \pi}{r}=-\frac{1}{4}+\frac{\sin (i-j) \pi}{4 \sin \frac{(i-j) \pi}{r}}+\frac{1}{4}-\frac{\sin (i+j) \pi}{4 \sin \frac{(i+j) \pi}{r}}=0 .
$$

Now let us assume $i=j$. Then from identity (4) we obtain

$$
\sum_{k=1}^{\lfloor r / 2\rfloor} \sin \frac{2 i k \pi}{r} \sin \frac{2 k j \pi}{r}=\frac{r-1}{4}-\frac{1}{2} \sum_{k=1}^{\lfloor r / 2\rfloor} \cos \frac{4 i k \pi}{r}=\frac{r-1}{4}+\frac{1}{4}-\frac{\sin 2 i \pi}{4 \sin \frac{2 i \pi}{r}}=\frac{r}{4}
$$

The above fact definitely shows that

$$
\Delta_{r}^{2}=\frac{1}{4} r \mathbb{1}_{\lfloor r / 2\rfloor}
$$

where $\mathbb{1}$ denotes the identity matrix of the respective order.
Thus we may conclude that

$$
\begin{aligned}
\left|\operatorname{det} \Delta_{r}\right|=\left(\operatorname{det} \Delta_{r}^{2}\right)^{1 / 2}=(\operatorname{det} & \left.\left(\frac{1}{4} r \mathbb{1}_{\lfloor r / 2\rfloor}\right)\right)^{1 / 2}= \\
& =\left(\left(\frac{r}{4}\right)^{(r-1) / 2} \operatorname{det} \mathbb{1}_{\lfloor r / 2\rfloor}\right)^{1 / 2}=\left(\frac{r}{4}\right)^{(r-1) / 4}
\end{aligned}
$$

which partly confirms the posed above question (accurate to the absolute value).

References

1. Wituła R., Słota D.: On the sum of some alternating series. Comput. Math. Appl. 62 (2011), 2658-2664.
2. Knapp M.P.: Sines and cosines of angles in arithmetic progression. Math. Mag. 82, no. 5 (2009), 371-372.

[^0]: 2010 Mathematics Subject Classification: 15A15.
 Keywords: determinant, sine-type matrix.
 Corresponding author: M. Różański (rozan2504@gmail.com).
 Received: 02.09.2015.
 While creating this paper M. Różański was a student of the master's degree in Mathematics.

