
ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2015

Seria: MATEMATYKA STOSOWANA z. 5 Nr kol. 1945

Anna REICHEL1, Iwona NOWAK2

1Faculty of Applied Mathematics
Silesian University of Technology
2Institute of Mathematics
Silesian University of Technology

PROBABILISTIC MODEL-BUILDING

ALGORITHMS AS TOOL TO FIND OPTIMUM

OF A FUNCTION

Summary. The aim of this paper is to present the probabilistic model-
building heuristics which is a modification of an evolutionary algorithm. the
Probabilistic-Based Incremental Learning (PBIL) and the compact Genetic
Algorithm (cGA) is presented as a example of the probabilistic model buil-
ding algorithms dedicated to the binary problems. Both heuristics are tested
on three functions that allow to investigate the advantages, disadvantages
and limitations of methods under consideration.

ALGORYTMY Z MODELEM PROBABILISTYCZNYM
JAKO NARZĘDZIE OPTYMALIZACJI FUNKCJI

Streszczenie. Celem niniejszego artykułu jest przedstawienie heury-
styk wieloagentowych wykorzystujących model probabilistyczny. W artyku-
le omówiono dwie metody: the Probabilistic-Based Incremental Learning
(PBIL) oraz the compact Genetic Algorithm (cGA), będące przykładami
heurystyk z modelem probabilistycznym. Obie metody są przeznaczone do
rozwiązywania problemów binarnych. W ramach pracy metody te testowano
na trzech funkcjach zdefiniowanych w przestrzeni ciągów binarnych. Testy
miały zbadać zalety, wady oraz ograniczenia obu prezentowanych heurystyk
populacyjnych.

2010 Mathematics Subject Classification: 65K10, 65K99.
Keywords: population based algorithms, heuristic methods, optimization.
Corresponding author: A. Reichel (anna.reichel@onet.pl).
Received: 23.10.2015.

80 A. Reichel, I. Nowak

1. Introduction

Recently, in a large class of population-based algorithms, methods using pro-
babilistic models are playing an increasing role.
The general structure of those methods is similar to the genetic algorithm.

The difference is that the next generation of candidate solutions is generated on
the basis of a probabilistic model instead of the crossover and mutation. The
model promotes solutions that lead to the aim and uses them to create successive
generations of individuals with increasing fitness.
The candidate solutions are pseudo-randomly generated taking the probabili-

stic model into account. It means, that in this kind of algorithms, the way how to
build the probabilistic model is responsible for both the convergence to the global
optimum and for its rate.
To fully exploit the advantages of these methods, it has to be ensured so

that the construction of a probabilistic model, with the effective convergence, will
not loose possibilities to correctly search the space. If the current population will
affect too strong the model changes in subsequent iterations, it can lead to a rapid
convergence of the population and incorrect space exploration. On the other hand,
too slow change of the model will made the optimization method close to random
search. The way how the probabilistic model will be constructed is crucial for this
type of methods. Remaining elements of the algorithm, such as succession, usually
have a classic form – known from the genetic algorithm.
In this paper two methods of optimization, PBIL (Population Based Incre-

mental Learning) and cGA (Compact Genetic Algorithm) will be presented. Both
heuristics are methods being a genetic algorithm modification and using probabi-
listic model. In PBIL and cGA technique, there is assumed that the optimum is
searched in the set of binary strings.
The Population Based Incremental Learning algorithm was proposed by Ba-

luja in [1]. In [2] he provides a detailed comparison between PBIL and GA. The
theoretical analysis of the PBIL technique and proof of its convergence were pre-
sented by Höhfeld and Rudolph in [8]. Similar considerations were also conducted
in [6].
The Compact Genetic Algorithm was introduced by Harik at al. in [7]. The

comparison of cGA with genetic algorithm on standard binary string optimization
problems is also presented there. A more general discussion is carried in [11] where
different approaches for building the probabilistic models are presented. Pelikan
in his review work [10] mentioned, between many others methods, the algorithms

Probabilistic Model-Building Algorithm. . . 81

in question. Both heuristics are presented there as steps towards the creation of
Bayesian Optimization Method.
In this paper results obtained for three test functions (trapn, 3 − deceptive,

MaxDiversity problem) are presented. The choice of test functions was dictated
by the ability of comparison of the results obtained in calculations with the known
exact solution. The trapn and 3 − deceptive are standard, commonly used for
testing binary functions [3,4,12]. The MaxDiversity problem was formulated by
Kuo, Glover and Dhir in [9], but authors did not consider its optimization in
an algorithmic way. Gallego, Duarte, Laguna and Marti have discussed similar
task, the searching for approximate solution using the scatter search procedure
[5]. As it was mentioned in work [10], there are many details connected with
algorithms disused in this work, but it does not contain a systematic comparison
of the methods.
In the presented work, the main aim of this study was the comparison of PBIL

and cGA methods and to indicate the advantages and disadvantages of both of
them. The specificity of heuristics has forced search in space of binary strings and
selection of functions for tests. In both methods, a probabilistic model which is
characteristic for this group, will be responsible by probability of the occurrence
of zero or one in the binary sequence.

2. Probabilistic model-building algorithms

2.1. PBIL method

The first method presented in this paper is the Population-Based Incremental
Learning (PBIL). The algorithm uses a learning process based on observation of
the best solution in current population.
In this method, individuals for the next population/generation are created on

the basis of the vector p = [p1, p2 . . . , pk]. Components pi determine the probability
of occurrence of number one on i-th position in generated individual (i.e. binary
sequence length m). It means that in the PBIL method the vector p plays role of
the probabilistic model.
It is characteristic for the method discussed that in order to upgrade the

vector p, the best individual in current generation is used only. Therefore, the
probabilistic model is created on the basis of the single but the most promising
solution denoted by b.

82 A. Reichel, I. Nowak

At the beginning of the iteration process, it is assumed that all components of
vector p equal 12 . This implies that the starting population is generated with uni-
form distribution. Initial population (and all next generations) consists m binary
sequences of length k.
In subsequent iterations components of vector p are updated according to the

following formula:
p
(k+1)
i = (1 − λ) · p(k)i + λbi, (1)

where p(k)i means i-th coordinate of vector p in k-th generation, bi – i-th bit of
current vector b and λ – learning rate.
Individuals of (k + 1)st population are always randomly choose according to

the current vector of probabilities. Opposite to the standard genetic algorithm,
PBIL does not keep the best individual for the next generation, but the specific
of procedure gives a great chance that it will be generated. The probabilistic mo-
del is modified on the basis on the best solution and in consequence it promotes
generation of individuals better than solutions in the previous generation. There-
fore, there is a big chance that in next population the bigger number of promising
individuals (from the objective function point of view) will appear.
The parameter λ (called the learning rate) is also very important for the me-

thod discussed. Its value is fixed at the beginning of the iterative process and it
affects on its progress. A small value of the learning rate slows down the modifica-
tion of probabilistic model while too big may interfere with too rapid unification
of the population. The coefficient λ should be selected to balance the ability for
focused exploration and the possibility of space exploitation.
Below the scheme of the PBIL method is presented:

procedure PBIL:

1. Random choice of initial generation, initialization of the probability

vector p, (pi = 0.5, ∀i = 1, . . . , n)

2. Evaluation of fitness of individuals, selection of the best solution

(denoted by b).

3. Modification of the probability vector coordinates according to the

formula:

pi = (1− λ) · pi + λ · bi, i = 1, 2, . . . k,

where λ – learning rate.

Probabilistic Model-Building Algorithm. . . 83

4. Random generation of a new population according to the model re-

presented by the current vector p.

5. If the end condition is satisfied – stop, otherwise go to step 2.

2.2. cGA method

Next algorithm discussed in the paper is the compact Genetic Algorithm
(cGA), the kind of modification of Genetic Algorithm using probabilistic model.
Similarly to the PBIL method, in thecGA the subsequent generations of in-

dividuals are generated according to the probabilistic model. Here, the model is
updated on the basis on the best and the worse individuals in the current popu-
lation. The vector p serves the role of probabilistic model and its components are
modified according to the formula:

pi =

pi + 1
m
, xi = 1 ∧ yi = 0,

pi − 1
m
, xi = 0 ∧ yi = 1,

pi, in other cases,

i = 1, 2, . . . k, (2)

where x = [x1, . . . , xk] and y = [y1, . . . , yk] are the best and the worst individuals
in population, respectively and m is the population size.
Similarly to the previous method, the components of vector p define the pro-

bability of occurrence of the number 1 on i-th position of a binary sequence being
the individual generated to the next generation. The coefficient 1

m
, in the formu-

la (2), plays role of the learning rate but it can be replaced by any other fixed
parameter.
Using the best and the worst individuals of current population, the cGA me-

thod can effectively create the probabilistic model. The procedure of the vector
p construction increases the probability of generating individual close to the best
one and decreases chance of creation solutions with low fitness.
Below the cGA method scheme is presented.

84 A. Reichel, I. Nowak

procedure cGA:

1. Random choice of the initial generation, initialization the probability

vector p (pi = 0.5, ∀i = 1, . . . , n).

2. Evaluation of fitness of individuals, selection of the best and the

worst solution (denoted by x = [x1, . . . , xk] and y = [y1, . . . , yk],
respectively).

3. Modification the probability vector coordinates according to the for-

mula:

pi =

pi + 1
m
, xi = 1 ∧ yi = 0,

pi − 1
m
, xi = 0 ∧ yi = 1,

pi, in other cases,

i = 1, 2, . . . k.

where m – the population size.

4. Random generation of a new population according to the current

vector p.

5. If the end condition is satisfied – stop, otherwise go to step 2.

3. Test functions

In the work presented, three testing functions were optimized. In all cases it
was assumed that space of acceptable solutions is a set of binary strings of length k.
This assumption was forced by specificity of presented methods of optimization.
Each of the test function has different nature. They have been chosen in order

to recognize the advantages and disadvantages of the presented heuristics.
Because all used test functions were so-called benchmarks it was easy to de-

termine the quality of the obtained solutions.

Probabilistic Model-Building Algorithm. . . 85

3.1. trapn

The trapn was the first function used for tests. It is given by the formula:

ftrapn(u) =

n− 1− u1, if u1 < n,
n, in other cases,

(3)

where n is an order of function and u1 the number of ones occurring in the binary
vector u.
It is usually assumed that the order of function trapn is the same as the size of

problem i.e. n = k. In such situation function trapn has global maximum equals 1
obtained for string of ones on each position. In contrast to the OneMax function,
classically used for tests, values of the function trapn do not depend linearly on
the number of zeros in the vector u (Fig. 1). It may results additional difficulties
in optimization process. It is sufficient to note that the optimum value lies just
next to the worst possible solution (obtained for strings with single bit different
than 1).
In some approaches the string length can be greater than function degree n.

In this situation, function trapn reaches equivalent global maximum at several
points. Any vector containing more than n ones is treated as optimal solution.

Fig. 1. Graph of trap5 function

Rys. 1. Wykres funkcji testowej trap5

86 A. Reichel, I. Nowak

3.2. 3− deceptive
The second, used in this paper, test function is the 3−deceptive function given

by the formula:

f3dec(u) =

0.9, if u1 = 0,

0.8, if u1 = 1,

0, if u1 = 2,

1, otherwise,

(4)

where u1 means the number of ones in the binary string u.
The 3 − deceptive function has one global minimum and two slightly diffe-

rent local maximum. Furthermore, if the length k of vector u is greater than 3,
the global maximum is not unique (Fig. 2). Such a situation makes the optimiza-
tion difficult, because two, usually significantly different, solutions have the same
quality.

Fig. 2. Graph of 3− deceptive function

Rys. 2. Wykres funkcji testowej 3d− eceptive

3.3.MaxDiversity

The MaxDiversity problem was the last and the most interesting numerical
test. In such a problem, the aim of the optimization is to find, in a given set of
points A, the k-element subset S such that the sum of the distances between points
in S is the greatest.
Notice, that the problem of finding a subset of the fixed power can be reduced

to the problem of searching the space of binary vectors. For this purpose, firstly
the elements of given set A are arbitrarily arranged in sequence, ie.

Probabilistic Model-Building Algorithm. . . 87

A = (A1, A2, . . . , An).

Any subset of A can be represented by the binary string x of length n. One at
i-th position means that i-th element of set A belongs to the subset S. More
specifically:

xi =

{

1 if Ai ∈ S,
0 if Ai 6∈ S,

i = 1, . . . , n. (5)

It means that MaxDiversity problem can be reduced to searching binary
string (of length n in which on k positions number 1 occurs) representing the
subset S that meets the assumptions of optimal solution.
The objective function of the MaxDiversity problem is defined by:

MD(S,A) =
m−1
∑

i=1

m
∑

j=i+1

d(ASi , A
S
j), (6)

where S is any m−element subset of set A, points ASi , ASj are points belonging to
S and d is the distance function. In general, distance can be defined in any way,
but in this work the Euclidean distance was used.
For example, assuming that A is the set of vertices of unit square WXY Z

and looking for subset S which consists of two elements, we should get pair of
opposite vertices which distance equals

√
2. Such a problem has two equivalent

optimal solutions represented by x1,opt = (1, 0, 1, 0) and x2,opt = (0, 1, 0, 1)1.

4. Numerical results

The purpose of the numerical tests was comparison of PBIL and cGAmethods,
their evaluation and, if possible, determination of optimal parameters. Both me-
thods were used to solve the test functions presented in previous section. In calcu-
lations, the influence of the population size on result accuracy and the convergence
of iteration process was observed. Furthermore the PBIL method was tested for
various learning rates.
In a single test, 100 trials were made. A single trial shall be understood as an

iterative loop carried out until the exact solution is found, but not longer than for
100 iterations. The average (in 100 trials) number of iterations required for finding
the optimal solution was treated as the result of test.

1The order of bits in string is compatible with classical numbering of square vertices.

88 A. Reichel, I. Nowak

If during 100 iterations exact result2 was not found, the test was regarded as
incorrect. The number of tests in which a solution was found was marked by m.
After a hundred trials (for fixed parameters), the average number of iterations
required to obtain the exact value of extrema was calculated. In this purpose the
following formula was used:

Mean number of iterations =
1
m

m
∑

i=1

itki ,

where itki ∈ {1, . . . , 99} – number of iterations of ki-th positive test. For tests
considered as incorrect, their average error was calculated by the following formula:

Mean error =
100−m
∑

i=1

| yopt − yi |,

where yopt – global optimum, yi – solution obtained in 100 iterations of i-th in-
correct test.
For cGA algorithm, dependence of the average number of iterations for the

parameter λ was observed additionally.

4.1. Function Trapn

As part of tests carried out, the maximum of function trapn was searched for
different values of n.
The obtained results i.e. average number of iterations necessary to achieve the

solution are given in Tables 1–4. If 100 steps of iteration was not enough to deter-
mine the global maximum, the information about the average error of solutions in
100 experiments is also provided. The configurations for which the exact solution
was found in fewest number of iterations are additionally highlighted.
On the basis of the results shown in Tables 1–4, it is easy to notice that in

a few cases the test was regarded as incorrect.
Summarizing, in the case of functions trapn, cGA method seems to be more

effective than PBIL. Regardless of the order of functions, compact Genetic Algori-
thm cope well with optimization, even using small populations. The proper action
of method is proved by the fact, that the increase of population size makes less
the number of iterations needed to obtain the correct result. Use of the method
PBIL is more troublesome, because selection of the learning rate λ is necessary.
As follows from the foregoing statements, wrong selection of this parameter may

2All test functions are benchmarks what means that the exact solution is known.

Probabilistic Model-Building Algorithm. . . 89

negatively affect the performance of the method. The tests seem to indicate that
the safest value of λ is 0.01, because for this value, the risk of an inexact result
was the lowest.

Table 1
Results – function trap5

Number of iterations (error)

cGA PBIL

Npop λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01 λ = 0.0001

5 2.97 24.62 6.03 3.94 5.94 6.77
(0.58) (0.04)

20 1.77 1.63 1.59 1.88 2.02 2.6

50 1.16 1.2 1.18 1.21 1.32 1.21

Table 2
Results – function trap6

Number of iterations (error)

cGA PBIL

Npop λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01 λ = 0.0001

5 3.55 47.91 13.76 6.76 10.6 12.46
(1.29) (0.3) (0.03) (0.01)

20 2.65 3.84 2.26 2.6 3.05 3.44

(0.06)

50 1.71 1.42 1.46 1.53 1.63 1.71

100 1.24 1.22 1.25 1.15 1.19 1.19

90 A. Reichel, I. Nowak

Table 3
Results – function trap7

Number of iterations (error)

cGA PBIL

Npop λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01 λ = 0.0001

5 4.86 63.61 34.72 19.53 14.99 25.91
(1.84) (0.92) (0.39) (0.02)

20 3.08 15.71 4. 3.76 5.61 7.89
(0.41) (0.03)

50 2.42 2.81 2.06 2.18 2.59 3.08
(0.03)

100 1.61 1.43 1.42 1.44 1.65 1.76

200 1.22 1.16 1.26 1.19 1.26 1.2

Table 4
Results – function trap10

Number of iterations (error)

cGA PBIL

Npop λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01 λ = 0.0001

5 5.42 141.76 71.36 56.78 42.21 78.45
(3.6) (2.59) (1.8) (0.06) (0.97)

20 6.18 84.58 30.72 12.78 20.21 (0.13)
(1.97) (0.92) (0.18) (0.13)

50 6.27 37.64 7.78 4.79 12.49 21.14
(0.77) (0.12) (0.01)

100 5.76 7.94 2.86 3.85 7.42 10.82
(0.12)

200 4.78 4.78 2.22 2.79 4.7 4.88
(0.06)

500 2.49 1.79 1.66 1.69 2.16 2.28

Probabilistic Model-Building Algorithm. . . 91

4.2. Function 3− deceptive
As it was mentioned in one of previous chapters, the function 3-deceptive re-

aches its global maximum equals 1, if at least 3 components of the vector u equals
one.
In presented paper, 3 variants of function specified by the general formula (4)

was considered. In the first variant, a solution was searched in a set of vectors of
length 3, which implies the existence of exactly one, unique global optimum. In all
other cases, the 3-deceptive function adopts optimum at several different points in
space. More specifically, for the n-element vectors,

fmax3dec (u) = 1,

for any u ∈ A, where A is set of binary strings containing at least three bits equal
to one.
Interpretation of the results shown in Table 5 and Table 6 is the same as

provided in subsection 4.1.

Table 5
Results – function 3− deceptive; space of vectors of length 3

Number of iterations (error)

cGA PBIL

Npop λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01 λ = 0.0001

5 1.8 6.26 1.36 1.84 1.77 1.89
(0.01∗)

20 0.92 1.01 0.97 0.93 1.07 0.94

50 0.87 0.87 0.84 0.86 0.88 0.88

100 0.89 0.84 0.86 0.88 0.91 0.83

200 0.87 0.86 0.85 0.85 0.86 0.89

500 0.82 0.91 0.86 0.82 0.93 0.84

∗ – algorithm PBIL for λ = 0.5 and a very small population (5 individuals)

returned an inaccurate value.

92 A. Reichel, I. Nowak

Table 6
Results – function 3− deceptive; space of vectors of length 5

Number of iterations (error)

cGA PBIL

Npop λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01 λ = 0.0001

5 0.41 0.61 0.47 0.53 0.55 0.57

20 0.51 0.43 0.40 0.40 0.49 0.61

50 0.53 0.58 0.47 0.48 0.59 0.47

100 0.50 0.52 0.5 0.48 0.43 0.48

200 0.48 0.61 0.51 0.54 0.5 0.54

500 0.52 0.47 0.46 0.58 0.55 0.5

1st variant – binary strings of lenght 3

The optimization of function 3−deceptive in 1st variant has proceeded witho-
ut major problems for both methods. In the vast majority of cases results were
obtained after only a few steps. It is certainly a consequence of the specifics of
the search space (vectors with 3 components) and the relatively high chance for
generation the optimal or close to optimal solution in initial population.
The only test in which optimization had ran less smoothly was a case in which

relatively high learning rate (λ = 0.5) and very small population were used. It
certainly results from the unification of the population which the cause is too
high a value of λ and in consequence too rapid domination of one individual in
population.
Generally, for formulated tasks, no significant difference between working of

algorithms CGA and PBIL was observed.

2nd variant – binary strings of lenght 5

As in the previous variant, relatively good results were obtained in both algo-
rithms. There was no significant influence of the coefficient λ on the final results.
In many experiments the exact/optimal result was obtained in the zero iteration.
It was assumed that in the calculations different solutions for which the objective
function takes the same value are not distinguished.

Probabilistic Model-Building Algorithm. . . 93

3th variant – binary strings of lenght 10 or more

Solving the 3-deceptive problem in the space of vectors of length 10 or more
does not allow to observe how discussed method work. The probability that vector
with at least three ones will be generated in the initial population is very high
and increases with the length of the vector. The cardinality of a set of optimal
solutions (generated in initial population) for the vector length n is

‖A‖ =
n
∑

i=3

(

n

i

)

,

what means that probability of generating such solutions tends to 1 i.e.

P =

n
∑

i=3

(

n
i

)

2n
−→
n→∞
= 1.

4.3.MaxDiversity problem

In the MaxDiversity problem, the goal is to find subset S containing k ele-
ments of the given set A (of cardinality n). The solution is represented by binary
string of length n. One on ith position means that ith element of set A belongs to
a subset S.
As in previous tests, the criterion adopted to stop the algorithm is to find

the optimal solution or the execution of maximum number of iterations (in this
situation as the solution, the best obtained result is accepted).
Due to the different nature of the problem, Tables 7 and 8 (except average

number of iterations required to reach a solution) contain additionally percentage
error of final solutions. This value should be understood as a percent of correct
solutions in 100 experiments.

A – a set of vertices of the unit square (in 2D space)

The goal of the task is to find a k-element subset S of given set A. The set
A = {(0, 0), (0, 1), (1, 0), (1, 1)} is a set of vertices of unit square. The total distance
between points belonging to optimal subset S has to be the biggest.
As a first test, the problem with k = 2 was solved. In this case, the solution is

not unique. Two subsets S1 = {(0, 0), (1, 1)} and S2 = {(1, 0), (0, 1)} are optimal
with respect to the target of problem. The solutions obtained are represented by
vectors x1 = (1, 0, 0, 1) and x2 = (0, 1, 1, 0), respectively. For both subsets:

MDmax(Sl, A) =
√
2,

where l = 1, 2.

94 A. Reichel, I. Nowak

Table 7
Results of MaxDiversity – vertices of the unit square (k = 2)

Nomber of iterations

cGA PBIL

Npop λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01 λ = 0.0001

3 2.23 2.26 2.53 2.57 2.31 2.4
(0.41)

5 1.72 2.22 2.14 2.23 2.17 2.16

20 1.65 2.00 2.00 2.00 2.00 2.00

50 1.66 2.00 2.00 2.00 2.00 2.00

100 1.67 2.00 2.00 2.00 2.00 2.00

Evaluating methods used in the work, it is easy to noted that both algorithms
work correctly, without too much trouble finding one of two optimal solution.
Selection of parameters, such as the population size and the value of learning
coefficient, not really matter, but according to expectations very small populations
did not guarantee a solution.

A – a set of 10 randomly selected points in the unit ball with

center at (0,0)

In second test of MaxDiversity problem, it was assumed that (Fig. 3):

A = {(0.5,−0.5), (0.4, 0.1), (−0.9,−0.1), (0.1, 0.12),
(−0.32, 0.14), (−0.1, 0.58), (0.911, 0.2), (−0.77, 0.58),
(0.14,−0.85), (−0.14,−0.13)}.

In such a problem the accurate solution

S = {(0.911, 0.2), (−0.77, 0.58), (0.14,−0.85)},

is represented by a vector x = (0, 0, 0, 0, 0, 0, 1, 1, 1, 0) for which

MDmax(A,S) ≃ 4.721.

The results obtained in numerical experiments are collected in Table 8.
Optimization process proceeded in a satisfactory manner both for cGA and

PBIL method. For appropriate size of population, the global optimum was found in
all tests. Additionally, it seems that, in the case of using PBIL, a smaller population
requires a lower coefficient learning.

Probabilistic Model-Building Algorithm. . . 95

Fig. 3. The solution of problem on the background of set A

Rys. 3. Rozwiązanie problemu na tle zbioru A

Table 8
Results of MaxDiversity – set of 10 points in unit ball (k = 3)

Number of iterations

cGA PBIL

Npop λ = 0.5 λ = 0.2 λ = 0.1 λ = 0.01 λ = 0.0001

3 7.13 5.48 10.54 16.6 29.33 32.55
(0.43) (0.67) (0.49) (0.42) (0.30) (0.33)

5 6.93 5.03 9.34 11.39 19.53 18.71

(0.51) (0.54) (0.37) (0.15)

20 5.16 4.20 5.01 5.57 6.56 7.7
(0.33)

50 3.83 3.03 3.13 3.39 3.62 3.62

100 2.87 2.55 2.5 2.66 2.51 2.7

96 A. Reichel, I. Nowak

5. Conclusions

The tests carried out as part of presented work showed satisfactory efficacy of
both discussed methods: cGA and PBIL. On this basis, some interesting conclu-
sions can be formulated.
In many cases, the algorithm cGA gives better results than PBIL. Comparing

the working time of both algorithms, it should be remembered that cGA returns
the result in a shorter time than the PBIL. Unlike to PBIL, the algorithm cGA
does not require selection of any additional parameter. Calculations performed
using the PBIL method have shown that both high and very low value of learning
rate λ reduces the effectiveness of algorithm. Tests show that the most optimal
learning coefficient is 0.1. With proper selection of λ, the results obtained by cGA
and PBIL are similar.
The numerical tests and observations made on the basis of them indicate that

in the case of the problem for which the optimum is not known, the compact
Genetic Algorithm should be recommended.

References

1. Baluja S.: Population-based incremental learning. A method for integrating
genetic search based function optimization and competitive learning. Techni-
cal Report CMU-CS-94-163, School of Computer Science, Carnegie Mellon
University, Pittsburgh 1994.

2. Baluja S., Caruana R.: Removing the genetics from standard genetic algori-
thm. Proceedings of the First International Conference on Machine Learning,
Morgan Kaufmann 1996, 36–46.

3. Chen Y., Hu J., Hirasawa K., Yu S.: Solving Deceptive Problems Using a Ge-
netic Algorithm with Reserve Selection. IEEE Congress on Evolutionary Com-
putation, IEEE 2008, 884–889.

4. Deb K., Goldberg D.E., Whitley L.D.: Analyzing deception in trap functions.
Found. Genetic Algorithms 2 (1993), 93–108.

5. Gallego M., Duarte A., Laguna M., Marti R.: Hybrid heuristics for the maxi-
mum diversity problem. Comput. Optim. Appl. 44 (2007), 411–426.

6. González C., Lozano J.A., Larranaga P.:The convergence behavior of the PBIL
algorithm: a preliminary approach. Artifical Neural Nets ang Genetic Algori-
thms, Springer, Vienna 2001, 228–231.

Probabilistic Model-Building Algorithm. . . 97

7. Harik G.R., Lobo F.G., Glodberg D.E.: The compact genetic algoritm. IEEE
Trans. Evolutionary Computation 3, no. 4 (1999), 287–297.

8. Höhfeld M., Rudolpf G.: Toward the theory of population based incremental
learning. Proceedings of the IEEE Conference on Evolutionary Computation,
IEEE Press 1997, 1–5.

9. Kuo C.-C., Glover F., Dhir K.S.: Analyzing and modeling the maximum di-
versity problem by zero-one programming. Decis. Sci. 24 (1993), 1171-1185.

10. Pelikan, M.: Bayesian optimization algorithm: from single level to hierarchy.
PhD thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois 2002.

11. Pelikan M., Goldberg D.E., Lobo F.G.: A survey of optimization by building
and using probabilistic models. Comput. Optim. Appl. 21 (2002), 5–20.

12. Sivanandam S.N., Deepa S.N.: Introduction to Genetic Algorithms, Springer
Verlag, Berlin 2008.

