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Analysis and modelling

Abstract
Purpose: of this paper is modeling by different category graphs and analysis of vibrating clamped - free 
mechatronic system by the  approximate method called Galerkin’s method. Such approach considers the 
frequency - modal analysis and assignment of amplitude - frequence charcteristics of the mechatronic system.
Design/methodology/approach: was to nominate the relevance or irrelevance between the characteristics 
obtained by exact - only for shaft - and considered method. Such formulation especially concerns the relevance 
the relevance of the natural frequencies-poles of characteristics both of mechanical subsystem and the discrete 
- continuous clamped - free vibrating mechatronic system.
Findings: this approach is a fact, that approximate solutions fulfill all conditions for vibrating mechanical and/
or mechatronic systems and can be an introduction to synthesis of these systems  modeled by different category 
graphs.
Research limitations/implications: Research limitation is that both torsional vibrating continuous mechanical 
subsystem and mechatronic discrete - continuous subsystems are linear discrete - continuous are linear systems.
Practical implications: of this study is that the main point can be the introduction to synthesis of considered 
class mechatronic bar-systems with constant changeable cross-section.
Originality/value: Originality of such formulation rely on the use of the hypergraph methods of modelling and 
synthesis of torsionally vibrating bars to the synthesis of discrete-continuous mechatronic systems.
Keywords: Applied mechanics; Approximate-Galerkin’s method; Graphs; Vibrating  mechatronic system

Reference to this paper should be given in the following way: 
A. Buchacz, The supply of formal notions to synthesis of the vibrating discrete-continuous mechatronic systems, 
Journal of Achievements in Materials and Manufacturing Engineering 44/2 (2011) 168-178. 

 
 

 
1. Introduction 

The special interest of industry and the scientists during 
projecting the machines, is to be turned on lifting their efficiency 
and their reliability. Many branches of industry concentrate on 
problem of miniaturization of existing objects and also on 
decrease of waste of their energy.  

Therefore it becomes necessary to search the new solutions, 
having on aim the reduction of movable elements as well as 
compiled and long kinematic chains. From here in last years it is 
clear that there is a huge development on the market, especially in 
field of new technologies basing on phenomenon of 
piezoelectricity, electro - and the magnetostriction (e.g. [16,18]). 
The piezoelectric elements are used to eliminate the oscillation [17].  

1.	�Introduction

The problems of analysis of vibrating beam systems, discrete 
and discrete-continuous mechanical systems by means of the 
structural numbers methods modelled by the graphs, hypergraphs, 
have been investigated in the research Centre in Gliwice (e.g. 
[4,9,19]). Other diverse problems concerned analysis and 
synthesis active mechanical systems [20-22,24,25], synthesis and 
sensitivity machine driving systems [23,26] were examined for 
the last several years. The problems of synthesis of electrical 
systems [1] and of a selected class of continuous, discrete - 
continuous discrete mechanical systems and active mechanical 
systems concerning the frequency spectrum have been dealt in  
[3-8]. The continuous-discrete torsionally and transverse vibrating 
mechatronic systems were considered in [9,10]. Transformations 
of hypergraps of flexibly vibrating beams were presented in [13]. 

The approximate method of analysis, called the 
orthogolization method [14] and Galerkin’s method [15], has been 
used to obtain the frequency-modal characteristics. To compare 
the obtained dynamical characteristics – dynamical flexibilities 
only for mechanical torsionally vibrating bar and transverse 
vibrating beam being a parts of complex mechatronic systems, an 
exact method and the Galerkin’s method were used [11,12,15]. To 
examine the influence of parameters of piezoelectric on behavior 
of a whole system in present paper the relationships on dynamic 
characteristics of the torsional vibrating continuous mechanical 
subsystem, joint with piezoelectric transducer into mechatronic 
system has been determined.  

Such formulation can be an introduction to synthesis of 
vibrating mechatronic systems which will lead to generating the 
vibrations with require parameters.  

2. The equation of torsional vibrating 
mechatronic system 

The formulation of the equations concerning movement and 
state of mechatronic system should only begin from analysis of 
piezoelectric, - to be more exact from characterizing this element 
dependences. In linear approximation component piezoelectric 
equation are following: 
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where: i - components of the deformations, j - the spring 
constants of the piezoelectric, ijS - components of the tensions, 

kid , jld - the elements of matrix of the electromechanical 

couplings, kE  lE ,- components of the electric field, - the electric 
induction, kle  - the components of dielectric permittivity.  

Considered vibrating systems has been shown in Fig. 1.  
On basis of equations (1), (2), (where ,) the equation of 

piezoelectric transducer, was received, expressing direct the and 
opposite piezoelectric phenomena, in turns.  
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where: pG  - the Kirchhoff’s modulus.  
 

The electric charge induced on edges of surface of transducer 
has the form  

 

pRhDQ 21 , (5) 

where: *
1D  - the change of average charge along transducer,  

and in this way, electric load appears in result of deformation and 
voltage on internal electrodes U, as  
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Setting electric system is described in form of  

U
dt
dQRs . (7)

Attaching the transducer bets perfect, which means that the 
deformations of transducer and of shaft on the surface of the shaft 
are equal. Moreover, the change of deformation was skipped and 
connected with transducer. After presupposing such 
presumptions, radial distribution of tensions in shaft and the 
transducer is following: 
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Deformation moment can be express as follows 
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It is skipping the small development of torsional rigidity 
answering the only transducer the following expression, was 
received on moment, important in case every 1,0x  
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Fig. 1. The torsional vibrating mechanical (a) and mechatronic systems (b-d) with mechanical (a-c) and electrical excitation 
 

 
 

And therefore the equation of torsional vibrating shaft with 
ideally attached piezotransducer is following: 
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where: )(  - Dirac’s function.  
 

Dependence (12) is coupling with equation transducer, which 
can be written in form:  
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( xC  - additional capacity in short circuit system). 
 

The expressions (12) and (13) take the form of: 
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The set of equations (14) is solving with approximate – 

Galerkin’s method, accepting the solution as  
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It is accepted that the considered system is exited by harmonic 

moment  
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If extortion has harmonic character, then tension, generated 
on clamps, piezotransducer will have the same character: 
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After calculation of suitable derivatives and their substitution 

to the equations describing vibration and  the state of mechatronic 
system the  set of equations (14) takes the form  
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The main determinant of equation set (21) is equal 
 

.sin)(
2

sin 22

22

12
2

2
p

ii
klx

e

b

e
l

akxW  (22) 

 
Substituting in (20) first column, by column of free words, the 
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The amplitude A is determined as  
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and from here  
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The transient of absolute value of flexibility (26) (the red 

line), for three first vibration modes - after further formal 
transformations and after putting of the numerical values of 
parameters and when x=l, that is llY Y  - it was showed in 
Fig. 2. 
 
 

3. Graphs different category as supply 
formal nations to modeling the 
considered systems 

To fix the meaning of necessary terms and symbols, the 
review of essential concepts of graph theory have been presented 
before modelling the torsionally vibrating continuous bar systems 
and problems connected with it. Weighted hypergraphs (in this 
paper called also weighted block graphs or weighted graphs of 
category k) have been applied to modelling of the considered 
mechanical or/and mechatronic systems Definitions of graphs, as 
mathematical objects, have been presented on the basis of the 
literature. The bibliography of this subject is very extensive and 
regards the theory as well as its applications (see [1,2,4]). 
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If a subset from the family of subsets of vertices with nnz , 

is distinguished from hypergraph Xk  with n vertices, then the 
complete graph of hypergraph Xk  is the graph ZX . In this graph 

each pair of vertices is incident, and graph ZX  has 
2

=
n
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edges.  
Skeleton 0Xk  of hypergraph Xk  is a graph obtained as the 

result of substitution of each subset of vertices by tree 
0
X , 

composed of one-dimensional edges and stretched on all vertices 
of hypergraph Xk . The tree 

0
X  of graph X with n vertices and m 

edges is a connected subgraph with the same number of vertices 
and with 1

0
=n-m  edges, in which there are no circuits and loops. 

So every skeleton of subsets of vertices is a tree of substitute-
complete graph.  

A tree in which every vertex ix1 ),...,1( ni  is incident with 
vertex 01 x  by edge 0112 x,xx ik , (k = 1, ... ,

0
m ), (see e.g. [4,5]) 

is called the Lagrange skeleton. 
Graphs X and hypergraphs Xk  have been shown in their 

geometrical representation on plane. Sets of edges X2  have been 

marked by lines, subsets of family Xk
2  (hyperedges or blocks) - 

two-dimensional continuum with enhanced vertices, in the shape 
of circles. 

In this paper hypergraphs - graphs of category k - Xk  (k=2,3) 
are used, which will be clearly mentioned each time, as well as 
graphs X, called also graphs of the first category - X1  (see [4,5]). 

The basic notions which have been written in italics are 
shown in Fig. 3.

Using notion of graph and hypergraph and their connections 
with structural numbers [1] and system of notation [4,5,19], 
methods of modification of transforming vibration system as task 
of the synthesis of dynamical characteristic - mobility has been 
presented.  

A characteristic - dynamical flexibility is given in form  
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4. Modelling of torsionally vibrating 
subsystems of mechatronic systems by 
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Fig. 2. Transient of the sum for n=1, 2, 3 vibration mode 
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and from here  
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xlxl YY . (26) 

 
The transient of absolute value of flexibility (26) (the red 

line), for three first vibration modes - after further formal 
transformations and after putting of the numerical values of 
parameters and when x=l, that is llY Y  - it was showed in 
Fig. 2. 
 
 

3. Graphs different category as supply 
formal nations to modeling the 
considered systems 

To fix the meaning of necessary terms and symbols, the 
review of essential concepts of graph theory have been presented 
before modelling the torsionally vibrating continuous bar systems 
and problems connected with it. Weighted hypergraphs (in this 
paper called also weighted block graphs or weighted graphs of 
category k) have been applied to modelling of the considered 
mechanical or/and mechatronic systems Definitions of graphs, as 
mathematical objects, have been presented on the basis of the 
literature. The bibliography of this subject is very extensive and 
regards the theory as well as its applications (see [1,2,4]). 
 

XX, X= 21   (27) 
 

Using the symbols introduced in papers [4,5,19], a following 
couple is called a graph, where: nx, ... , x, x, xX= 12111011 -
finite set of vertices, mx, ... , x, xX= 222122 -family of edges, 
being two-element subsets of vertices, in the form of 

jik x, xx 112  (i,j = 0,1, ... , n).  
The couple  
 

XX, X= kk
21  (28) 

 
is called a hypergraph, where: X1  is the set as in (28), and 

N)(
22 /iXX= ikk , (k=2,3, ... N) is a family of subsets of set 

X1 ; the family Xk
2  is called a hypergraph over X1  as well, and 
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2

)2(
2
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mkkkk X, ... ,X, XX= is a set of edges [2], called 
hyperedges or blocks, if  
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If a subset from the family of subsets of vertices with nnz , 

is distinguished from hypergraph Xk  with n vertices, then the 
complete graph of hypergraph Xk  is the graph ZX . In this graph 

each pair of vertices is incident, and graph ZX  has 
2

=
n

m  

edges.  
Skeleton 0Xk  of hypergraph Xk  is a graph obtained as the 

result of substitution of each subset of vertices by tree 
0
X , 

composed of one-dimensional edges and stretched on all vertices 
of hypergraph Xk . The tree 

0
X  of graph X with n vertices and m 

edges is a connected subgraph with the same number of vertices 
and with 1

0
=n-m  edges, in which there are no circuits and loops. 

So every skeleton of subsets of vertices is a tree of substitute-
complete graph.  

A tree in which every vertex ix1 ),...,1( ni  is incident with 
vertex 01 x  by edge 0112 x,xx ik , (k = 1, ... ,

0
m ), (see e.g. [4,5]) 

is called the Lagrange skeleton. 
Graphs X and hypergraphs Xk  have been shown in their 

geometrical representation on plane. Sets of edges X2  have been 

marked by lines, subsets of family Xk
2  (hyperedges or blocks) - 

two-dimensional continuum with enhanced vertices, in the shape 
of circles. 

In this paper hypergraphs - graphs of category k - Xk  (k=2,3) 
are used, which will be clearly mentioned each time, as well as 
graphs X, called also graphs of the first category - X1  (see [4,5]). 

The basic notions which have been written in italics are 
shown in Fig. 3.

Using notion of graph and hypergraph and their connections 
with structural numbers [1] and system of notation [4,5,19], 
methods of modification of transforming vibration system as task 
of the synthesis of dynamical characteristic - mobility has been 
presented.  

A characteristic - dynamical flexibility is given in form  
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After transformations [4,514,15]  
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the mobility has been obtained as  
 

.)(

0

0
l

j

j
j

k

i

i
i

rds

rc

rV    (33)

 
 

where: 0101 d,...,d,d,c,...,c,c llkk  are any real numbers, 
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i
, -mass density, )(iG  

 
Kirchhoff’s modulus , )(iLL - length of basic element, js , 

1j , 0101 d,...,d,d,c,...,c,c llkk -real numbers, i,j,k,l  
 natural numbers, k-l=1.  
 
 

4. Modelling of torsionally vibrating 
subsystems of mechatronic systems by 
hypergraphs  
 

The problem consists in modelling of torsionally vibrating 
multiple-segment with mechanical bar systems as subsystems of 
mechatronic systems in the form of models with uniformly 
distributed parameters and constant section in the segment.  

In the modelling of the considered class of continuous 
systems, the dependence between the amplitudes of generalized 
forces Ssk 22  and generalized displacements Ssi 11  can by 

 described by dynamical flexibility ikY  [4,5]. In other words, 
dynamical flexibility is the assigned amplitude of generalized 
displacement in the direction of i-th generalized coordinate caused 
by generalized force in the form of harmonic function with 
unitary amplitude, in relation with k-th generalized coordinate, so  
 

,s Ys jiji 21    (34) 
 

where: t
jj  et  Qs  j1sin2 , 1-=j ,  - frequency. 

 
In the example of torsional vibration of the subsystem (i) with 

constant cross-section and constant torsional rigidity )(
0

iGJ  

(where )(iG - Kirchhoff's modulus of a bar structure, )(
0
iJ  - polar 

moment of inertia of bar cross-section as well as length )(il , the 
model in the form of a determined and continuous system is 
introduced. 

In this model, generalized displacements )(
11

is  and )(
21
is  - 

angles of rotation correspond to its extreme points. These 
displacements are measured in the inertial system of reference. 
Moreover, the origin of the inertial system of reference has 
generalized coordinate 0)(

01
is  assigned to it (see e.g. [4,5]). 
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Fig. 2. Transient of the sum for n=1, 2, 3 vibration mode 
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Fig. 3. Basic notions concerning the class of graphs, which are used throughout this paper: a) set of vertices of a hypergraph, b) graphical 
representation of a three-block graph, c) complete graphs of hypergraph blocks, d) complete oriented graphs of three-vertex blocks and of 
a two-vertex block, e) optionally selected tree-skeletons of hypergraph blocks, f) skeleton of hypergraph, g) Lagrange skeleton of 
hypergraph 

 
 

Therefore a set of generalized displacements of a torsional 
vibrating bar can be formulated as follows: 

2
21
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11011 s, s, sS ii , while its dynamical flexibilities set can 

be denoted as iiiiii YY, , Y, YYY 2112122211 .  
In the course such one-to-one transformation, that:  
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the hypergraph of bar model is obtained 
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where: )(
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2
ik X  - 

one-element family - three-element subset of vertices )(
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iX . 
 

Investigating i-th segment in a n-segment mechanical bar as a 
subsystem of mechatronic system with constant section, the 

hypergraph model 
)(i

   f
k X  is introduced.  

All the elements of hypergraph and all the generalized 
displacements, material coefficients and geometric coefficients 
should be denoted by subscript (i) placed to the right of the stem 
symbol, whereas subscript k=2 should be placed to the left of the 
stem symbol. 

On the basis of this assumption, geometrical representation of 
mapping (36) has been shown in [4,5].  

Introducing 1f  that assigns the generalized displacements to 

vertices )(
1

i
jx  of hypergraph 

f
iX )(2  as:  
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i
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weighted hypergraph is obtained 
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According to (37), generalized coordinates to the vertices of 

complete graph 
f  

i
ZX )(2  of hypergraph 

f  
iX )(2  assigned by 2f  

dynamical flexibilities to edges of this graph: 
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a complete-substitute weighted graph is obtained: 
 

21
)(2

12

)(2 , f, fXX
     f     

i
Z

    

i
Z .   (40) 

 
Weighted Lagrange skeleton  
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is a weighted subgraph of complete weighted graph 

    

i
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12

)(2 . 

Geometrical representation of graph 
    

iX
12

)(
0

2  is shown in [4,5]. 

For a weighted Lagrange skeleton, taken into consideration in 
(37), it can be noted that (see [4,5]):  
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Considering (39), (40) and (35), weighted Lagrange skeleton 

may be treated as oriented polar graph 
00

)(iX . 

 
It is not difficult to notice that making the assignment 3f  to 

the edges of weighted Lagrange skeleton 
12

)(
0

2 iX  of hypergraph 

for the model of i-th bar - 
f

iX )(2 , couples of numbers - 

respectively - generalized coordinates and generalized forces  
 

)(
22

)(
122

ii s, sS  so that: 

 
)(

22
)(

21
)(

12
)(

11
)(

21
)(

01
)(

11
)(

013
iiiiiiii s,s, s, sx, x, x, xf ,   (43) 

 
a polar graph is obtained  
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Moreover in the case of oriented polar graph 
00

)(iX , polar 

equation [4,5] can be formulated as: 
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Matrix equation (45) is a particular case of equation (34).  

In the case of analysis of n-segment model of the system, 
composed of subsystems with constant section, vibrating 
torsionally, it is modelled by the loaded graph of the second 
category with n three-vertices-blocks, connected to those vertices 
to which the corresponding generalized coordinates are assigned 
(see i.e. [4,5]).  

The use of a weighted hypergraph (as a model of torsionally 
vibrating mechanical and/or mechatronic system) in this way may 
provide to the basis for the formalization which is the necessary 
condition of numerical discretization of the considered class of 
continuous mechanical systems.  
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Matrix equation (45) is a particular case of equation (34).  

In the case of analysis of n-segment model of the system, 
composed of subsystems with constant section, vibrating 
torsionally, it is modelled by the loaded graph of the second 
category with n three-vertices-blocks, connected to those vertices 
to which the corresponding generalized coordinates are assigned 
(see i.e. [4,5]).  

The use of a weighted hypergraph (as a model of torsionally 
vibrating mechanical and/or mechatronic system) in this way may 
provide to the basis for the formalization which is the necessary 
condition of numerical discretization of the considered class of 
continuous mechanical systems.  

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org


Research paper176

Journal of Achievements in Materials and Manufacturing Engineering

A. Buchacz

Volume 44 Issue 2 February 2011

 

5. Formulation of the synthesis of both 
the mechanical and mechatronic 
systems  
 

The synthesis consists in investigating the structure of a 
system with the continuous distribution of parameters and specific 
requirements set for the realization of the desired mechanical 
phenomena, because the discrete model is too remote from the 
real object. Moreover, the problem of synthesizing discrete 
physical, mechanical and, first of all, electrical and electronic 
systems is widely analyzed in scientific research. However, it is 
considerably difficult to find examples of methods of synthesizing 
continuous mechanical systems. The authors of the papers were 
approaching these problems emphasize that the synthesis of 
systems with continuous distribution of parameters is only 
beginning to be developed, so the exact formulation and solution 
are still to be considered. So far, this task has been approached by 
attempts to determine  a rectangular bar or a sleeve (depending on 
longitudinal or torsional vibrations) from the frequency equation 
and only on the basis of the first natural frequency.  

The first attempt of the solution to this problem concerning 
the frequency spectrum has been made in the Gliwice research 
centre in [4,5].  

 

 
 
Fig. 4. Illustration of transformation of the dynamical 
characteristic and of the graph of a free bar and a clamped bar  

 
In this paper the method was applied in order to synthesize the 

dynamical characteristic of the torsionally vibrating mechanical 
or/and mechatronic system with cascade structure. This is the 
method of decomposition of characteristics into partial fractions 
presented by graphs.  
 
 

6. Cascade method of synthesis of 
torsionally vibrating bar subsystems 
of mechatronic systems modeling by 
graphs  

 
In this paper the equation enabling the synthesis of the 

mobility function and, at the same time, its inversion is 
introduced. In order to obtain these function, the third category 

graph 
1

)1(3
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)(3
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3 , ii XXX  [4,5], as a model of longitudinally or 

torsionally transforming vibration mechnical or mechatronic 
system, is considered in Fig. 4 (hypergraph 

1

)(2

1

)(3 ii XX is a 

model of the "i" basic element, whereas hypergraph 
1

)1(3 iX  is a 

model of the other part the system contains elements from (i+1) to 
n.  
 
 

On the base of a skeleton 0
3 X  of the hypergraph 

1

3 X  (Fig. 4) 

structural complementary number dA0 , third category structural 

number A3  and its algebraical derivative 
iaA3  are equal [4,5]  

 

.

,

,

,1
2

1
2

22
33

,1
2

1
2

22

1
2

2

1

1
2

2
3

10

aii

iaiab
ia

aii

iib

i

i
ii

i

i
ii

d

AA
AA

AaA

AA
AA

A
Aab

A
AAAabA

i

    (46) 

 
In the tables of algebraic derivatives of the structural numbers 

A3  and 
iaA3  
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there are not identical columns, so structural completed numbers 
are respectively equal 
  

aiiiib 11 AAAAA , aiiaiiabai 11 AAAAA .   (48) 
 
The dynamical flexibility after transformations 

iaY  takes 

form  
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where: sY i 1  - dynamical flexibility of the other part of the 

system contains the elements from (i+1) to n), l
G

. 

6.	�Cascade method of 
synthesis of torsionally 
vibrating bar subsystems 
of mechatronic systems 
modeling by graphs

5.	�Formulation of the 
synthesis of both 
the mechanical and 
mechatronic systems

Using the transformation V(s)=Y(s) [4,5] the mobility )()( sV i  
is obtained in form  
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After the next transformation sthp  called Wyndrum's 

[4,5] transformation, the mobility )()( pV i  takes form  
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where: ssYsV ii 11 . 
 
 

From (51) mobility pV i 1  is obtained  
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p
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1
11 ,   (52) 

 
where: pV i 1  is the mobility of the transforming vibration 

system after its basic element with mobility )()( pV i  is removed, 
J-polar inertial moment of the bar cross section.  

 
Equation (52) makes it possible to determine the next (i+1) 

(i=1,2, ... ,n) dynamical characteristic of the transforming 
vibration system synthesized in this way.  
 
 

7. Algorithm of synthesis of mechanical 
subsystem by the recurrent cascade 
method as necessary condition of 
mechatronic one  
 

To carry out the synthesis of the mobility V(p) the form of 
(52) or its inversions U(p) (comp. with [4,5]) by the cascade 
method it necessary to:  
 

01 Assume that  
 

pVpV 1
.   (53) 

 

02 Determine values of parameters iGJ  and iJ  from 
equations 
 

1
1
i

i

V
GJ ,  

G
GJJ

i
i ,   (54) 

 

assuming p=1 and i=1, 
G

. 

 
03 Determine )()2( pV of other part of system containing 

segments from i=2 to n, from Richards' theorem  
 

ppVV
pVpVVpV ii

ii
ii

1
111 .   (55) 

 
04 Devide the numerator and denominator of mobility pV 2  

by 12p ; this is the condition of the physical realization of 
calculated mobility pV 2 . 

 
05 Repeat step 2, assuming i=2. 

 
06 Carry out step 03  in order to calculate pV 3 . 

 
07 Check step 04  by dividing the numerator and denominator of 

pV 3  by 12p . 
08 Repeat steps 02 , 03 , 04 , ... successively to determine 

formulas pV 4 , pV 5 , ... , pV n . 
 
The algorithm described above is to be continued until type p 

or 
p
1  of mobility pV n  is achieved - multiplied by real 

constant H - and it is not possible to carry out step 03  after 
step 02  in order to determine nGJ  and nJ . This is the 
end of the synthesizing process.  
 
 

Remarks  
 

Applied method and received results can make up the 
introduction to the synthesis of torsionaly vibrating mechatronic 
systems with constant changeable cross-section. The problems 
will be presented in future works.  
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In this paper the method was applied in order to synthesize the 

dynamical characteristic of the torsionally vibrating mechanical 
or/and mechatronic system with cascade structure. This is the 
method of decomposition of characteristics into partial fractions 
presented by graphs.  
 
 

6. Cascade method of synthesis of 
torsionally vibrating bar subsystems 
of mechatronic systems modeling by 
graphs  

 
In this paper the equation enabling the synthesis of the 

mobility function and, at the same time, its inversion is 
introduced. In order to obtain these function, the third category 

graph 
1

)1(3

1

)(3

1

3 , ii XXX  [4,5], as a model of longitudinally or 

torsionally transforming vibration mechnical or mechatronic 
system, is considered in Fig. 4 (hypergraph 

1

)(2

1

)(3 ii XX is a 

model of the "i" basic element, whereas hypergraph 
1

)1(3 iX  is a 

model of the other part the system contains elements from (i+1) to 
n.  
 
 

On the base of a skeleton 0
3 X  of the hypergraph 

1

3 X  (Fig. 4) 

structural complementary number dA0 , third category structural 

number A3  and its algebraical derivative 
iaA3  are equal [4,5]  
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    (46) 

 
In the tables of algebraic derivatives of the structural numbers 

A3  and 
iaA3  

 

10
12

,
10
01

iaPP    (47) 

there are not identical columns, so structural completed numbers 
are respectively equal 
  

aiiiib 11 AAAAA , aiiaiiabai 11 AAAAA .   (48) 
 
The dynamical flexibility after transformations 

iaY  takes 

form  
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1

1

1

1 ,    (49) 

 
where: sY i 1  - dynamical flexibility of the other part of the 

system contains the elements from (i+1) to n), l
G

. 

Using the transformation V(s)=Y(s) [4,5] the mobility )()( sV i  
is obtained in form  
 

sth
l

GJsV

l
GJsVsth

GJ
lsV i

i

i
i

i
i

1

1

1

1 .   (50) 

 
After the next transformation sthp  called Wyndrum's 

[4,5] transformation, the mobility )()( pV i  takes form  
 

p
l

GJpV

l
GJpVp

GJ
lpV i

i

i
i

i
i

1

1

1

1 ,   (51) 

 
where: ssYsV ii 11 . 
 
 

From (51) mobility pV i 1  is obtained  
 

ppV
GJ
l

p
GJ
lpV

GJ
lpV

i
i

i
i

i
i

1

1
11 ,   (52) 

 
where: pV i 1  is the mobility of the transforming vibration 

system after its basic element with mobility )()( pV i  is removed, 
J-polar inertial moment of the bar cross section.  

 
Equation (52) makes it possible to determine the next (i+1) 

(i=1,2, ... ,n) dynamical characteristic of the transforming 
vibration system synthesized in this way.  
 
 

7. Algorithm of synthesis of mechanical 
subsystem by the recurrent cascade 
method as necessary condition of 
mechatronic one  
 

To carry out the synthesis of the mobility V(p) the form of 
(52) or its inversions U(p) (comp. with [4,5]) by the cascade 
method it necessary to:  
 

01 Assume that  
 

pVpV 1
.   (53) 

 

02 Determine values of parameters iGJ  and iJ  from 
equations 
 

1
1
i

i

V
GJ ,  

G
GJJ

i
i ,   (54) 

 

assuming p=1 and i=1, 
G

. 

 
03 Determine )()2( pV of other part of system containing 

segments from i=2 to n, from Richards' theorem  
 

ppVV
pVpVVpV ii

ii
ii

1
111 .   (55) 

 
04 Devide the numerator and denominator of mobility pV 2  

by 12p ; this is the condition of the physical realization of 
calculated mobility pV 2 . 

 
05 Repeat step 2, assuming i=2. 

 
06 Carry out step 03  in order to calculate pV 3 . 

 
07 Check step 04  by dividing the numerator and denominator of 

pV 3  by 12p . 
08 Repeat steps 02 , 03 , 04 , ... successively to determine 

formulas pV 4 , pV 5 , ... , pV n . 
 
The algorithm described above is to be continued until type p 

or 
p
1  of mobility pV n  is achieved - multiplied by real 

constant H - and it is not possible to carry out step 03  after 
step 02  in order to determine nGJ  and nJ . This is the 
end of the synthesizing process.  
 
 

Remarks  
 

Applied method and received results can make up the 
introduction to the synthesis of torsionaly vibrating mechatronic 
systems with constant changeable cross-section. The problems 
will be presented in future works.  
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