CHEMIA z. 62

JÓZEF ZABŁOCKI

WSPÓŁCZYNNIK WNIKANIA MASY W FAZIE CIEKŁEJ ^Bag na wypełnieniu rusztowym

POLITECHNIKA ŚLĄSKA ZESZYT NAUKOWY Nr 360 – GLIWICE 1973

P.3345 43 POLITECHNIKA ŚLĄSKA ZESZYTY NAUKOWE

Nr 360

JÓZEF ZABŁOCKI

WSPÓŁCZYNNIK WNIKANIA MASY W FAZIE CIEKŁEJ β_{Ac} na wypełnieniu rusztowym

ZNSCAM (62) 3-44 (1973)

PRACA HABILITACYJNA Nr 119

Data otwarcia przewodu habilitacyjnego 9. X. 1972

GLIWICE 1973

REDAKTOR NACZELNY ZESZYTÓW NAUKOWYCH POLITECHNIKI ŚLĄSKIEJ

Iwo Pollo

REDAKTOR DZIAŁU Aleksandra Burghardt

SEKRETARZ REDAKCJI

Helena Ogrodnik

Dział Wydawnictw Politechniki Śląskiej Gliwice, ul. Kujawska 2

 Nakł 50+170
 Ark. wyd. 2.15
 Ark. druk. 2,5
 Papier offsetowy kl. III, 70×100, 80 g

 Oddano do druku 80, 11, 1972
 Podpis, do druku 15 1 1973
 Druk ukończ, w lutym 1973

 Zam. 1552
 25, 11, 1972
 R-15

Skład, fotokopie, druk i oprawę wykonano w Zakładzie Graficznym Politechniki Śląskiej w Gliwicach

PJ-84 73

Oznaczenia i wymiary ważniejszych wielto ci	•
1) Wstęp	-
2) Przygotowanie do wiadczeń	17
3) Opis aparatury dofwindezalne	16
4) Sposób prowadzenia doświadczeń	17
5) Opracowanie wyników doświadczelnych	1
6) Omówienie wyników	20
7) Wnioski	37
8) Spis literatury	42
9) Streszczerie	43

JPTO TO

tr.

Cd Autora

Praca niniejsza wykonana została w Instytucie Inżynierii Chemicznej i Budowy Aparatury Politechniki Śląskiej w Gliwicach.

Władzom Uczelni oraz wszystkim, którzy służyli mi radą ipomocą przy wykonywaniu niniejszej pracy, składam w tym miejscu serdeczne podziękowanie.

OZNACZENIA I WYMIARY WAŻNIEJSZYCH WIELKOŚCI

С	suma wszystkich koncentracji	kmol/m ³
DAB	kinematyczny współczynnik dyfuzji składnika A przez składnik B	m ² /h
F	powierzchnia wypełnienia	m ²
Gw	natężenie zraszania wodą	kg/h
G'w	natężenie zraszania wodą	kmol/h
G'A	strumień dyfundującej masy składnika A	kmol/h
н	stała Henry'ego	Er
М	masa molowa	kg/knol
Mw	masa molowa wody	kg/imol
0	obwód zraszany	n
P	ciśnienie całkowite	Tr
Pot	ciśnienie otoczenia	Tr
Pz	ciśnienie całkowite na zwierciadle	2r
Rc	współczynnik wypełnienia	-
T	temperatura bezwzględna	oK
XA	stosunek molowy składnika A w fazie ciekłej	knol H20
a	povierzchnia jednostkowa wypełnienia	= ² /= ³
d.e	średnica zastępcza	2

×	przyspieszenie siły ciężrości	1,271 . 10 ⁸	m/h ²
		2,81	r√s ²
h	wysokość elementu wypełbiiczia		m
1	dhyoić listvy		I.
P .z	ciánienie porcjolne składnika A na		
	zwierciadle		Tr
Piz	ciénierie parcialno inertu na zwierciadle		Tr
PHO	prężność pary vodnej		л.
s	odstęp między listwori		<u></u>
t	temperatura		°c
t	grubość listwy		m kmol Co-
x.	udział molowy składnika A w fazie ciekłej		Jmol
Aic	współczymik wnikanie masy w fazie ciekłej		kg/m ² h
AAG	współczymik wnikania masy w fazie gazowej		kg/m ² k
Ale	współczynnik wnikania masy w fazie ciekżej		kmol/m ² h
8	dynamiczny uspółczynnik dyfuzji składnika	l	
	przez inte		te/m h
5':	dynamiezny uspółczywulk dyfuzji składnika /		
	przez inne		'mol/m h
T	zęstość		hc/m²
2	dynamiczny współczynnik lepkości		kg/n h
νz	zastępczy wymiar liniowy		n
Г	jednostkowe natężenie zraszania		'-3/m h
AT A	moduž napędovy		-

- -----
- . odnosi siç do dwaflevlu wçıla
- odnosi się do imertu
- w odnosi siy do wody
- z odnosi się do powieruchni zi duvietowet.

120701212 2001078 10 1272.

 $\operatorname{Re}_{z} = \frac{4\Gamma}{\eta}$ licaba Reynoldo: postal alternatyuna riosowana dla spara cieczy $3h_z = \frac{\beta_A v_z}{\delta} = \frac{\beta'_A v_B}{\delta'_A}$ zmodyfiltowene lieton Sherwooda $Sc = \frac{\eta}{100}$

licaba Solmidta

 $3t'_z = \frac{Sh_z}{Re_z Sc}$

unalog liczoy Thentona

a second and a second as a second

1. Wstep

Jednym z rodzajów wypełnienia stosowanych w aparatach do absorpcji gazów w cieczach są ruszty drewniane. Zaletą tego wypełnienia jest nie wysoka cena, mały ciężar oraz bardzo małe opory przepływu, wadą natomiast stosunkowo mała powierzchnia z jednostki objętości s = 50 m²/m³. Użycie jednak rusztów pozwala na zastosowanie wyższych prędkości przepływu gazu, co pozwala w pewnych przypadkach osiągnąć lepsze współczynniki wymiany masy, jak przy stosowaniu innych wypełnień, a w dalszej konsekwencji osiągnąć obniżenie całkowitej objętości wypełmienia, oporu przepływu i ciężaru aparatu. Wypełnienie rusztowe jest specjalnie przydatne, gdy mają być przerabiane duże ilości gazu, a małe ilości cieczy. Przy stosowaniu jednak tego wypełmienia trzeba szczególną uwagę zwrócić na odpowiednią konstrukcję zraszacza zapewniającego równomierne rozprowadzenie cieczy po ruszcie. Propozycje takiego zraszacza podaje Morris i Jackson [1]. Wymienione zalety skłaniają do stosowania wypełniemia rusztowego w pewnych działach technologii, np. wieże chłodnicze, przeróbka smoły węglowej.

Pomimo, że ten rodzaj wypełnienia jest bardzo dawno stosowany w praktyce, nie posiada on dostatecznych opracowań, pozwalających z wystarczającą dokładnością obliczyć współczynnik wnikania masy w fazie ciekłej β_{Ac} . Ta luka jest tym bardziej kłopotliwa przy projektowaniu odpowiedniej aparatury, jeżeli się weźmie pod uwagę, że np. dla absorpcji benzoli w oleju płuczkowym współczynnik wnikania masy w fazie ciekłej β_{Ac} jest znacznie mniejszy jak w fazie gazowej β_{Ac} . [11], a więc on przede wszystkim decyduje o wielkości globalnego współczynnika przenikania masy K_A , a w dalszej konsekwencji o wielkości projektowanych aparatów. Dotychczas dla obliczania tego współczynnika many do dyspozycji wzory stosowane do obliczania współczynników wnikania masy w fazie ciekkej przy spływie cieczy po ścianie płaskiej lub cylindrycznej, podane przez R.L. Pigforda i Ph.O. Thesise [2], [3], D.W. Van Krevelena i P.J. Hoftijzera [4], S. Kędzierskiego [5], T. Hoblera i S.Kędzierskiego [6] oraz przez cały szereg innych autorów omawlających te same przypadki. Wzory te uzyskane bądź to na drodze teoretycznej bądź doświadczalnej wykazują poważne rozbieżności, a nawet sprzeczności, co zostało omówione przez Hoblera i Kędzierskiego [7].

Imny sposób ujęcia to propozycja Morrisa i Jacksona [3, 9] podająca wzór uzyskany w oparciu na danych doświadczalnych otrzymanych na znormalizowanym aparacie podstawowym z poprawką na rodzaj wypełmieni – R.

Wnikanie masy w fazie ciekłej na wypełnieniu rusztowym badał i podał swoje wyniki M.D. Kuzniecow [10, 11].

Każdy z powyżej podanych wzorów posiada pewne elementy, które mi pozwalają mieć pewność, że wyniki otrzymane będą dokładne.

Vzory dla ścian płaskich odzwierciedlają mechanizm przy spływie laminarnym, następującym nieprzerwanie po ścianach o wysokości dość znacznej. Przy spływie po wypełnieniu rusztowym memy do czynienia ze spływem po bardzo brótkich ścianach płaskich, równych wysokości wypełmienia. Miczależnie od tego wymiana masy na wypełnieniu rusztowym odbywa się również na innych elementach wypełnienia niż poziona ściawa płaska.

Wzór Morrisa, Jacksona [3, 9] obejmuje cały szereg wypełnień jednym wzorem, stosując dla każdego poprawkę R_c . Wykładnik potęgowy przy wyrażeniu $L = \frac{W_o}{R}$, a więc również przy prędkości (w_o jest objętością cieczy, wylewaną w ciągu godziny na 1 m² przekroju skrubers, inaczej prędkość liniowa liczona na pusty skruber) w vysokości 0,7, pomimo spływu lazinarnego w przypadku wypełnienia rusztowego, raczej wskazuje na podobieństwo z wykładnikami potęgowymi w innych wzorach dla spłynu cieczy po wypełnieniu z usypanych pierścieci.

W przypadku rusztu drewnianego, jakkolviek nie mony do czynienia z ciągłą ścianą płaską, to jednak poszozególne elementy powierzchni są pionowymi ściankami. Spływ więc po tym wypełnieniu bardziej przypomina spływ po ścianie pionowej. Wszystkie z-ś wzory dla ściany płaskiej posiadają niższe, a nawet znacznie niższe wykładniki przy liczbie Deg. Wzór podany przez Kuzniecowa, jakkolwiek opracowany dla wypełnienia rusztowego, przy bliższym przeanalizowaniu budzi pewne obawy. Simpleks uwzględniający wysokość elementów wypełnienia $\left(\frac{de}{h}\right)$ posiada wykładnik , ęgowy równy 0,503, tj. wyższy jak w większości wzorów dla ściany płaskiej. Liczne zaburzenia występujące przy spływie cieczy po wypełnieniu powinny raczej obniżać wykładnik potęgowy przy simpleksie, gdyż spływ nie będzie posiadał charakteru czysto laminarnego.

Fevne trudności w posługiwaniu się tym wzorem sprawia fakt, że w simpleksie zamiast wielkości charakterystycznej dla spływu cieczy po powierzchni pionowej v_z zastosowano średnicę ekwiwalentną d_e = 2 . s (s - odstęp między listwami). Taka średnica ekwiwalentna uzasadniona dla fazy gazowej, tutaj nie wydaje się być słuszna. Odstęp bowiem między listwami nie ma przypuszczalnie żadnego wpływu na grubość warstwy spływającej cieczy. Wzór więc podany przez Kuzniecowa może być w tej formie stosowany tylko dla wypełnienia o identycznym wymiarze "s".

Dla lepszego zilustrowania rozbieżności w wynikach otrzymanych z wzorów podanych przez następujących autorów [5, 6, 8, 10, 11] sporządzono wykres rys. 1, na którym podano zależności Sh_z-Re_z . Numeracja linii na wykresie jest następująca:

1 - M.D. Kuzniecow [10, 11]

2 - T. Hobler, S. Kędzierski [5, 6]

3 - K.A. Morris, J. Jackson [8].

Ze wszystkich wzorów wyliczono liczbę Sherwooda w następującej postaci

$$\operatorname{Sh}_{z} = \frac{\beta_{\Lambda c} \vartheta_{z}}{\delta_{\Lambda}}$$

Dla wszystkich pozycji jako wysokość h przyjęto 125 mm, to jest wysokość elementu wypełnienia.

Wszystkie powyższe rozbieżności oraz wątpliwości skłaniają nas do podjęcia badań nad określeniem wzoru dla obliczania współczynnika wnikania masy w fazie ciekłej przy spływie cieczy po ruszcie drewnianym.

Niniejsza praca poświęcona jest doświadczalnemu wyznaczaniu zależności współczynnika wnikania masy w fazie ciekłej przy spływie cieczy po drewnianym wypełnieniu rusztowym od takich parametrów jak: jednostkowe natężenie zraszania, lepkość cieczy, współczynnik dyfuzji oraz wysokość elementu wypełnienia.

Kinetykę procesu można opisać następującym równaniem zbudowanym z bezwymiarowych modułów podobieństwa

$$Sh_{z} = C (Re_{z})^{a} (Sc)^{b} (\frac{bz}{h})^{d}$$
 (1)

Postać równania (1) wynika z całkowania równania różniczkowego, opisującego rozkład stężeń, może być ona również otrzymana przez przeprowadzenie analizy wymiarowej.

2. Przygotowanie doświadczeń

Współczynnik wnikania masy β_{Ac} wyznaczano dla absorpcji dwutlenku węgla w wodzie spływającej po całkowicie zroszonej powierzchni rusztu drewnianego. Stężenie dwutlenku węgla w wodzie zasilającej i opuszczającej urządzenie oznaczano przy pomocy miareczkowania. Urządzenie zasilano z butli technicznym dwutlenkiem węgla o zawartości powyżej 98% czystego składnika. Jakość stosowanego gazu badano przez analizę aparatem Orsata.

Założono - co jest przybliżeniem (dającym wyniki bezpieczne), że w naszym przypadku nie występuje opór dyfuzyjny w fazie gazowej.

Według danych przedstawionych przez Vielsticha [12] dla rozpatrywanego układu, rola reakcji chemicznej jest do pominięcia. Wynika z nich bowiem, że tylko mniej niż 1% rozpuszczonego dwutlenku węgla tworzy drobiny kwasu węglowego H_2CO_3 . W temp. $18^{\circ}C$ stosunek ilości drobin kwasu węglowego do ilości drobin dwutlenku węgla w roztworze wodnym wynosi 1,55 10^{-3} . Wynika więc z tego, że szybkość procesu praktycznie jest limitowana przez proces fizyczny.

Zakres zmienności natężenia zraszania ustalono w ten sposób, ażeby objąć cały zakres od minimalnych do maksymalnych jednostkowych natężeń zraszania. Johnstone i Singh [13] zalecają następujący zakres wielkości jednostkowego natężenia zraszania:

$$\Gamma_{\min} = 110 \text{ kg/m h}$$
$$\Gamma_{\max} = 457 \text{ kg/m h}.$$

Ten ackres powinien gwarantować dokładuć zwilżenie powierzchni przy $\Gamma_{\rm max}$. Obserwacje procesu potwierdziły te przypuszczenia.

Z zależności

$$\Gamma = \frac{G_{W}}{O}$$

wyliczone zakres stosowanych natężeć zraszenia 6., a stosowanych natężeć zraszenia 6., a stosowanych natężeć zraszenia 6.,

$$\operatorname{Re}_{2} = \frac{4\Gamma}{2}$$

Wartości liczb Schmidta jako zależne od parametriw $\eta \pm \delta$ zmieniały się z temperaturą. Ponievoż temperatura była provio niezwienna t = 12-13,3°C również zmiany wartości liczb Schmidta były niezwac me.Taki sposób prowadzenia doświadczeń był zamierzony, gdyż na podstawie analizy dotychczasowych badań [4, 5, 6, 10] przyjęto wykładnik połęgowy przy liczbie Schmidta jako równy 0,33.

Vartość modułu geometrycznego $\frac{\sqrt{2}}{h}$ zależy od zmiennych parametrik $\sqrt{2}$ i h, wartość $\sqrt[4]{2}$ zależy od temperatury, w warunkach, w itérsch prowadzono pomiary $\sqrt[4]{2}$ zmianiała się nieznacznie, ogólna wartość modułu $\frac{\sqrt{2}}{2}$ zmieniała się od 0,2026 10⁻² - 0,4163 10⁻³.

G,	280 -	1 080	tela
Г	116 -	450	hg/m ii
Re_	107 -	415	
272 11	0,2026 10 ⁻² - 0	9,4163 10 ⁻³	-

Tablica zmienności stosowanych parametrów

Ciecz w procesie traktowano jako wodę czystą i dla wyznacz nie popamatrów fizycznych korzystano z danych literaturowych dla c prej wody. Dla wyznaczenia stałej Henry'ego

$$H = \frac{P_{AZ}}{x} Tr$$

korzystano z danych literaturowych [14] zestawionych co 1° C. Wartości pośrednie (co 0.1° C) obliczano przez interpolację liniową.

Gęstość cieczy 7 kg/m³ wyznaczano na podstawie danych literaturowych [15] zestawionych co 1°C, otrzymując wartości pośrednie (co Q1°C) przez interpolację liniową. Dynamiczny współczynnik lepkości γ kg/m h wyznaczano na podstawie danych literaturowych [16] zestawionych co 1°C otrzymując wartości pośrednie (co 0,1°C) przez interpolację liniową.

Zastępczy wymiar liniowy

$$v_{z} = \left(\frac{\eta^{2}}{\eta^{2}}\right)^{1/3} z$$

wyznaczano z powyższego wzoru definicyjnego wstawiając literaturowe wartości parametrów η i η oraz wartość $g = 1,271 \ 10^8 \ m/h^2$, wartości pośrednie (co 0,1°C) obliczano przez interpolację liniową.

Dla współczynnika dyfuzji δ_A kg/m h wartości literaturowych w różnych temperaturach brak, najczęściej spotyka się jego wortości dla temperatury 20°C. Dla wyznaczenia wartości współczynnika dyfuzji w innych temperaturach korzysta się w praktyce z metod ogólnych, określających zmienność współczynnika dyfuzji z temperaturą.

7 niniejszej pracy korzystano z teoretycznego równania Stochesa -Dinsteina:

$$\frac{D_{AB}}{(D_{AB})} = \frac{2\eta}{\tau_1\eta}$$
(2)

stad

$$D_{AB} = \frac{T}{\gamma} \frac{(D_{AB})_{\gamma} \gamma_{1}}{T_{1}}$$
(3)

za stan odniesienia przyjęto temperaturę 20°C, w której

$$\Gamma_{AB_{20}0} = 0.637 \ 10^{-5} \ m^2/h$$

 $\gamma_{20}0 = 3.618 \ kg/m h$
 $T_{20}0 = 293.2 \ N$

wstawiając do równania (3) otrzymujemy

$$D_{AB} = D_{Ai} = \frac{T}{72} \frac{0.637 \ 3.613 \ 10^{-5}}{293.2} \frac{m^2}{h}$$

a przy zależności

$$\delta'_{Ai} = D_{Ai} C = D_{Ai} \frac{\int^{L}}{M} \frac{kmol}{mh}$$
(4)

otraymnije się:

$$\delta'_{Ai} = \frac{\pi \pi}{\eta} \frac{0.637 \quad 3.618}{293.2 \quad M \quad 10^5} \quad \text{Imol/m h}$$

Tą zależnością możemy się posłużyć przy obliczaniu liczb Schmidta

$$S_{c} = \frac{\gamma}{M\delta_{A1}^{r}}$$

$$S_{c} = 1,272 \quad 10^{7} \quad \frac{\eta^{2}}{\delta_{T}^{r}}$$
(5)

Wykorzystując znane wartości of i n oraz wstawiając odpowiednie T obliczono wartości liczb Schmidta co 0,1 °C. Temperaturę wody zraszającej obliczono jako średnią arytmetyczną wody na vlocie i na wylocie

$$t_{w} = \frac{t_1 + t_2}{2}$$

Nadmienić należy, że różnica pomiędzy temperaturą na wlocie i wylocie nie przekraczała 1⁰C.

Prężność pary wodnej p_{H_2O} Tr wyznaczano korzystając z danych literaturowych [17] zestawionych co 1°C, wartości pośrednie (co 0,1°C) obliczano przez interpolację liniową. Powierzchnię wymiany masy obliczano jako powierzchnię geometryczną wypełnienia wg następującego wzoru:

$$F = 6 n \left[2 h (1 + t) + 0,0048 \right] - 0,0432$$
(6)

- n ilość warstw rusztu
- 1 długość listwy m
- h wysokość listwy m
- t grubość listwy m.

Wykonano 5 rodzajów vypełnienia rusztowego o następujących wymiarach: grubość listwy t, długość l oraz odstęp pomiędzy listwami s były niezmienne i wynosiły

> t = 0,01 m1 = 0,2 ms = 0,02 m.

Wysokości natomiast były różne, a mianowicie: 0,026; 0,050; 0,075; 0,101; 0,127 [m].

3. Opis aparatury doświadczalnej

Aparatura doświadczalna przedstawiona na rys. 2 składała się z oparatu zasadniczego (6) wykonanego z metapleksu, co ułatwiło obserwacje procesu, urządzenia do zasilania gazem oraz urządzenia zasilającego instalacje w ciecz zraszającą. Aparat zasadniczy (6) to kolumna o przebroju kwadratowym (400 x 400 mm). Wysokość wymosiła 1020 mm, wewnątrz aparatu na półce było umieszczone wypełnienie o wymierach 200 x 200 mm i wysokości 500 mm. Pozostawienie odstępu pomiędzy wypełnieniem a ścianami aparatu było podyktowane koniecznością wyeliminowania udziału po-

wierzchni ścian aparatu w procesie wymiany masy. Dla wymiennika bowiem o tak małym przekroju oraz wypełnieniu o małej ilości powierzchni z jednostki objętości, udział powierzchni ścian byłby dość poważny. Udziału powierzchni dna w procesie wymiany masy nie dało się całkowicie uniknąć. Zmniejszono go jednak konstruując dno w ten sposób, że część na której spoczywało wypełnienie obniżone, tak że woda nie rozpływała się po całym dnie, lecz spływała bezpośrednio do otworu umieszczonego w jego środku. W ten sposób czynna była tylko powierzchnia dna równa 0,2 x 0,2 = 0,04 m². Ponieważ powierzchnia wymiany masy reprezentowana przez wypełnienie wynosiła od 1,6254-1,3412 m², to udział powierzchni dna stanowił ~ 2,5%. Od do ku poprzez specjalne urządzenie do równomiernego wprowadzenia gazu, wprost do wnętrza wypełnienia wprowadzono dwutlenek węgla. Wylot gazu był umieszczony w górnej dennicy aparatu. Wodę zraszającą pobierano z rurociągu przewodem (1) do zbiornika wyrównawczego (2), a następnie przez rotametry (4) i punkt pomiaru temperatury (5) zasilano zraszacz umieszczony w górnej części aparatu (6). Ciecz z dolnej półki poprzez specjalny przewód była wyprowadzana na zewnątrz, a następnie przez zamknięcie syfonowe do zbiornika przelotowego umożliwiającego zmierzenie temperatury termometrem (11) oraz pobranie w tym miejscu probki do analizy. Zbiornik wyrównawczy cylindryczny o wymiarach 300 x 500 mm od góry jest zasilany wodą. Dla utrzymania stałego poziomu cieczy posiada rurę przelewową odprowadzającą nadmiar wody do wanny odpływowej (3). W górnej części zbiornika jest otwór odpowietrzający.

Konstrukcja zraszacza ma za zadanie doprowadzenie cieczy na najwyższą warstwę rusztu wprost na listwy. Ten typ zraszacza jest korzystny tylko dla celów laboratoryjnych, (Fonstrukcję zraszacza dla celów przemysłowych podaje Morris i Jackson [1]), składa się z ó równoległych rur zasilanych wodą z obu stron. Rury posiadają taki rozstaw,ażeby każda znajdowała się nad jedną listwą. W rurze otwory nawiertone są w odstępach co 30 mm.

Dolna półka rys. 3 podtrzymuje wypełnienie, odprowadza ciecz po absorpoji a równocześnie spełnia rolę zasilacza gazowego. 7 półce wtopionych jest 49 rurek zakończonych kapturami. Przez te rurki z dolnego kolektora gaz zostaje wprowadzony wprost do wypełnienia, tak ażety w każdym kwadraciku utworzonym przez listwy wypełnienia znajdowała się jedna rurka doprowadzająca gaz.

Ta konstrukcja doprowadzenia gazu, odprowadzenia cieczy oraz zraszacza zapewnia, że gaz nie ma żadnego kontaktu z cieczą poza wypełnieniem pomijając dno. Podgrzewacz gazu (14) jest to wężownica ogrzewana żarówkami ogrzewającymi. W tym aparacie podgrzewano gaz do temperatury wody zraszającej.

4. Sposób prowadzenia doświadczeń

Doświadczenia rozpoczynano od usunięcia powietrza z wnętrza apararu. Wykonywano to przepuszczając przez aparat dwutlenek węgla. Zabieg ten trwał około 2 godzin i był prowadzony tak długo aż analiza gazu na wylocie wykonana przy pomocy aparatu Orsata dawała takie same wyniki jak na wlocie, to znaczy $\sim 99\%$ CO₂.

Następnie otwierano zawór na przewodzie doprowadzającym wodę do zraszacza, równocześnie regulując dopływ gazu w takiej ilości, ażeby w aparacie utrzymać pewne nadciśnienie gwarantujące utrzymanie pewnego nadmiaru w przepływie gazu, kontrolowanego również rotametrem gazowym zamontowanym na przewodzie wylotowym.

Dla zapewnienia stałego dopływu wody w czasie trwania doświadczenia, doprowadzano wodę z sieci wodociągowej poprzez zbiornik wyrównawczy.

Natężenie zraszania ustalono na wielkości najmniejszej z zaplanowanych i następnie obserwowano czy cała powierzchnia wypełnienia jest zwilżona. Obserwacje własne wykazały, że wielkości Γ_{\min} podane przez Johnstona i Singha [13] sprawdzają się w naszych doświadczeniach.

Zraszanie wypełnienia z równoczesnym przepływem gazu prowadzono przez 30 min dla uzyskania stacjonarności procesu. Obliczenia cieczy zawieszonej na wypełnieniu oraz porównanie z natężeniem przepływu cieczy wykazały, że okres 30 min jest dla tego celu wystarczający.

Następnie pobierano próbkę cieczy wylotowej i wykonywano analizę na zawartość dwutlenku węgla. Czynność tę powtarzano trzykrotnie w odstępach 15 minut. Za wynik analizy przyjmowano wartość średnią.

Zaworem regulującym dopływ cieczy podwyższano natężenie regulując równocześnie dopływ gazu i powtarzano zabieg. W ten sposób podwyższając kolejno natężenie dochodzono aż do wielkości natężenia zraszania odpowiadającego Γ_{\max} . Dla jednego wypełnienia otrzymano w ten sposób 21 punktów pomiarowych.

Po zakończeniu doświadczeń na jednym wypełnieniu rozmontowywano aparat i zmieniaro wypełnienie, a następnie po ponownym zmontowaniu zparatury powtórzono czynność jak dla pierwszego wypełnienia. W ten sposób przebadano 5 rodzajów wypełnień.

Temperaturę wody mierzono na wlocie i wylocie termometrem rtęciowym z dokładnością 0,1°C. Do obliczeń stosowano średnią arytmetyczną tych wielkości. Różnica temperatur na wlocie i wylocie nie przekroczyła w żadnym z punktów pomiarowych 1°C, a więc i błędy związane ze stosowaniem temperatury średniej, przy określaniu parametrów, zamiast temperatury spływającego filmu, były nieduże.

Natężenie przepływu cieczy mierzono na dopływie cieczy przy pomocy rotametru. Rotametry były przed rozpoczęciem doświadczeń sprawdzone.

Dla wyznaczenia ilości zaabsorbowanego gazu pobierano próbki cieczy i oznaczano zawartość dwutlenku węgla miareczkując 0,1 n NaON wobec fenolftaleiny. Analizowano wodę zasilającą i wylotową. Próbkę pobierano do kolbki stożkowej, w której znajdowała się dokładnie odmierzona ilość 0,1 n NaOH. Ilość tę określano wykonując oznaczenie orientacyjne. Po dodaniu 0,5 ml alkoholowego roztworu fenolftaleiny,miareczkowano 0,1 m NaON do słabo różowego koloru nie znikającego w ciągu 3 minut.

Zawartość dwutlenku węgla w wodzie wyliczano z następującego wzoru:

$$X_{A} = \frac{1.8 \text{ f } V_{\text{NaOH}}}{1000 \text{ V}_{\text{n}}} \frac{\text{kmol} C_{2}}{\text{kmol} H_{2}^{0}}$$
(7)

f - miano roztworu NaOH V_{NaOH} - objętość zużytego roztworu NaOH w ml V_p - objętość pobranej próbki w ml.

Ciśnienie panujące w pomieszczeniu P_{ot} mierzono przy pomocy barometru rtęciowego z dokładnością do 0,1 mm Hg.

Nadciśnienie panujące w aparacie mierzono przy pomocy U-rurki wypełnionej wodą. Ciśnienie gazu w procesie obliczano jako suma ciśnienia otoczenia i nadciśnienia gazu w aparacie. Nadciśnienie to mierzono względem ciśnienia otoczenia w milimetrach słupa wody, a następnie przeliczano na torry Tr. Tak obliczone ciśnienie jest sumą ciśnień cząstkowych wszystkich słładników gazu. Dla określenia zawartości dwutlenku węgla w gazie przeprowadzono szereg analiz na aparacie Orsata. Stwierdzono, że zawartość czystego składnika wahała się w granicach od 98% do 100%.Całkowite ciśnienie gazu na zwierciadle cieczy wyliczano z następującego równania:

$$P_z = P_{Az} + P_{iz} + P_{H_2O_z} = P_s$$
 (8)

stad

$$\mathbf{p}_{Az} = \mathbf{P} - \mathbf{p}_{iz} - \mathbf{p}_{H_2 O_j}$$

przy założeniu na podstawie analiz

 $p_{iz} = 0.01 P$

otrzymujemy:

$$p_{AZ} = 0.99 P - p_{H_2 0_Z}$$
 (9)

Tak obliczoną wartość ciśnienia dwutlenku węgla na zwierciadle cieczy stosowano dla obliczenia stężenia dwutlenku węgla na zwierciadle cieczy posługując się prawem Henry'ego

$$X_{AZ} \cong X_{AZ} = \frac{p_{AZ}}{H}$$
(10)

H - jest wartością stałej Henry'ego dla temperatury procesu.

Po ukończeniu każdej serii badań przeprowadzano dodatkowo sprawdzającą analizę z przestrzeni wewnętrznej aparatu, która zawsze potwierdzała, że nie zachodzi gromadzenie się inertów. Dane pomiarowe oraz wyliczeniowe zestawiono w tablicy 1 umieszczcnej na końcu pracy.

Czynną powierzchnię absorbera przyjęto jako powierzchnię geometryczną wypełnienia. Obliczano ją osobno dla każdego wypełnienia wzorem (6). Wzór ten uwzględnia budowę wypełnienia (rys. 4), gdzie każda warstwa listw jest spięta dwoma listwami poprzecznymi oraz wymiary niezmienne (rys. 5) dla wszystkich pięciu stosowanych w doświadczeniach wypełnień. Wielkości s, t, l, c są stałe, zmienne jest tylko h. Dla poszczególnych wypełnień wyliczone powierzchnie podaje poniższą tabela.

h m	F m ²	n
0,026	1,6254	20
0,050	1,4471	10
0,075	1,3900	7
0,101	1,3444	5
0,127	1,3412	4

Wzór do obliczania powierzchni F tu stosowany, jest różny od podazanych przez innych autorów [18, 19]. Różnice wynikają z większej dokładności tu stosowanych wyliczeń (wzory stosowane dla celów projektowych pomijają powierzchnie ścian czołowych oraz listw spinających, mie uwzględniają również powierzchni styku poszczególnych listw.

5. Opracowanie wyników doświadczalnych

Ogółem dla pięciu przebadanych wypełnień otrzymano 105 punktów pomiarowych.

Dla rozpatrywanego przypadku tj. dla dyfuzji przez warstwę graniczną składnika 1 przez inert (przy pominięciu ewentualnej desorpoji tlenu i azotu z wody) należy stosować zgodnie z zaleceniem [20] następujący wzór na moduł napędowy

$$\Delta \Pi_{A} = \frac{\Delta X_{A}}{(1 + X_{A})_{m}}$$
(11)

Wobec bardzo małych wartości X_A (0,5 x 10⁻³) powyższy wzór można uprościć

$$\Delta \Pi_A \cong \Delta X_A \tag{12}$$

W poszczególnych przekrojach moduły napędowe przyjmą postać

I $\Delta \mathbf{T}_{A1} = \mathbf{X}_{A2} = \mathbf{X}_{A1} = \Delta \mathbf{X}_{A1}$ II $\Delta \mathbf{T}_{A2} = \mathbf{X}_{A3} = \mathbf{X}_{A2} = \Delta \mathbf{X}_{A2}$

Dla uprossessmia oblicsania licsby Sherwooda

$$\operatorname{Sh}_{\mathbf{g}} = \frac{\mathbf{A}_{\mathbf{A}}^{\prime} \mathbf{v}_{\mathbf{g}}^{\prime}}{\mathbf{\delta}_{\mathbf{A}}^{\prime}}$$

posintono się bezwymierową zmodyfikowaną liczbą Stantona

$$St_z = \frac{Sh_z}{Re_z Sc}$$
 (13)

Po podstawieniu w równamie (13)

 $Sh_{z} = \frac{A_{A}^{\prime} v_{z}^{\prime}}{\delta_{A}^{\prime}} Re_{z} = \frac{4\Gamma}{7} Sc = \frac{7}{H \delta_{A}^{\prime}}$

otrzymanys

$$St_{z}^{*} = \frac{\beta_{A}^{*} v_{z}^{*} H}{4\Gamma}$$
(14)

Współczynnik wnikania masy można przedstawić opierając się na definicyjnym równaniu

$$G'_{A} = \beta'_{A} P \Delta \Pi_{Am}$$
(15)

oraz równaniu bilansu masowego

$$G'_{A} = G'_{W}(X_{A2} - X_{A1})$$
 (16)

Z porównania obu tych zależności współczynnik wnikania masy określa związek

$$\mathcal{B}'_{A} = \frac{G'_{W} (X_{A2} - X_{A1})}{F \Delta \pi_{AT}}$$
(17)

Wstawiając S[']_A z równania (17) do równania (14) oraz uwzględniając zależność (12) otrzymany

$$St'_{z} = \frac{G'_{w} (x_{A2} - x_{A1}) \vartheta_{z} M}{4 \Gamma F \Delta x_{Am}},$$
 (18)

ponieważ

$$M \cong M_{W}$$

Wstawiając tę zależność do równania (18) otrzymamy

$$St_{z} = \frac{G_{w} (X_{A2} - X_{A1}) v_{z}^{4}}{4\Gamma F \Delta X_{Am}}$$
(19)

Średnie wartości modułu napędowego obliczano stosując umownie średnią logarytmiczną

$$\Delta x_{Am} = \frac{\Delta x_{A1} - \Delta x_{A2}}{\Delta x_{A1}}$$
(20)

Średnia logarytmiczna uzasadniona wprawdzie teoretycznie tylko przy stałym współczynniku lokalnym oraz dla spływu burzliwego, stosowana jest jednak umownie również w równaniach opisujących ten rodzaj wnikania masy [20]. Wstawiając wartość na ∆ X_{Am} z równania (20) do równania (19) otrzymujemy:

$$\operatorname{St}_{z}' = \frac{\operatorname{G}_{w} \left(\operatorname{X}_{A2} - \operatorname{X}_{A1} \right) \vartheta_{z}}{4\Gamma \operatorname{F} \left(\Delta \operatorname{X}_{A1} - \Delta \operatorname{X}_{A2} \right)}$$
(21)
$$\frac{\operatorname{L}_{w} \left(\Delta \operatorname{X}_{A1} - \Delta \operatorname{X}_{A2} \right)}{\ln \frac{\Delta \operatorname{X}_{A1}}{\Delta \operatorname{X}_{A2}}}$$

a ponieważ

$$\Delta X_{A1} = X_{Az} - X_{A1}$$
$$\Delta X_{A2} = X_{Az} - X_{A2},$$

to

$$\Delta X_{A1} - \Delta X_{A2} = X_{A2} - X_{A1}$$

wstawiając to do równania (21) otrzymujemy

$$St'_{z} = \frac{G_{W} z}{4\Gamma F} \ln \frac{\Delta X_{A1}}{\Delta X_{A2}}$$
(22)

$$\frac{G}{P} = 0$$
 0 = 6.2.1 = 121

wstawiając te zależności do (22)

$$St'_{z} = \frac{3 l \vartheta'_{z}}{F} \cdot ln \frac{\Delta \chi_{A1}}{\Delta \chi_{A2}}$$
(23)

Po obliczeniu liczb Stantona, liczby Sherwcoda wyliczano z następującej zależności

$$Sh_z = St'_z \cdot Re_z \cdot Sc$$
 (24)

Zasadnicze dane pomiarowe oraz wyniki obliczeń zestawiono w tablicy 1.

W celu dokonania wstępnej oceny uzyskanego materiału doświadczalnego naniesiono otrzymane punkty doświadczalne na wykres o współrzędnych $Sh_z - Re_z$ (rys. 6). Dla porównania otrzymanych wyników z wartościami otrzymanymi przez autorów [5, 6, 8, 10, 11] sporządzono wykres o współrzędnych $Sh_z - Re_z$ i wrysowano na niego linie obrazujące równania powyższych autorów oraz wyniki własne (rys. 10). Oznaczenia linii podano na str. 25.

Następnie sporządzono dla własnych punktów doświadczalnych wykres o współrzędnych

$$\frac{Sh_{z}}{Sc^{0,33} \left(\frac{v_{z}}{h}\right)^{0,102}} = f(Re_{z}) \quad (rys. 7)$$

Ten wykres spowodował większe skupienie punktów i wyeliminowanie niedokładności wykresu o współrzędnych Sh_z = $f(\text{Re}_z)$ na skutek zmienności wartości liczby Schmidta i simpleksu $\frac{\sqrt{z}}{h}$).

Analiza powyższych wykresów pozwoliła wysunąć następujące wnioski:

- 1) Otrzymano dobre skupienie punktów doświadczalnych.
- 2) Rozmieszczenie punktów pomiarowych wskazuje na istnienie jednego zakresu dla wszystkich przebadanych liczb Reynoldsa. Jest to uzasadnione teoretycznie, gdyż przebadano zakres liczb Reynoldsa od 107--415 należacych do spływu uwarstwionego.
- 3) Porównanie własnych wyników liczbowych z wynikami innych autorów wskazuje, że nasze leżą powyżej wartości uzyskanych z równania opisującego spływ po ścianie płaskiej. Te różnice są zrozumiaże i nie wymagają bardziej szczegóżowych wyjaśnień.

W porównaniu z wynikami otrzymanymi z równań Kuzniecowa wyniki własne leżą nieco niżej.

Przyjęto więc dla całego przebadanego zakresu jedną postać ogólnego równania korelacyjnego w następującej postaci:

$$\operatorname{Sh}_{\mathrm{Z}} = \operatorname{C} \operatorname{Re}_{\mathrm{Z}}^{\mathrm{a}} \operatorname{Sc}^{0,33} \left(\frac{\vartheta_{\mathrm{Z}}}{\mathrm{h}}\right)^{\mathrm{b}}$$

Dla wyznaczenia stałej C oraz wykładników potęgowych a i b posłużono się postacią liniową tego równania

$$\ln \frac{\mathrm{Sh}_{z}}{\mathrm{Se}^{0.33}} = \ln C + a \cdot \ln \mathrm{Re}_{z} + b \cdot \ln \left(\frac{\sqrt[4]{z}}{h}\right)$$

Obliczenia wykonano w Ośrodku Resortowym Maszyn Matematycznych przy Biurze Projektowym "Prosynchem" w Gliwicach, na maszynie cyfrowej ZAM 2, metodą najmniejszych kwadratów. Sprawdzenie obliczenia oraz ocenę dokładności korelacji przeprowadzono na maszynie cyfrowej ZAM 41.

Otrzymano następujące wartości dla stałej C oraz wykładników potęgowych a i b

> C = 0,080574a = 0,400653 b = 0,101678

Po przybliżeniu wartości do trzech miejsc znaczących uzyskano następującą postać równania

$$Sh_z = 0,0806 Re_z^{0,401} Sc^{0,33} \left(\frac{h}{h}\right)^{0,102}$$
 (25)

Na rysunku 8 przedstawiono zależności między wartościami liczb Sherwooda obliczonymi z równania korelacyjnego z wartościami doświadczalnymi

a na rys. 9 zależność pomiędzy

$$\frac{(\operatorname{Sh}_{z})_{\operatorname{dośw.}}}{(\operatorname{Sh}_{z})_{\operatorname{obl.}}} = f(\operatorname{Sh}_{z})_{\operatorname{dośw.}}$$

Z powyższych wykresów wynika, że rozrzut punktów nie przekracza - 10%. Tylko bardzo nieliczne punkty leżą poza tym zakresem. Obliczone błędy średnie przeciętnych wartości wyznaczonych w stałej C oraz wykładników potęgowych są następujące:

$$S_{10g C} = 0,1241$$

 $S_a = 0,01683$
 $S_b = 0,02132$

Niezależnie od błędów obserwacji należałoby rozpatrzeć błędy systematyczne pomiarów. Do tego rodzaju błędów należy zaliczyć błędy popełniane przy wyznaczaniu temperatury spływającego filmu, błędy pomiaru natężenia przepływu cieczy, błędy wynikłe z przyjęcia stałej zawartości CO₂ w gazie, w ilości 99%, błędy wynikłe z dokładności metody analitycznej oznaczania CO₂ w wodzie oraz błędy wynikłe z przyjęcia za powierzchnie wymiany masy, powierzchni geometrycznej wypełnienia.

Rozpatrzmy po kolei wszystkie powyższe źródła błędów systematycznych:

Temperatury wody wlotowej i wylotowej mierzone z dokładnością 0,1°C były bliskie. Różnica nie przekraczała 1°C. Błędy więc popełnione przy przyjmowaniu temperatury spływającego filmu, jako średniej z tych dwóch temperatur, nie mogły być znaczne.

Natężenie przepływu cieczy mierzono przy pomocy specjalnie sprawdzanych rotametrów.

Na podstawie analiz przyjęto w obliczeniach, że gaz zawiera średnio 99% dwutlenku węgla. Wartości zmierzone wahały się od 98%-100%. Przyjęcie za miarodajne skrajnych zmierzonych wartości spowodowałoby maksymalne odchyłki wartości liczb Sherwooda około 2% w stosunku do obliczonych przy założeniu, że gaz zawiera 99% CO₂.

Stężenie dwutlenku węgla w wodzie zasilającej i opuszczającej urządzenie oznaczano przy pomocy miareczkowania, stosowano ogólnie przyjętą metodę analityczną, przy czym występowanie jakichś zasadniczych błędów systematycznych było w zasadzie niemożliwe.

Przyjęcie w obliczeniach za powierzchnię wymiany masy powierzchni mniejszej, tj. powierzchni wypełnienia, powoduje otrzymanie większych wielkości na współczynniki wnikania masy β_{Ac} . Nadmienić tu należy, że te różnice są minimalne dla tego rodzaju wypełnienia, gdzie głównymi elementami są ścianki płaskie pionowe. Biorąc jednak pod uwagę, że wzór otrzymany z niniejszej pracy będzie służył projektantom urządzeń technicznych, którzy również w miejsce powierzchni wymiany masy będą używać powierzchni wypeżnienia, żaden błąd nie zostanie popełniony.

Wpływ dna aparatu został omówiony na str. 17.

Ogólnie można stwierdzić, że rozpatrując metodykę pomiarową stosowaną w niniejszej pracy dochodzimy do wniosku, że większe błędy systematyczne nie mogły być popełnione.

6. Omówienie wyników

Na podstawie opracowania 105 punktów doświadczalnych otrzymano następujące równanie empiryczne:

$$Sh_z = 0,0806 \ Re_z^{0,401} \ Sc^{0,33} \left(\frac{v_z}{h}\right)^{0,102}$$
 (26)

Równanie to jest ważne dla zakresu przebadanych liczb Reynoldsa, tzn.

$$107 \leq \operatorname{Re}_{7} \leq 415$$

Ewentualne ekstrapolowanie jest możliwe, lecz tylko w kierunku mniejszych liczb Reynoldsa. Nie zachodzi bowiem wtedy obawa o zmianę charakteru spływu.

Na rysunku 10 przedstawiono zależności $Sh_z = f(Re_z)$ dla trzech autorów oraz wyniki własnych doświadczeń. Numeracja linii na wykresie jest następująca:

- 1 M.D. K.zniecow [10, 11]
- 2 T. Hobler, S. Kędzierski [5, 6]
- 3 K.A. Morris, J. Jackson [8]
- 4 badania własne.

Padmienić należy, że wszystkie linie otrzymano wstawiając przy wyliczeniu jako wysokość b = 125 m , tj. wysokość elementu wypełmienia.

Aby porównać wyniki własne z wynikami uzyskanymi przez innych autorów, należy rozpatrzyć dwie sprawy. Wielkości otrzymanych liczb Sherwooda, a tym samym i współczynników wnikania masy ß Ac z poszczególnych równań oraz wpływ poszczególnych modułów Re, Sc (2).

Analiza wykresu (rys. 10) wskazuje, że linia otrzymana na podstawie własnych badań leży nieco poniżej linii otrzymanej przez Kuzniecowa[10] W porównaniu z linią otrzymaną z równania Morrisa, Jacksona [8] własne wyniki dla mniejszych liczb Reynoldsa leżą nieco powyżej, dla wyższych zaś nieco poniżej. W porównaniu z linią reprezentującą ścianę płaską [5, 6] linia własna leży znacznie wyżej.

Wykładnik potęgowy przy liczbie Reynoldsa otrzymano w niniejszej pracy a = 0,401. Jest on najbliższy takiemu wykładnikowi otrzymanenu przez Kuzniecowa [10] (a = 0,324), lecz dużo mniejszy niż proponują Morris i Jackson [8] (a = 0,7). Tak duży wykładnik potęgowy, stosowany przez ww. autorów, specjalnie duże rozbieżności z wynikami własnymi i Kuzniecowa da w zakresie małych liczb Re_z (takie małe liczby Re_z = 10 spotykamy w płuczkach benzolowych). Wykładniki potęgowe otrzymane przez [2, 4, 5] mieszczą się między 0,111-0,33 i mniej nadają się do porównania z badaniami własnymi ze względu na charakter procesu.

W niniejszej pracy otrzymano wykładnik potęgowy przy simpleksie $\left(\frac{v_z}{h}\right)$ b = 0,101. Jest on bliski zarówno wynikom otrzymanym przez Hoblera i Kędzierskiego [5, 6] b = 0,144, jak również przez Morrisa, Jacksona [8], jest on tu uwzględniony w współczymniku wypełnienia R_c, który jest funkcją wysokości elementu wypełnienia, natomiast dość odległy od wyników otrzymanych przez [2, 4, 10].

W równaniu Kuzniecowa [10] wykładnik potęgowy jest bardzo duży b = = 0,503. Otrzymane więc wielkości współczynników β_{Ac} według tego autora dla skrajnych stosowanych wysokości elementu h = 0,025 i h = = 0,125 będą różniły się $\sqrt{5}$ razy na korzyść najmniejszych "h" (rys. 11). Taki wpływ nakazywałby w praktyce stosować jak najmniejsze "h", gdyż pozwalałoby to na otrzymanie przeszło 2 razy większych współczynników β_{Ac} . Ani badania własne, ani praktyka przemysłowa, ani wyniki innych autorów [8] nie potwierdzają tego spostrzeżenia.

7. Wnioski

- Współczynnik wnikania masy A Ac otrzymany w niniejszej pracy jest
 3,5 razy większy od współczynników otrzymanych z równania dla ściany płaskiej, bliski zaś wielkościom otrzymanym z równań (1) i (3) przedstawionych na rys. 10 z zastrzeżeniami podanymi na stronie 29 oraz poniżej we wniosku nr 3.
- 2) Wykładnik potęgowy przy liczbie Reynoldsa a = 0,401 wskazuje, że spływ jest raczej podobny do spływu uwarstwionego, lekkie zaburzenia sprawiają, że jest on nieco wyższy.
- 3) Wykładnik potęgowy przy simpleksie $\frac{\sqrt{2}}{h}$ b = 0,102 wskazuje na bardzo mały wpływ wysokości elementu wypełnienia. Wartości współczynników β_{AC} otrzymane dla wysokości h = 0,025 są tylko kilkanaście procent wyższe niż dla h = 0,125.

Rys. 1. Zestawienie linii $Sh_z = f(Re_z)$ wg równań różnych autorów

Rys. 3. Dolna półka

Rys. 4. Wypełnienie rusztowe

Rys. 5. Elementy wypełnienia

Rys. 8. Porównanie znalezionych doświadczalnie wartości liczb Sherwooda z wartościami obliczonymi

Rys. 10. Zestawienie linii $Sh_z = f(Re_z)$ wg równań różnych autorów oraz równania własnego

- 1. Morris K.A., Jackson J .: Absorption Towers, London 1953, s. 82.
- 2. Pigford R.L., Thesis Ph.D.: Univ. of Illinois (1941).
- 3. Sherwood T.K., Pigford R.L.: Absorption and Extraction, New York 1952.
- 4. Van Krevelen D.W., Hoftizjer P.J., Rec. Trav. Chim., 68, 221,(1949).
- 5. Kędzierski S., Praca doktorska; Zakład Inż. Chem. i Konstr. Aparat PAN, Gliwice.
- 6. Hobler T., Kędzierski S., Chemia Stosowana V.1B. 3, (1968).
- 7. Hobler T., Kędzierski S., Chemia Stosowana IV, 1B, 3 (1967).
- 8. Morris K.A., Jackson J., Absorption Towers, London 1953, s. 18.
- 9. Hobler T., Dyfuzyjny ruch masy i absorbery, WNT Warszawa 1962.
- 10. Kuzniecow M.D., Żur. prikł. chimii XXI, 1, (1948).
- 11. Korobczańskij I.E., Kuzniecow M.D., Razczety chimiczeskoi aparaturu koksochimiczeskoi promyszlennosti, Moskwa 1952.
- 12. Vielstich W., Chem. Ing. Techn., 28, 543, (1956).
- 13. Johnstone H.F., Singh A.O., Ind. Eng. Chem., 29, (3) 286, (1937).
- 14. International Critical Tables of Numerical Data Physics, Chemistry and Technology, New York 1929.
- 15. Poradnik Fizykochemiczny WNT Warszawa 1962.
- 16. Kalendarz Chemiczny II-1, PWT Warszawa 1955.
- 17. Hobler T., Ruch ciepła i wymienniki. PWT Warszawa. 1954.
- 18. Hobler T., Dyfuzyjny ruch masy i absorbery. WNT Warszawa 1962, s. 219.
- 19. Poradnik koksochemika, WGH Katowice, 1954, s. 354.
- Hobler T., Dyfuzyjny ruch masy i absorbery. WNT Warszawa 1962, s. 77, 139.

Streszczenie

Frzebadano doświadczalnie wnikanie masy w fazie ciekłej przy spływie cieczy po wypełnieniu z rusztu drewnianego prostego na układzie dwutlenek węgla-woda.

Zakres stosowanych zmienności parametrów był następujący:

G_W 280-1080 kg/h Re_z 107-415

 $\frac{\sqrt{2}}{h}$ 0,2026 10⁻² - 0,4163 10⁻³

Przez porównanie wyników własnych z wynikami innych autorów wykazano ich rozbieżności.

Wyniki doświadczalne aproksymowano następującym równaniem kryterialnym:

$$Sh_{z} = 0,0806 \text{ Re}^{0,401} \text{ Sc}^{0,33} \left(\frac{\sqrt{2}}{h}\right)^{0,102}$$

ноэффациент массоотдачь в жадной фазе АС

Содержание

исследован экспериментально массообмен в жидкой фазе при течении жидкости по хордовой насадже в системе двузкись углерода - вода.

Параметры изменялись в следующем интервале:

 $G_W = 280 - 1080 \text{ xr/vac}$ $\operatorname{Re}_z = 107 - 415$ $\frac{107}{h} = 0,2026 \cdot 10^{-2} - 0,4163 \cdot 10^{-3}$

Сравнением собственных результатов с результатами других автогов доказаны расхождения между ними.

Экспериментальные результаты аппроксимированы следующим корреляционным уравнением

$$Sh_z = 0,0806 \text{ Re}_z^{0,401} S_c^{0,33} (\frac{v_z}{h})^{0,102}$$

LIQUID - PHASE MASS TRANSFER COEFFICIENT A ON THE WOODEN GRID PACKING

Summary

Mass transfer in the liquid phase at the liquid flow down a wooden grid packing, in the system carbon dixide - water, has been studied.

The variability range of the parameters used was as follows:

G_W 30-1080 kg/hr. Re_z 107-415

 $\frac{\vartheta_z}{h}$ 0,2026 x 10⁻² - 0,4163 x 10⁻³

The comparison of the own results with those of other authors has displayed the divergencies between them.

The experimental results have been approximated by the following correlation equation

$$Sh_z = 0,0806 \text{ Re}_z^{0,401} \text{ Sc}^{0,33} (\frac{\vartheta_z}{h})^{0,102}$$

[1] Tablice danych pomisrowych i obliczeniowych

Lp.	t°C	G kg h	T m.h	Reg	Sc	h.10 ³	<u>v</u> _s .10 ³	Δp Tr	PH20s	Pot Tr	P Tr	P _{AZ} Tr	x _{AZ} .10 ³	x _{A1} ,10 ⁶	X _{A2} .10 ³	F m2	St _z .105	Shg
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1	13,2	279,819	116,01	107,58	827,33	26	2,029	2,58	11,34	741,2	743,77	724,99	0,8352	12,5	0,6615	1,6254	3,024	2,692
2	15,5	319,790	133,02	123,68	822,61	2 6	2,026	2,06	11,41	741,2	743,28	724,44	0,8334	13,1	0,6358	1,6254	2,764	2,812
3	13,3	359,764	149,90	139,40	822,61	26	2,026	1,47	11,41	741,2	742,67	723,83	0,8327	13,0	0,6025	1,6254	2,466	2,828
4	13,3	399,738	166,55	154,88	822,61	26	2,026	1,32	11,41	741,2	742,57	723,73	0,8326	12,9	0,5828	1,6254	2,308	2,940
5	13,2	439,716	183,21	169 ,9 2	827,33	26	2,029	0,95	11,34	741,2	742,15	723,39	0,8333	12,7	0,5537	1,6254	2,094	2,944
6	13,2	479,690	199,87	185,37	827,33	26	2,029	1,84	11,34	741,2	743,03	724,26	0,8344	12,3	0,5437	1,6254	2,020	3,100
7	13,2	519,665	216,52	200,81	827,33	26	2,029	1,47	11,34	741,2	742,67	723,90	0,8339	12,3	0,5377	1,6254	1,9848	3,298
8	13,1	559,643	233,18	215,98	829,64	26	2,031	1,84	11,27	741,2	743,03	724,30	0,8349	12,3	0,5363	1,6254	1,9708	3,532
9	13,1	599,622	249,84	231,10	832,02	26	2,031	1,84	11,27	741,2	743,03	724,33	0,8360	12,5	0,4993	1,6254	1,7420	3,350
10	13,1	639,5 9 6	266,49	246,50	832,02	26	2,031	1,84	11,27	741,2	743,03	724,33	0,8360	12,6	0,5001	1,6254	1,7456	3,580
11	13,1	679,571	283,15	261,91	832,02	26	2,031	1,47	11,27	741,2	742,67	723,97	0,8356	13,2	0,4890	1,6254	1,6824	3,666
12	13,1	719,546	299,81	277,32	832,02	26	2,031	1,84	11,27	741,2	743,03	724,33	0,8360	13,2	0,4974	1,6254	1,7290	3,990
13	13,1	759,521	316,46	292,72	832,02	26	2,031	1,47	11,27	741,2	742,67	723,97	0,8356	13,2	0,4631	1,6254	1,5420	3,756
14	13,1	799,496	333,12	308,13	832,02	26	2,031	1,10	11,27	741,2	742,30	723,61	0,8351	13,5	0,4512	1,6254	1,4820	3,800
15	13,1	839,470	349,77	323,53	832,02	26	2,031	2,06	11,27	741,2	743,28	724,58	0,8363	13,1	0,4517	1,6254	1,4816	3,988
16	12,8	879,472	366,44	336,63	844,27	56	2,042	1,10	11,08	741,2	742,3	723,80	0,8376	13,1	0,4549	1,6254	1,5022	4,270
17	12,8	919,498	383,12	351,90	844,27	26	2,042	2,58	11,08	747,2	742,70	72,20	0,8465	12,7	0,4270	1 6254	1,3598	4,216
18	12,8	959,425	399,75	367,24	844,27	70	2,042	-+ g ++ 1	44.00	77196	747101	727 07	0,8/165	12 7	0.4236	1.6254	1,3290	4,292
10	12,8	099,402	416,41	382,54	844,27	26	2,042	4,41	11,08	741,2	747,01	728 02	0,0409	12 5	0.4301	1.6254	1,3572	4,560
20	12,8	1039, 278	433,07	397,84	844,27	26	2,042	5,97	44.09	741,2	740,37	728 20	0,8478	12.8	0.3865	1.6254	1.1754	4,100
21	12,8	1079,354	449,72	413,13	844,27	26	2,042	5,55	11,08	14192	140,12	120,20	0,0470	1290	0,000)	10274	11124	

1									_															1
45	\$	43	42	41	8	99	8	14	ж	35	*	33	32	31	30	29	28	27	8	3	2	23	22	-
13 3	13,4	13.4	12.7	12.7	12.7	12.7	12.7	12,7	12.7	12.8	12,8	12,8	12,8	12,8	12,8	12,8	12,0	12.8	22 08	12.8	12.8	13.0	13.0	N
359 762	319,784	279 811	1079,368	1039, 391	999, 415	959,438	919,461	879 485	839,508	799, 521	759 545	719,569	679,593	639,617	599,641	559,665	519 689	479,712	439 736	087 6 64	359 784	719,800	279,825	ę
149,90	133,24	116,58	459,73	433,07	416 42	99,76	383,10	760,45	349.79	333,13	316 . 7	299,81	283,16	266,50	249,85	233,19	216 53	199,87	183,22	166,56	149,90	133,25	116,59	*
139,50	124,40	108,80	413 16	397,84	382,54	367,24	35 95	336,65	321 35	305 04	290,73	275.43	260,12	244,83	229 53	214,23	198,92	183,61	168,32	153.01	137.91	122,41	107 .09	UT .
820,29	815,65	815 65	849,57	849,57	849,57	849,57	849,57	849,57	849,57	844,27	844,27	844 , 27	844 , 27	844,27	844,27	844,27	844.27	844,27	844,27	844,27	844,27	833 67	833 67	6
75	75	75	ß	8	5	8	8	8	25	8	8	50	50	25	8	8	8	50	50	50	ß	8	8	7
0,7005	0.6030	0,6990	1,064	1,064	1,064	1,064	1,064	1,064	1,064	1,061	1,061	1,061	1,061	1,061	1,061	1,061	1,061	1,061	1,061	1,061	1,061	1,057	1,057	0
2	3,53	4,0	1 84	1,48	1,48	1,10	7,10	0,88	1,10	1,33	1,84	7,10	1,10	1,48	1,48	1,10	1,48	1,84	1,10	1,48	1 48	1,10	1,10	9
11,45	11,52	11,52	11,01	11,01	11,01	11,01	11,01	11,01	11,01	11,08	11,08	11,08	11,08	11,08	11,06	11,08	11,08	11,08	11,08	11,08	11 08	11 22	11,22	10
743,2	743,2	743,2	742,6	9, 64 4	742,6	742,6	742,6	742,6	742,6	742,6	742 6	742 6	742,6	742,6	742,6	742 6	742 6	742,6	742,6	742 6	7.2.6	742.6	742,6	11
746,14	746,73	747,24	744,44	744 08	744,08	743,70	743,70	743,48	743,70	743,93	744,44	743,70	743,70	744,08	744 08	743,70	744 08	744 44	745 70	744,08	744 08	743,70	743,70	12
727,25	727 ,74	728,24	725,98	725,62	725,62	725,25	725,25	725 03	725,25	725 41	725.91	725,18	725,18	725,55	725,55	725,18	725 55	725,91	725,18	725,55	725,55	725 04	725,04	13
0468.0	0,8356	0,8361	0,8481	0,8476	0,8476	0,8472	0,8472	0,8469	0,8472	0,8445	0,8451	0,8443	0,8443	0,8447	0,8447	0,8443	0,8447	0,8451	0 8443	0,8447	0.8447	0,8384	0,8384	14
C42L	12,5	12,5	12,5	12,5	12,5	12,5	13,0	13.0	12,8	12.7	12,5	12,5	12,5	12,8	12,8	13,0	13,0	13,0	12.7	12.7	12,5	12,5	13.0	15
0,5000	0,5508	0,5884	0 3415	0,3864	0,3712	0,3707	0,3704	0,3849	0,4013	0,4189	0,4275	0,4370	0,4365	0,4317	0,4797	0,4707	0,5119	0,4990	0,5299	0,5021	0,5510	0,5849	0,6223	16
m6C ⁴ L	1,3900	1,3900	7,4477	7,4477	1,4471	7,4471	1,4471	7,4471	7,4477	7,4471	1,4471	1,4471	1,4471	7,4471	7,4471	7,4471	7,4471	1,44771	1,4471	1,4471	7,4471	1,4471	1,4471	17
an/ne2	2,3948	2,7156	1,1024	1,3074	1,2370	1,2724	1,2326	1,3018	1,3810	1,4736	1,5178	1,5696	1,5674	1,5402	1,8122	1,7582	2,0134	1,9288	2,1390	1,9506	2,2898	2,5868	2,9344	18
C 20	2 430	2,410	3, 870	4,420	4,020	3,970	3,686	3,724	3,770	3,808	3,726	3,650	3, 142	3,184	3,512	3,180	3,382	2,990	3,040	2 520	2,666	2,640	2,620	19

																	10	40
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
46	13,3	399,735	166,55	155,00	820,29	75	0,7005	3,31	11,45	743,2	746,51	727,59	0,8365	12,5	0,4915	1,3900	1,9724	2,508
47	13,2	439,714	183,21	170,15	824,96	75	0,7020	2,94	11,37	743,2	746,14	727,30	0,8373	12,5	0,4919	1,3900	1,9760	2,772
48	13,1	479,694	199,87	185,13	829,64	75	0,7035	2,43	11,29	743,2	745,63	726,87	0,8378	12,5	0,4978	1,3900	2,0078	3,084
49	13,1	519,669	216,52	200,55	829,64	75	0,7035	3,68	11,29	743,2	746,88	728,11	0,8393	12,5	0,4749	1,3900	1,8640	3,102
50	13,0	559,651	233,18	215,41	833,67	75	0,7050	2,06	11,22	743,2	745,26	726,58	0,8402	12,5	0,4345	1,3900	1,6258	2,920
51	13,0	599,626	249,84	230,79	8×3,67	75	0,7050	3,68	11,22	743,2	746,88	728,18	0,8421	12,5	0,4365	1,3900	1,6310	3,138
52	1300	639,601	266,50	246,19	933,67	75	0,7050	5,15	11,22	743,2	748,35	729,62	0,8437	12,5	0,4075	1,3900	1,4694	3,016
53	13,0	679,576	283,15	261,57	833,67	75	0,7050	3,68	11,22	743,2	746,88	728,18	0,8421	12,5	0,4284	1,3900	1,5864	3,460
54	12,9	719,560	299,81	276,19	838,97	75	0,7064	3,68	11,15	743,2	746,88	728,26	0,8450	12,5	0,3745	1,3900	1,3032	3,020
55	12.9	759.536	316,47	291,54	838,97	75	0,7064	1,84	11,15	743,2	745,04	726,44	0,8429	12,5	0,3938	1,3900	1,4072	3,432
55	12.8	799.521	335,13	306,80	844,27	75	0,7079	3,31	11,08	743,2	746,51	727,96	0,8475	12,5	0,4038	1,3900	1,4476	3,750
57	12.8	839.497	349.78	321.34	844,27	75	0,7079	5,15	11,08	743,2	748,35	729,79	0,8496	12,5	0,3885	1,3900	1,3652	3,704
58	12.8	879-473	366.44	336.65	844,27	75	0,7079	1,47	11,08	742,9	744,37	725,85	0,8450	12,8	0,3525	1,3900	1,2030	3,420
50	12.8	919.449	383.10	351.95	844.27	75	0,7079	1,47	11,08	742,9	744,37	725,85	0,8450	12,8	0,3633	1,3900	1,2518	3,718
60	12 8	959 425	399.76	367.26	844.27	75	0,7079	2,21	11,08	742,9	745,11	726,58	0,8459	12,8	0,3584	1,3900	1,2262	3,802
60	12.0	000 402	416.41	382.55	844.27	75	0,7079	1,12	11,08	742,9	744,02	725,50	0,8446	12,8	0,3751	1,3900	1,3094	4,230
01	12,0	777,402	410,41	207 96	8/1/ 20	75	0.7079	1,12	11.08	742.9	744.02	725.50	0,8446	12,8	0,3264	1,3900	1,0834	3,640
62	12,8	1039,37	475,07	412-15	844 27	75	0,7079	1,12	11.08	742.9	744.02	725,50	0,8446	12,8	0,3436	1,3900	1,1610	4,050
64	12,8	079, 25	449,72	100 PO	884 41	101	0.5345	1.47	10.51	748.6	750.07	732,06	0,8759	13,0	0,5621	1,3444	2,4340	2,256
64	12,0	279,859	477.00	134,00	004,41	101	0 5345	1.32	10.51	748.6	749.92	731.91	0,8758	13.0	0,5177	1,3444	2,1146	2,240
65	12,0	419,849	159,26	119,77	004,41	404	0 5745	1 4 10	10.51	748 6	750 07	732.05	0.8759	13.0	0,5250	1.3444	2,1648	2,580
66	12,0	359,819	149,92	134,75	884,41	101	0,5545	1 47	10,51	748 6	250 07	731.92	0,8697	13.0	0,4851	1.3444	1,9192	2,526
67	12,2	399,790	166,57	150,52	874,30	101	0,5225	1,47	10,05	740,0	7,0,07	7784 85	0.8687	13.0	0.4768	1.3444	1.8750	2.705
68	12,3	439,763	183,23	166,03	869,24	101	0,5312	1,47	10,72	748,6	750,07	721,07	0.0597	42.0	0,450	1 24.54	1.7758	2,796
59	12,3	479,742	199,89	181,13	869,24	101	0,5312	1,32	10,72	741,8	743,12	724,96	0,8585	12,7	9,4700	1.9.24444	19/120	£1130

		1		E	6	7	8	9	10	11	12	15	14	15	16	17	18	19
1	2	3	4	105 16	870 36	101	0.5334	1.47	10,58	741,8	743,27	725,26	0,8648	12,7	0,4575	1,3444	1,7724	3,042
70	15.1	519,729	210,77	040.48	970 36	101	0.5354	1.47	10.58	741,8	743,27	725,26	0,8648	12,7	0,4480	1,3444	1,7020	3,146
71	12,1	559,708	299,27	210,17	079,90	404	0 5745	4 84	10.51	741.8	743.34	725.40	0,8680	12,7	0,4082	1,3444	1,4950	2,966
72	12.0	599,698	249,87	224,57	884,41	101	0,5945	1,27	40.65	704 B	748 27	725.18	0.8617	12.7	0.4140	1,3444	1,5396	3,230
7*	12,2	639,664	266,52	240,84	874,30	101	0,5525	1,47	10,07	/4110		7-27,10	0.9675	42 7	0 3965	1.3444	1.4340	3.228
74	12,0	679,658	283,19	254,52	884,41	101	0,5345	1,12	10,51	741,8	742,92	724,90	0,8075	1297	0,7,00	4 30.00	1 2054	3.090
75	12,0	719,638	299,84	269,48	884,41	101	0,5345	1,47	10,51	741.8	743,27	725,33	0,8679	12,7	0,2690	1,2444	1,22704	5,030
76	12,0	759,618	316,50	284,45	884,41	101	0,5345	1,47	10,51	741,8	743,27	725,33	0,8679	12,7	0,3949	1,3444	1,4252	3,586
77	12.0	799,598	333,16	299,43	884,41	101	0,5345	1,47	10,51	741,8	743,27	725,33	0,8679	12,7	0,3924	1,3944	1,4122	3,740
79	42.0	830 578	149.82	314,40	884 . 41	101	0,5345	1,47	10,51	741,8	743,27	725,33	0,8679	12,7	0,3612	1,3444	1,2594	3,502
70	12,0	07,70	366 49	326 37	884.41	101	0.5345	1,47	10,51	748,6	750,07	752,06	0,8759	12,5	0,3432	1,3444	1,1622	3,386
79	12,0	879,770	200,40	JE 78 JT	001 44	101	0 5745	1.84	10.51	748.6	750,44	732,42	0,8764	12,5	0,3656	1,3444	1,2640	3,850
80	12,0	919,538	383,14	344,33	804;41	101	0,))*)	4 40	10.58	748.6	750.07	751.99	0.8728	12,5	0,3296	1,3444	1,1042	3,586
81	12,1	959,500	399,79	360,30	879,36	101	0,5354	1947	10,00	74010		774 00	0 8728	12.5	0.3451	1.3444	1,1730	3.872
82	12,1	999,480	416,45	375,31	879,36	101	0,5334	1,47	10,58	740,0	/30,07	721977	0,0720	40.5	0 2849	4 XAAA	1 1136	3,822
8*	12,1	1039,459	435,10	390,29	879,36	101	0,5334	1,47	10,58	748,6	750,07	731,99	0,8728	12,7	0,9910	4 7444	4 4908	7 984
84	12,1	1079,438	449,76	405,32	879,36	101	0,5334	1,32	10,58	748,6	749,92	731,84	0,8726	12,5	0,3262	1,2444	1,1030	5,004
85	17,0	279,832	116,59	107,70	833,67	127	0,4163	\$,58	11,22	746,7	749,28	730,56	0,8448	12,6	0,5633	1,3412	2,5610	2,308
86	13.0	319,808	133.25	123.09	833,67	127	0,4163	2,06	11,22	746,7	748,76	730,05	0,8442	12,6	0,5093	1,3412	2,1494	2,206
00	47.0	150 794	149.91	138.48	833.67	127	0,4163	1,84	11,22	746,7	748,54	729,83	0,8440	12,6	0,5258	1,3412	2,2692	2,620
07	15,0	777,704		462.96	833 67	127	0.4163	2.21	11,22	746,7	748,91	730,20	0,8444	12,6	0,4827	1,3412	1,9678	2,524
88	1*,0	399,760	156,50	155,00	099107	420	0 4467	1.47	11.22	746.7	748.17	729,46	0,8436	12,6	0,4860	1,3412	1,9928	2,812
89	13,0	439,736	183,22	169,23	899,07	127	0,410)		aa 09	Dh6 0	740 28	730.71	0.8507	12.6	0.4166	1,3412	1,5608	2,420
90	12,8	479,724	199,88	183,63	844,27	127	0,4180	2,58	11,00	/40 J /	749,20	(70) 74	0 9503	12.6	0.4/155	1.5412	1.5540	2,610
91	12,8	519,702	216,54	198,93	844,27	127	0,4180	2,21	11,08	746,7	748,91	750,54	0,0709	10.0	0 1075	4 8440	1.6074	2,900
92	12,8	559,679	233,19	214,23	844,27	127	0,4180	1,12	11,05	746,7	747,82	729,26	0,8490	12,6	0,4299	1,2412	4 8794	2,000
93	12,8	599,656	249,85	229,53	844,27	127	0,4180	1,84	11,08	746,7	748.54	729,97	0,8498	12,6	0,4111	1,3412	7,9996	2,9/2

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
94	12,7	639,640	266,51	244,16	844,27	127	0,4189	2,06	11,01	746,7	748,76	730,26	0,8531	12,6	0,4130	1,3412	1,5386	3,192
95	12,7	679,618	283,17	259,43	849,57	127	0,4189	1,47	11,01	746,7	748,17	729,68	0,8524	12,6	0,3755	1,3412	1,3456	2,966
96	12,7	719,596	299,83	274,69	849,57	127	0,4189	1,47	11,01	746,7	748,17	729,68	0,8524	12,6	0,3978	1,3412	1,4586	3,404
97	12,7	759,573	316,48	289,95	849,57	127	0,4189	1,85	11 ₈ 01	746,7	748,54	730,04	0,8528	12,6	0,3612	1,3412	1,2744	3,140
98	12,5	799,551	333,14	303,53	859,19	127	0,4207	1,84	10,87	746,7	748,54	730,19	0,8588	12,6	0,3648	1,3412	1,2854	3,352
99	12,5	839, 528	349,80	318,70	859,19	127	0,4207	1,47	10,87	746,7	748,17	729,82	0,8584	12,6	0,3574	1,3412	1,2498	3,422
100	12,5	879,506	366,40	333,89	859,19	127	0,4207	2,21	10,87	746,7	748 , 91	730,55	0,8592	12,6	0,3602	1,3412	1,2616	3,620
10	12,4	919,494	383,12	346,47	864,22	127	0,4215	2,06	10,80	746,7	748,76	730,48	0,8621	12,6	0,3329	1,3412	1,1320	3,390
102	12,4	959,472	399,78	361,54	864,22	127	0,4215	1,47	10,80	746,7	748,17	729,89	0,8614	12,6	0,3414	1,3412	1,1726	3,664
103	12,4	999,451	416,43	376,60	864,22	127	0,4215	2,21	10,80	746,7	748,91	7 30 ,62	0,8622	12,6	0,3307	1,3412	1,1214	3 4 650
104	12,4	1039,42	433,09	391,67	864,22	127	0,4215	1,99	10,80	746,7	748,69	730,41	0,8620	12,6	0,3331	1,3412	1,1344	3,840
105	12,4	1079,40	449,75	406,74	864,22	127	0,4215	1,64	10,80	746,7	748,34	730,06	0,8616	12,6	0 ,309 6	1,3412	1,0298	3,620

ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ

ukazują się w następujących seriach:

- Α. ΑυτοΜατγκα
- B. BUDOWNICTWO
- Ch. CHEMIA
- E. ELEKTRYKA
- En. ENERGETYKA
- G. GÓRNICTWO
- H. HUTNICTWO
- IS. INŻYNIERIA SANITARNA
- JO. JĘZYKI OBCE
- MF. MATEMATYKA-FIZYKA
- M. MECHANIKA
- NS. NAUKI SPOŁECZNE

Dotychczas ukazały się następujące zeszyty serii Ch:

Chemia	z.	1,	1954	r.,	s.	87,	zł	13,—
Chemia	z.	2,	1957	r.,	s.	140,	zł	29,25
Chemia	z.	3,	1959	r.,	s.	110,	zł	24,20
Chemia	z.	4,	1961	r.,	s.	30,	zł	2,80
Chemia	z.	15,	1961	r.,	s.	165,	zł	34,—
Chemia	z.	6,	1961	r.,	s.	33,	zł	3,15
Chemia	z.	7,	1961	r.,	s.	62,	zł	10,—
Chemia	z.	8,	1961	r.,	s.	58,	zł	6,30
Chemia	z.	9,	1962	r.,	s.	119,	zł	9,—
Chemia	z.	10,	1962	r.,	s.	58,	zł	5,80
Chemia	z.	11,	1962	r.,	s.	110,	zł	8,40
Chemia	z.	12,	1962	r.,	s.	148,	zł	11,50
Chemia	z.	13,	1963	r.,	s.	82,	zł	4,70
Chemia	z.	14,	1963	r.,	s,	73,	zł	5,—
Chemia	z.	15,	1963	r.,	s.	81,	zł	4,40
Chemia	z.	16,	1963	r.,	s.	92,	zł	5,30
Chemia	z.	17,	1963	r.,	s.	119,	zł	7,50
Chemia	z.	18,	1963	r.,	s.	118,	zł	7,65
Chemia	z.	19,	1963	r.,	s.	96,	zł	6,40
Chemia	z.	20,	1963	r.,	s.	148,	zł	9,10
Chemia	z.	21,	1964	r.,	s,	72,	zł	3,65
Chemia	z.	22,	1964	r.,	s.	75,	zł	5,50
Chemia	z.	23,	1964	r.,	s,	116,	zł	7,50
Chemia	z.	24,	1964	r.,	s.	302,	zł	14,40
Chemia	z.	25,	1964	r.,	s.	113,	zł	6,60
Chemia	z.	26,	1965	r.,	s.	95,	zł	5,50
Chemia	Ż.	27,	1965	r.,	s	137,	zł	7,20
Chemia	z.	28,	1966	r.,	s.	90,	zł	7,—
Chemia	z.	29,	1966	r.,	s.	100,	zł	8
Chemia	z.	30,	1966	r.,	S.	144,	zł	9,

Chemia	z.	31,	1966	r.,	s.	69,	zł	5,—
Chemia	z.	32,	1966	r.,	s.	60,	zł	5,—
Chemia	z.	33,	1967	r.,	s.	75,	zł	6,—
Chemia	z.	34,	1967	r.,	s.	155,	zł	10,—
Chemia	z.	35,	1967	r.,	s.	105,	zł	8,—
Chemia	z.	36,	1967	r.,	s.	75,	zł	5,—
Chemia	z.	37,	1967	r.,	s.	107,	zł	7,—
Chemia	z.	38,	1967	r.,	s.	90,	zł	6,—
Chemia	z.	39,	1967	r.,	s.	180,	zł	10,—
Chemia	z.	40,	1967	r.,	s.	132,	zł	8,—
Chemia	z.	41,	1968	r.,	s.	54,	zł	4,—
Chemia	z.	42,	1968	r.,	s.	86,	zł	6,—
Chemia	z.	43,	1968	r.,	s.	62,	zł	4,—
Chemia	z.	44,	1968	r.,	s.	53,	zł	4,—
Chemia	ż.	45,	1968	r.,	s.	68,	zł	4;—
Chemia	z.	46,	1968	r.,	s.	55,	zł	4,—
Chemia	z.	47,	1969	r.,	s.	123,	zł	8,—
Chemia	z.	48,	1969	r.,	s.	61,	zł	4,—
Chemia	z.	49,	1969	r.,	s.	105,	zł	6,—
Chemia	z.	50,	1970	r.,	s.	406,	zł	17,—
Chemia	z.	51,	1970	r.,	s.	79,	zł	4,50
Chemia	z.	52,	1970	r	s.	95,	zł	5,50
Chemia	z.	53,	1970	r.,	s.	110,	zł	6,50
Chemia	z.	54,	1970	r.,	s.	60,	zł	3,—
Chemia	z.	55,	1970	r.,	s.	86,	zł	5,—
Chemia	z.	56,	1970	r.,	s.	94,	zł	5,50
Chemia	z.	57,	1970	r.,	s.	128,	zł	10,—
Chemia	z.	58,	1971	r.,	s.	46,	zł	5,
Chemia	z.	59,	1972	r.,	s.	49,	zł	4,—

