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Abstract: The paper presents a theoretical explanation of the phenomena observed in 

tension components subjected to bending fatigue. It explains why this fatigue occurs close 

to anchorages and it intensity increases with value of tensile force in a cable. The 

Mathematica system has been used to solve the problem and illustrates the solution 

graphically. 
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X.1. Introduction 

There are two types of fatigue in tension components: due to axial and bending 

behavior [2]. This article focuses only on the second one. 

 

Many of articles, design standards and books on vibrations and fatigue 

[1,2,6,7,8,9] of structures with tension components like ropes and cables report two 

crucial observations: 

 

 the fatigue is observed mainly near the connections (anchorages), 

 the fatigue intensity enlarges with value of tensile axial force in the component. 

 

Eurocode 3 part 1-11 [9] says: Fatigue failure of cable systems usually occurs 

at anchorages, saddles or clamps.  

 

Procedures of cable testing for bridges are described in [3, 4]. The testing 

procedures simulate behavior of cables in real structures and consist in transverse 

and rotational deformations of clamped on both ends of prestressed ropes. 

 

There is shown  that these experiments and practical observations can be 

mathematical explained. To carry out this Wolfram Mathematica 10.2 

www.wolfram.com system has been used to solve the problem of a bent bar 

subjected to large tensile axial force. The theoretical basis of the plot is described 

in [5]. This paper focuses on merits, only.  
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X.2. Problem formulation 
In real structures with tensioned components, such elements behave as clamped 

near the anchorage [2]. Therefore, deformation of the element subjected to axial 

tensile force and two types of kinematic enforcements producing bending in them 

are considered. The scheme of the considered element is shown in Fig. 1. 

 

Fig. 1. Statical scheme of a clamped-clamped bar 

subjected to tension force 

Following the [5], a dimensionless coordinate   which is defined with (X.1) is 

introduced, where x  is a physical coordinate measured along the bar. The 

beginning of the coordinate system is in the middle of the beam. 
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Due to change of variables the following rule of differentiation holds: 
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The considered problem is described with the following homogenous 

differential equation of order two of the function of transverse displacement 

 w  : 

 (4) 2 0w w   , (X.3) 

where parameter  : 
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  . (X.4) 

Here S  is an axial tensile force in a bar, l  is its length, EJ  is its bending 

stiffness. If 0S   the equation describes the first order theory problem of bending 

of a straight bar.  

  



X.3. Problem solution 

As it has been mentioned the problem is solved, and illustrated with aid of 

Mathematica 10.2 system. To solve differential equation DSolve function is 

applied. ExpToTrig converts exponentials to trigonometric functions. 

FullSimplify tries a wide range of transformations involving elementary and 
special functions and returns the simplest form it finds. Assuming helps to find 

simplest form taking into account given assumptions. 

Further description of the used functions can be found in the system 

documentation or Wolfram Language & System Documentation Center 

http://reference.wolfram.com/language/ . 

We will consider two cases: transverse (lateral) displacement of clamps and 

rotation of them. The influence of axial tensile force on the bar behaviour is 

considered. 

 

X.3.1. Transverse displacement of clamps 

Transverse displacement of the right clamp is described with following boundary 

conditions:        1 0, 1 0, 1 1, 1 0w w w w       . The set of Mathematica 

functions produces the solution in a form of hyperbolic trigonometric functions. 

 

𝐀𝐬𝐬𝐮𝐦𝐢𝐧𝐠[𝝃 < 1&&𝜉

> −1, 𝐅𝐮𝐥𝐥𝐒𝐢𝐦𝐩𝐥𝐢𝐟𝐲[𝐄𝐱𝐩𝐓𝐨𝐓𝐫𝐢𝐠[𝐃𝐒𝐨𝐥𝐯𝐞[{𝒘(𝟒)[𝝃] − 𝝀𝟐𝒘′′[𝝃]

== 𝟎,𝒘[−𝟏] == 𝟎,𝒘[𝟏] == 𝟏,𝒘′[−𝟏] == 𝟎,𝒘′[𝟏] =
= 𝟎},𝒘[𝝃], 𝝃]]]] 

 

{{𝑤[𝜉] → −
−𝜆(1 + 𝜉)Cosh[𝜆] + Sinh[𝜆] + Sinh[𝜆𝜉]

2𝜆Cosh[𝜆] − 2Sinh[𝜆]
}} 

 
When 0  the solution is a well known function of first order theory of 

Structural Mechanics describing deformation of clamped-clamped bar subjected to 

transverse deformation of a bar. 

 

𝐋𝐢𝐦𝐢𝐭[−
−𝝀(𝟏 + 𝝃)𝐂𝐨𝐬𝐡[𝝀] + 𝐒𝐢𝐧𝐡[𝝀] + 𝐒𝐢𝐧𝐡[𝝀𝝃]

𝟐𝝀𝐂𝐨𝐬𝐡[𝝀] − 𝟐𝐒𝐢𝐧𝐡[𝝀]
, 𝝀 → 𝟎] 
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The deformation of the bar for 0   is show in Fig. 2.  

 

 

 

Fig. 2. Deformation of the bar subjected to the unit 

transverse displacement of the right support, for 0    

 
Readers familiar with Finite Element Method will find it as a very popular 

shape function. 

  



The case of the bar subjected to tensile axial force 0S   is presented in Fig. 3. 

It can be seen that in the middle of the span the bar straightens and near clamps 

intensively bends. 

 

 

Fig. 3. Deformation of the bar subjected to the unit 

transverse displacement of the right support, for 0    

 
According to rule (X.2) the function of bending moment as a function of   is 

defined with the following function. 
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We can evaluate the moment function both for 0   and 0   applying it at 

once for both above expressions. 

 
𝐀𝐬𝐬𝐮𝐦𝐢𝐧𝐠[𝝃 < 1&&𝜉

> −1, 𝐅𝐮𝐥𝐥𝐒𝐢𝐦𝐩𝐥𝐢𝐟𝐲[−𝟒𝝏{𝝃,𝟐}{−
𝟏

𝟒
(−𝟐

+ 𝝃)(𝟏 + 𝝃)𝟐, −
𝐒𝐢𝐧𝐡[𝝀𝝃] − 𝝀(𝝃 + 𝟏)𝐂𝐨𝐬𝐡[𝝀] + 𝐒𝐢𝐧𝐡[𝝀]

𝟐𝝀𝐂𝐨𝐬𝐡[𝝀] − 𝟐𝐒𝐢𝐧𝐡[𝝀]
}]] 

 

{6𝜉,
2𝜆2Sinh[𝜆𝜉]

𝜆Cosh[𝜆] − Sinh[𝜆]
} 

 

 
Funtion of bending moment for a bar not subjected to axial force is presented in 

Fig. 4. 

 

 

Fig. 4. Bending moment of the bar subjected to the unit 

transverse displacement of the right support, for 0   



Function of bending moment for a bar under a tensile axial force is presented in 

Fig. 5. A thin line represents the first order theory solution. 

 

 

Fig. 5. Bending moment of the bar subjected to the unit 

transverse displacement of the right support, for 0    

 
It can be observed that in the middle of the span bending moment quickly 

decays to zero. Closer to anchorages it firstly increases and next goes to zero. Only 

for 1    and 1   (in anchorages) it aims uniforrmly to infinity. Figure 6 shows 

the bending moment for 1   as a function of parameter  . It can be seen that this 

function has a oblique asymptote: 

 

 ( ) : 2 (1 )f EJ     (X.6) 

so it can be concluded that the bending moment near clamps increases 

asymptotically to the S  , see (X.4). 

  



 

Fig. 6. Bending moment by the right clamp of the bar 

subjected to the unit transverse displacement as function 

of parameter   

 

By this, both observations about tension components fatigue are explained: 

 

 the fatigue is observed mainly near the connections (anchorages), because axial 

force in the tension components reduces moments in the middle of the span and 

increases it at the ends, 

 the fatigue intensity enlarges with value of tensile axial force in the component, 

because the above mentioned increase of the bending moment close to the 

anchorages depends on axial force in it. 

 

X.3.2. Rotation of clamps 

Similar analysis can be done with regard to rotation of clamps. Unit rotation of the 

right clamp is described with following boundary conditions, (taking into account 

X.2):        
1

1 0, 1 0, 1 0, 1
2

w w w w        . The following set of 

Mathematica functions produces the solution: 

 



𝐀𝐬𝐬𝐮𝐦𝐢𝐧𝐠 [𝝃 < 1&&𝜉 > −1

> −1, 𝐅𝐮𝐥𝐥𝐒𝐢𝐦𝐩𝐥𝐢𝐟𝐲 [𝐄𝐱𝐩𝐓𝐨𝐓𝐫𝐢𝐠 [𝐃𝐒𝐨𝐥𝐯𝐞 [{𝒘(𝟒)[𝝃] − 𝝀𝟐𝒘′′[𝝃]

== 𝟎,𝒘[−𝟏] == 𝟎,𝒘[𝟏] == 𝟎,𝒘′[−𝟏] == 𝟎,𝒘′[𝟏] =

= −
𝟏

𝟐
} ,𝒘[𝝃], 𝝃]]]] 

 

{{𝑤[𝜉] →
1

8𝜆(−1 + 𝜆Coth[𝜆])
Csch[𝜆](−2Cosh[𝜆] + 2Cosh[𝜆𝜉] + 𝜆(1 − 𝜉 + (1

+ 𝜉)Cosh[2𝜆] − 2Cosh[𝜆 + 𝜆𝜉])Csch[𝜆])}} 
 
The diagram of this displacement function for 0   is shown in Fig. 7. This 

function is described with formula:   
21

1 1
8

ow   ξ ξ . 

 

 

Fig. 7. Deformation of the bar subjected to the unit 

rotation of the right support, for 0    



Similarly to the previous example in case of the bar subjected to tensile axial 

force (Fig. 8) in the middle of the span the bar straightens and near right clamp 

intensively bends. 

 

 

Fig. 8. Deformation of the bar subjected to the unit 

rotation of the right support, for 0    

 

The moment function both for 0   and 0   applying the formula for 

bending moment can be evaluated. 

 

𝐀𝐬𝐬𝐮𝐦𝐢𝐧𝐠[𝝃 < 1&&𝜉

> −1, 𝐅𝐮𝐥𝐥𝐒𝐢𝐦𝐩𝐥𝐢𝐟𝐲[−
𝟒𝐄𝐉

𝒍𝟐
𝝏{𝝃,𝟐}{−

𝟏

𝟖
(−𝟏

+ 𝝃)(𝟏 + 𝝃)𝟐,
𝟏

𝟖𝝀(−𝟏 + 𝝀𝐂𝐨𝐭𝐡[𝝀])
𝐂𝐬𝐜𝐡[𝝀](−𝟐𝐂𝐨𝐬𝐡[𝝀]

+ 𝟐𝐂𝐨𝐬𝐡[𝝀𝝃] + 𝝀(𝟏 − 𝝃 + (𝟏 + 𝝃)𝐂𝐨𝐬𝐡[𝟐𝝀] − 𝟐𝐂𝐨𝐬𝐡[𝝀
+ 𝝀𝝃])𝐂𝐬𝐜𝐡[𝝀])}]] 

{
EJ + 3EJ𝜉

𝑙2
,
EJ𝜆Csch[𝜆](−Cosh[𝜆𝜉] + 𝜆Cosh[𝜆 + 𝜆𝜉]Csch[𝜆])

𝑙2(−1 + 𝜆Coth[𝜆])
} 

 



The diagram of the first case, 0  , is shown below. 

 

 

Fig. 9. Bending moment of the bar subjected to the unit 

rotation of the right support, for 0    

 

  



Function of bending moment for a bar under a tensile axial force is presented in 

Fig. 10. A thin line represents the first order theory solution. 

 

 

Fig. 10. Bending moment of the bar subjected to the unit 

rotation of the right support, for 0    

 

It can be observed that in the middle of the span bending moment quickly 

decays to zero. In the left anchorage, 1   , it decays to 1. Close to the right 

abchorage it first increase and next decay to zero. Only for 1   (right anchorage) 

it aims uniforrmly to infinity. Figure 11 shows the bending moment for 1   as a 

function of parameter  .  

 



 

Fig. 11. Bending moment by the right clamp of the bar 

subjected to the unit rotation as function of parameter    

 

It can be seen that this function has a oblique asymptote: 

 
 ( ) : (1 2 )g EJ     (X.6) 

so also in this case it can be concluded the bending moment near rotated clamp 

increases with asymptotical proportion to the S  , see (X.4). 

 

Concluding this example, explanations of the observed phenomena carried out in 

the previous subsection can be confirmed. 

 

X.4. Conclusions 

The axial forces in tension components (ropes, cables) have a crucial influence on 

fatigue of these elements. This paper explains theoretically the main reasons of 

observed phenomena. 

 

By this, both observations about tension components fatigue are explained: 

 

 since axial force in the tension components reduces moments in the middle of 

the span and increases it at the ends  - the fatigue is observed mainly near the 

connections (anchorages), 



 since increase of bending moment close to the anchorages depends on 

asymptotical proportion to the square root of tensile axial force - the fatigue 

intensity enlarges with value of this force in the component. 

 

The above mentioned fact has a crucial influence on safety of structures with 

tension components. Tension components are usually tested according to technical 

specifications and design standards (including Eurocode) for bending fatigue under 

the axial force not bigger than 0,45 of their bearing capacity. Overriding of this 

value in structures will lead to significant reduction of expected durability of the 

structure since larger axial forces produce larger bending moments near clamps. 
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