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Abstract
Purpose: This paper deals with a method for the parametric system identification of a nonlinear system to obtain 
its parametric representation using a linear transfer function. Such representation is applicable in off-line profile 
correction methods minimizing the error between a reference input signal and a signal performed by the test rig. 
In turn, a test signal can be perfectly tracked by a servo-hydraulic test rig. This is the requirement in massive 
production where short test sequences are repeated to validate the products.
Design/methodology/approach: A numerical and experimental case studies are presented in the paper. The 
numerical study presents a system identification process of a nonlinear system consisting of a linear transfer 
function and a nonlinear output component, being a static function. The experimental study presents a system 
identification process of a nonlinear system which is a servo-hydraulic test rig. The simulation data has been 
used to illustrate the feasibility study of the proposed approach, while the experimental data have been used to 
validate advanced model structures under operational conditions.
Findings: The advanced model structures confirmed their better performance by means of the model fit in the 
time domain.
Research limitations/implications: The method applies to analysis of such mechanical and hydraulic systems 
for which measurements are corrupted by residual harmonic disturbances resulting from system nonlinearities.
Practical implications: The advanced model structures are intended to be used as inverse models in off-line 
signal profile correction.
Originality/value: The results state the foundation for the off-line parametric error cancellation method which 
aims in improving tracking of load signals on servo-hydraulic test rigs.
Keywords: System identification; Mechanical system; Hydraulic system; Parametric model
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1. Background 
 

The crucial stage of the shock absorber manufacturing is the 
validation process . Shock absorbers are evaluated regarding 
comfort and noise using a synthesized or road load data. 
A sequence load has to be accurately tracked by test rigs which 
are most frequently used in the validation process of a shock 
absorber. While performing either durability or comfort 
evaluation tests obtaining repeatable and reproducible results 
is one of the most important steps in automotive shock absorbers 
development. In this case, the frequent problem is to applied to 
a shock absorber the test sequence minimizing the error between 
a reference and a measured signal.  

In literature several papers [6-12,14,20] discuss offline 
feedback or feed-forward controllers to tackle this problem. The 
controllers perform iterative off-line correction process with the 
use of an inverse model of the plant [16]. The plant model is 
typically identified using system identification techniques [13,15]. 
The aim of this paper is to propose a model structure which 
provides the best results by means of the fit measure in the time 
domain for the identified model of the plant [15]. 

The content of the paper is divided into five sections. 
The second and third sections of the paper present the 
fundamentals of advanced model structures in system 
identification and estimation theory. Section fourth and fifth state 
the main goal of this paper, i.e. the presentation of numerical and 
experimental results from the analysis of a sensitivity model of 
a structure's influence. The paper ends with the Summary section. 
 
 

2. Advanced model structures in system 
identification 
 

The system theory approach to modeling considers three 
essential principles, consisting of sub-system isolation,  
input-output selection, and the model economy. The model 
formulation task requires the ability to separate one part of 
a physical environment, called a system, from the rest (Fig. 1). 
In the physical world, mutual interaction exists and influences the 
system behavior to a smaller or greater extent. Therefore  
sub-system isolation is required when there are a number 
of interaction types existing between a system and its surrounding 
environment. This implies that in system analysis only the most 
relevant and important interactions in the form of inputs and 
outputs should be considered [18,20]. Due to the principles of 
isolation and selection, a model is always simplified according to 
the purpose of modeling. Economic principles necessitate the 
simplicity of the structure and the minimum number of considered 
parameters and state variables. When the number of inputs and 
outputs is reduced, an additional disturbance path can be included 
to describe the effects of an incomplete model structure (Fig. 2). 
This is possible with the use of a parametric system identification 
approach and advanced model structures, which allow harmonic 
and stochastic disturbances to be separated from an input-output 
path [[15]]. 

A parametric time domain system identification approach has 
been under development since the 1970s. Interested readers are 
referred to the work of Aström, Box-Jenkins [1], Ljung [15], 

Södrström [5] and Stoica for details. In this paper, available 
model structures are classified with respect to the complexity 
of the disturbance model and special focus is placed on the  
Box-Jenkins (BJ) model structure [15].  

 
 

 
 

Fig. 1. Working principle of a double tube damper 
 
 

A transfer function model is parameterized with G(z-1), input-
to-output, and H(z-1), disturbance-to-output, transfer functions, 
which are also called paths in reference to its graphical 
representation (Fig. 2). A diagrammatic representation of the 
model structured (1) of an input-to-output dynamical system is 
depicted in Fig. 2. 

 
 

 
 

Fig. 2. Input-to-output path (control channel) and disturbance-to-
output path (disturbance channel) 

 
 

The transfer functions G(z-1) and H(z-1) are rational functions 
of the operator z-1 of the form 
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are polynomials used for model parameterization. Special cases 
of the SISO structure (2) are [15]: 
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where nA, nB, nC, nD, nF are polynomial orders and k is input-
to-output delay.  

The ARX model constitutes a basic structure applicable 
to systems in which input-to-output data is not significantly 
corrupted by measurement noise. The disturbance-to-output path is 
integrated with the input-to-output path using the common poles of 
the polynomial A(z-1). The ARMAX model introduces a separate 
description of disturbances in the form of the numerator C(z-1) in 
the path of the H(z-1) disturbance-to-output transfer function. This 
model structure can be used when dominating disturbances, so-
called load disturbances, enter at the input [15]. The OE model does 
not include the H(z-1) disturbance-to-output transfer function and 
the disturbance source e(i) affects only the output. The BJ model 
yields separate descriptions of the G(z-1) input-to-output path and 
the H(z-1) disturbance-to-output path, filtering disturbances through 
the H(z-1)=C(z-1)/D(z-1) transfer function. Filtration using the 
numerator and denominator provides additional flexibility for 
modelling the noise and harmonic disturbances. BJ models are 
recommended when the noise does not enter at the input, but is 
primarily a measurement disturbance [15]. Finally, the PEM model 
provides free parameterization of the G(z-1) and H(z-1) paths. 
Because this structure is too general in most cases, one or several of 
the polynomials are typically set to unity in applications. A diagram 
of a general model structure is shown in Fig. 3. The OE structure 
includes B and F polynomials, and the BJ structure contains B, F, C 
and D polynomials [15]. In cases where the disturbances enter the 
system at the input, it is preferable to use polynomial A(z-1) zeros 
which correspond to poles common for the input-to-output model 
and the disturbance-to-output model. F(z-1) determines the poles 
that are unique to the input-to-output dynamics, and D(z-1) 
determines the poles that are unique to the disturbance-to-output 
dynamics [15]. The PEM model structure facilitates common 
parameterization of the input-to-output and the disturbance-to-
output poles using the polynomial A(z-1) and independent 
parameterization of the input-to-output and disturbance-to-output 
poles using the polynomials F(z-1) and D(z-1), respectively. Such 
a representation increases the economy of the structure by 
decreasing the number of parameters in the model. 
 

 
 

Fig. 3. Regressive model structure of an input/output model 

In the state-space formulation, the relationship between the 
input, disturbances and output signals is written as a system of 
first order difference equations. The model is parameterized as the 
State-Space Innovations Form (SSIF) 
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where A, B, C, D are the system matrices, K is the disturbance 
matrix, y is the output, u is the input, and e is the disturbance 
input. Fig. 4 presents the diagrammatic representation of the state 
space model expressed in the State-Space Innovations Form 
(SSIF). 
 
 

 
 

Fig. 4. Structure of a model in the form of state equations 
 
 

A linear model structure can be extended to a nonlinear one 
using static or dynamic nonlinear mapping methods. One of the 
most general mapping functions is an artificial neural network 
(ANN) [16], which is a nonlinear weighted sum of inputs. 
For identification purposes, the weights of an ANN are treated as 
adjustable parameters and estimated by means of one of the 
numerous conventional optimization methods [15] or by artificial 
intelligence ones [16]. A multiple model, or the so-called hybrid 
approach, is often considered [2], e.g. a Takagi-Sugeno fuzzy 
multiple model involving fuzzy-weighted combinations of local 
ARX/ARMAX-like models. These nonlinear models are general-
purpose ones if a priori knowledge is not available. On the other 
hand, rotating machines, consisting of a rotor and supporting 
bearing system, are typical mechanical structures for which 
different models are derived in numerous theoretical and 
experimental studies. It allows a grey-box nonlinear model that 
includes first principle modeling to be used [17]. Difficulties 
typically encountered in choosing an appropriate structure of the 
black-box model, which are caused by the uncertainty related 
to the complexity and structure of the unknown dynamics, 
is justification for using a grey-box model. From the point of view 
of this paper, the Hammerstein-Wiener model [15] describing 
dynamical systems by means of input and/or output static 
nonlinear mapping functions, in serial combinations with a linear 
transfer function, constitutes an interesting class of nonlinear 
models. 

One can use advanced linear models (e.g. BJ, OE and PEM) 
to parameterize the disturbance-to-output transfer function and 
decouple disturbances from the input-to-output transfer function. 
Availability of a priori knowledge, e.g. the form of nonlinearity, 
number of residual harmonics, etc., facilitates parameterization. 

In the case of control applications, utilization of all the relevant, 
that is, with physical interpretation, information obtained from the 
process is essential. For instance, a BJ model structure has a 
disturbance-to-output transfer function consisting of a numerator 
and denominator. The denominator D(z-1) is the key polynomial 
that allows disturbing harmonics with a minimal number of 
parameters to be captured as an Infinite Impulse Response (IIR) 
filter. On the other hand, the numerator polynomial C(z-1) may 
capture potential white noise disturbances with a minimal number 
of parameters as a Finite Impulse Response (FIR) filter.  
 
 

3. Estimation theory 
 
The most essential stages of a system identification procedure 

are summarized as follows, i.e. (i) formulate a model structure 
, and (ii) define the V  error function between the data acquired 
and the model parameters.  

The objective of the estimation is to minimize the V  error 
function comprising the individual model parameters. The Least 
Squares method is applicable when the error is a linear function of 
model parameters. In other cases, a numerical optimization 
method is required. This refers to all prediction error methods 
(PEM), with the exception of AR/ARX models. The minimization 
methods applicable for an error function are as follows: 
 Simple direct seek methods, 
 First-order methods based on the information provided by the 

first derivative (gradient) of the V error function (e.g. 
reverse propagation method), 

 Second-order methods based on the information regarding the 
first and second derivative (gradient and Hessian form) of the 
V  error function (e.g. Newton method, the Newton quasi-
method, Gauss-Newton method, pseudo-method of Newton, 
Levenberg-Marquardt). These second order methods differ in 
their simplification when determining the second derivative 
influencing the convergence and speed of a selected 
algorithm. 
The iterative methods designed to seek a minimum of the error 

function have a number of drawbacks, to mention only a few: 
 Low sensibility level in the initial parameter values, 
 Frequently occurring problems while reaching the algorithm 

convergence, 
 It is likely that the local minima of the objective function may 

appear. 
Taking into account the selected model structure, the 

following two basic criteria of a model error formulation are 
commonly applied. The former criterion refers to the Prediction 
Error Method (PEM) 
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The prediction error method may be readily used as an 
implementation for the identification of a general PEM model 
structure and other particular solutions, such as the OE and BJ 
models. The H(z-1) transfer function or K matrix (gain matrix of a 
Kalman’s filter) are applied, when the response of a true system is 
biased by disturbances occurring at the model output or state 
variables. 

If a priori information of the model order is unavailable, 
a model structure can be evaluated and accurately selected from 
the data. For instance, the AIC and BIC methods [15]] allow us to 
detect under- and over-estimated model structures. 
 
 

4. Results of numerical investigations 
 
 

A sensitivity study on the influence of the model structure 
on the system identification results is presented in the subsequent 
section (Figs. 5-10). The objective of this study is to confirm the 
performance of BJ structures in modelling disturbances and 
to rank model structures in order to evaluate data fitting accuracy 
(Table 1). For the purpose of determining model quality in regard 
to the input-to-output transfer function, a series of Bode diagrams 
in the frequency domain was prepared. Subsequently, in order to 
evaluate separated disturbances regarding the error-to-output 
transfer function, a corresponding series of power spectra was 
obtained. The ARMAX structure, inadequate for modelling 
harmonic (deterministic) disturbances, was not considered. 
A nonlinear continuous-time system was used to produce data 
(Figs. 11, 12) suitable for system identification of advanced 
model structures. The linear part of the system is described by the 
following transfer function: 
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The output of the nonlinear system is given as follows  
319 )}()({10 susHLy  (11)

An excitation is assumed as a harmonic function 
)602sin()( ttu  (12)

where sampling frequency is fp=500 [Hz]. 
 
 
 

  
 

Fig. 5. Identified ARX(4,3,1) model (solid line – reference model, 
dotted line – identified model), amplitude in logarithmic scale 
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4. Results of numerical investigations 
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performance of BJ structures in modelling disturbances and 
to rank model structures in order to evaluate data fitting accuracy 
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to the input-to-output transfer function, a series of Bode diagrams 
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evaluate separated disturbances regarding the error-to-output 
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obtained. The ARMAX structure, inadequate for modelling 
harmonic (deterministic) disturbances, was not considered. 
A nonlinear continuous-time system was used to produce data 
(Figs. 11, 12) suitable for system identification of advanced 
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following transfer function: 

2222 )802(2
1

)302(10
1)(

ssss
sH  (10)

The output of the nonlinear system is given as follows  
319 )}()({10 susHLy  (11)

An excitation is assumed as a harmonic function 
)602sin()( ttu  (12)

where sampling frequency is fp=500 [Hz]. 
 
 
 

  
 

Fig. 5. Identified ARX(4,3,1) model (solid line – reference model, 
dotted line – identified model), amplitude in logarithmic scale 

3.	�Estimation theory
4.	�Results of numerical 
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Fig. 6. Identified ARX(10,6,1) model (solid line – reference 
model, dotted line – identified model), amplitude in logarithmic 
scale 

 
 
 
 

  
 

Fig. 7. Identified OE(3,4,1) model (solid line – reference model, 
dotted line – identified model), amplitude in logarithmic scale 

 
 
 

 

 
 

Fig. 8. Identified BJ(4,2,8,4,1) model (solid line – reference 
model, dotted line – identified model), amplitude in logarithmic 
scale 

  
 

Fig. 9. Identified N4SID(13) model (solid line – reference model, 
dotted line – identified model), amplitude in logarithmic scale 

 
 
 

  
 

Fig. 10. Identified BJ(3,2,8,4,1) model (solid line – reference 
model, dotted line – identified model), amplitude in logarithmic 
scale 

 
 

Table 1. 
The model data fitting results in the time domain (one-step ahead 
predicted output) 

 
Model 

 

 
best fit [%] 

ARX(4,3,1) 32 % 
ARX(10,6,1) 71 % 

OE(3,4,1) 64 % 
BJ(4,2,8,4,1) 84 % 

state-space SSIF(12) 82 % 
BJ(3,2,8,4,1) 87 % 

Hammerstain-Wiener ARX(4,3,1) 75 % 
 
 

All models were identified using the ‘ident’ application 
available in the System Identification Toolbox in the Matlab 
package [1,3-4]. Model performance can either be evaluated by 
visual inspection of the plots or by numerical value [15]: 
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where y is the reference amplitude, and y* is the predicted 
amplitude. R is the part of the model output explained by the 
model. This measure is usually used in the Matlab System 
Identification Toolbox [[1]] and, for convenience, R is 
expressed in %.  

 
 

 
 

Fig. 11. The simulated model input u1, and output y1 (solid – 
linear model, dotted – nonlinear model)  
 
 

 
 
Fig. 12. Logarithmic power spectra of the model input u1, and the 
output y1 (solid – linear model, dotted – nonlinear model) 

The ARX(4,3,1) structure is insufficient to capture 
nonlinearities, and only an overparametrized ARX(10,6,1) 
structure provides results which closely fit the average results 
of other models (Figs. 6-7; above 60%). The OE(3,4,1) structure 
gave good accuracy and qualitatively reproduced the linear 
behaviour of the reference system, however, it did not estimate 
the model disturbance (Fig. 7). The BJ structure is very sensitive 
to overparametrization, e.g. the case of BJ(4,2,8,4,1), however, 
the correct polynomial orders, i.e. BJ(3,2,8,4,1) provided 
excellent quality of amplitude-phase reproduction as well 
as model accuracy (Figs. 8, 10). The state-space model SSIF(13) 
demanded an enormously high order to provide acceptable quality 
of amplitude-phase reproduction (Fig. 9). The Hammerstain-
Wienner model was considered as an alternative. The model 
structure consisted of a linear part in the form of the ARX(4,3,1) 
model and a sigmoidal output static nonlinear function. This 
model enabled nonlinearities to be captured and provided good 
quality fitting. 
 
 

5. Results of experimental 
investigations 
 

Experimental tests were performed on a servo-hydraulic test-
rig Hydropuls® MSP25 equipped with the electronic controller 
IST8000 (Fig. 13).  
 
 

 
 

Fig. 13. A servo-hydraulic test-rig used in experimental 
investigations 
 
 

The test rig was used to load a shock absorber and capture its 
dynamical characteristic, i.e. displacement vs. force. Data 
acquisition [19] was performed with the 8-channel ICP amplifier 
manufactured by LMS. The test rig is equipped with an oil 
supplying system (so called servo-pack) that provides a pressure 
of 28 MPa at a flow-rate of 90 l/min. The actuator provides 25 kN 
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force at the rod, while the maximum stroke is 250 mm at the 
maximum achievable velocity of 2 m/s. The actuator rod is 
coupled to the adapter which transfers the force to a shock 
absorber mounted on a test rig. The main components of the 
servo-hydraulic system are the hydraulic actuator with the 
integrated displacement transducer in a piston-rod assembly  
(IST-Schenk) and three-stage servo-valve system. The test rig 
is equipped with a servo-hydraulic system and the PID-FF 
controller. The feed-forward (FF) section in this controller passes 
a proportion of the command signal to the controller output 
through a high-pass filter to block the command mean level. 
Different control settings are used depending on a type 
of excitation signal. The excitation signal is converted into 
a voltage applied to the servo-valve which controls the amount of 
oil supplied to the chambers of the actuator. 

The purpose of system identification is to identify a transfer 
function between the reference and the measured displacement 
signal, i.e. uniformly distributed white noise. A fourth order 
discrete transfer function was chosen as a parametric 
representation of the test rig dynamics. The actuator is equipped 
with a damping throttle block with is the bypassing orifice 
between actuators’ chambers. The important function of this 
bypass is to provide a little damping to the actuator and decrease 
its oil resonance peak amplitude by adjusting the throttle.  

The system identification was performed for two cases, i.e. 
opened and closed throttle valve, respectively. In Fig. 14. were 
shown results of the difference between the opened and the closed 
throttle valve. These exemplary results were obtained with the use 
of ARX(4,4,1) model (Fig. 14). The remain results are presented 
in Tables 2-3. 
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Fig. 14. A servo-hydraulic test-rig used in experimental 
investigations 

Table 2.  
The model data fitting results in the time domain for the opened 
throttle valve (one-step ahead predicted output) 

 
Model 

 

 
best fit [%] 

 
ARX(4,3,1) 67% 

ARX(10,6,1) 77% 
OE(3,4,1) 87% 

BJ(3,3,4,4,1) 89% 
PEM(4) 86% 

ARMAX(4,4,4,1) 81% 
 
Table 3.  
The model data fitting results in the time domain for the closed 
throttle valve (one-step ahead predicted output) 

 
Model 

 

 
best fit [%] 

 
ARX(4,3,1) 62% 

ARX(10,6,1) 78% 
OE(3,4,1) 85% 

BJ(3,3,4,4,1) 91% 
PEM(4) 85% 

ARMAX(4,4,4,1) 80% 
 
 

6. Conclusions 
 

The aim of this paper is to discuss a parametric identification 
method in the study of nonlinear systems using advanced model 
structures. The nonlinear system was simulated to generate data 
intended to be used for the purpose of system identification. 
On the other hand a servo-hydraulic test rig was selected as an 
example of an experimental nonlinear system. The models 
obtained in the results of system identification based on numerical 
and experimental data were ranked using the ‘best fit’ criterion. 
The numerical and experimental analysis confirmed that advanced 
model structures may provide better separation of disturbances 
from the input-to-output model dynamics. 
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