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AbstrAct
Purpose: of this paper is to analyze vibrating beam by an exact and approximate methods and to create 
hypergraphs of the beam in case of two methods of analysis.
Design/methodology/approach: was to nominate the relevance or irrelevance between the characteristics 
obtained by the considered methods - especially concerning the relevance of the natural frequency-poles of 
beam characteristics. The main subject of the research is a continuous free beam as a subsystem of vibrating 
beam-system with constant cross sections.
Findings: this approach is that approximate solutions fulfil all conditions for vibrating beams and can be an 
introduction to synthesis of these systems modelled by hypergraphs.
Research limitations/implications: linear continuous flexibly vibrating free beam is considered
Practical implications: of this study is mainly the introduction to synthesis of flexibly vibrating continuous 
beam-systems.
Originality/value: of this approach is about application of approximate methods of analysis of a beam and 
modelling the one of transformed hypergraph.
Keywords: Applied mechanics, Exact and approximate methods, Continuous system, Vibrating beam

Reference to this paper should be given in the following way: 
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1. Introduction 

The problems of analysis of vibrating beam systems, discrete 
and discrete-continuous mechanical systems by means of the 
structural numerous methods modelled by the graphs, 
hypergraphs1 have been investigated in Gliwice Research Centre 
                                                           
1 Other diverse problems have been modeled by different kind of graphs, then they were examined 

and analyzed in (e.g. [14-19]). The problems of synthesis of electrical systems [1] and of 

(e.g. [4, 5, 8, 17]). The continuous-discrete torsionally [8] and 
flexibly [9, 10] vibrating mechatronic systems were considered 
[13]. The approximate method of analysis called a Galerkin 
method has been used to obtain the frequency-modal 
characteristics. To compare the obtained dynamical characteristics 
– dynamical flexibilities only for mechanical torsionally vibrating 
bar and flexibly vibrating beam, as a part of complex mechatronic 
                                                                                                 

selected class of continuous, discrete - continuous discrete mechanical systems and active 
mechanical systems concerning the frequency spectrum are investigated [3-12].  

1.  Introduction

systems, exact method and the Galerkin method were used [8-10]. 
In this paper frequency – modal analysis has been presented for 
the mechanical system that means the flexibly vibrating free 
beam.  

2. Vibration free beam as the 
subsystem of beam-system

2.1. Frequency - modal analysis of free beam

The beam2 of the constant cross section, free on left end and 
on the right one with harmonic force excitation in a form 

0( ) sinP t P t is considered.  
The equation of motion of the beam goes as follows:  

 
0),(),( '' ttxxxx txFytxEIy , (1) 

 
where: ( , )y x t - deflection at the moment t of the lining beam 
section within the distance x from the beginning of the system, E - 
Young modulus, - mass density of material of the beam, I -
polar inertia moment of the beam cross section, F – area of the 
beam cross section.  
 

The boundary conditions on the beam ends are the following:  
 

,0),(,0),(,0),0(,0),0( ,,,, tlEIytlytyty xxxxxxxxxx  (2) 
 
where: l- length of the beam.  
 

Internal question (close to homogeneous boundary conditions) 
for the beam is then the following: 

(IV) 4( ) ( ) 0,X x k X x  (3) 

.0),(,0),(,0),0(,0),0( '' tlXtlXtXtX  (4) 

 The general solution of internal functions has the following 
form  
 

( ) sin cos sinh cosh .X x A kx B kx C kx D kx  (5) 
 
 After substitution of (5) into boundary conditions (4) but for 
homogenous ones the following was received: 
 

.0coshsinhcossin
,0sinhcoshsincos
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klDklCklBklA
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 (6) 

 

                                                           
2 The mechatronic system was considered for example in [8, 9].  

 Characteristic determinant of set (6) equals zero for the 
following equation for internal values  
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cosh

1cos klz
z

z   (7) 

 
 The solution of equation (7) the internal values go as follows: 
 

2
12nzn . (8) 

 
 Free beam has one frequency equalling zero that means  
 

0k  (9) 
 
and the equal (1) goes as follows: 
 

0)()( xX iv . (10) 
 
Solution of an equation (10) is the following: 
 

DCxBxAxxX 23
0 )(  (11) 

 
and considering (6)  
 

DCxxX )(0 . (12) 
 
The function (12) presents movement of beam as of rigid body.  
 Internal functions after being related between constants A, B, 
C, D are the following: 
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and therefore, internal functions have the following form: 
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1, 2, 3, ... .n  (14) 
 
 
2.2. Determining the dynamical flexibility - the 
exact method 

Solution ( , )y x t of an equation (1) is a harmonic function, 
that is 
 

( , ) ( )siny x t X x t . (15) 
 
 Determining suitable derivatives of (15) and substituting them 
into (2) the set of equations, after transformations, was obtained  
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Solution ( , )y x t of an equation (1) is a harmonic function, 
that is 
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 Determining suitable derivatives of (15) and substituting them 
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.0)cos(cosh)sin(sinh

,)sinh(sin)cos(cosh 3
0

klklBklklA
EIk

P
klklBklklA

 (16) 

 
and in matrix it is formed as: 
 

,FWA  (17) 
 
where: 

)cos(cosh),sin(sinh
)sinh(sin),cos(cosh
klklklkl

klklklkl
W , 

B
A

A , 
0

3
0

EIk
P

F . 

 
The main determinant of a set of equations (17) is equal  
 

)coshcos1(2 klklW . (18) 
 
To qualify constants A, B, should count the following 
determinants  
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The constants A,…, D on the base (16-20) are equal  

 

)coshcos1(2
)cos(cosh

3
0

klklEIk
klklPCA A

W
W

, (21) 

 

)coshcos1(2
)cosh(cos

3
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klklEIk
klklP

DB B

W
W

. (22) 

 
Substituting expression (21) and (22) to (11) and taking (10) 
deflection beam into account is the following: 
 

)coshcos1(2
)cosh)(cossin(sinh

)coshcos1(2
)sinh)(sincos(coshsin),(

3

30

klklEIk
kxkxklkl

klklEIk
kxxklkltPtxy

. (23) 

According to definition of dynamic flexibility, on the basis of 
(23), it goes as follows: 
 

.
)coshcos1(2

)cosh)(cossin(sinh)sinh)(sincos(cosh
3 klklEIk

kxkxklklkxxklklY

 (24) 
 
The transient of absolute value of dynamical flexibility (24) for 
x=l, that is YY  is drawn in Fig. 1.  

 

 

 
Fig. 1. The plot of absolute value of dynamical flexibility of flexibly vibrating free beam  

 

 
 

2.3. Calculation of the dynamical flexibility of 
the beam - Galerkin method 

 
 
The equation of excitated vibrations of beam can be described 

as 
 

tPtxFytxEIy ttxxxx sin),(),( 0'' . (25) 
 

The solution of beam (25) by means of the Galerkin method is 
given in a shape of: 
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where: 
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After substituting the following derivatives of (26) to (25) the 
following is obtained: 
 

tkxkEIA n sinsin4)(  
tPtkxAF n sinsinsin 0

)(2  (27) 
The amplitude value )(nA after transformations of the 

vibrations goes as follows: 
 

42
0)(

EIkF
PA n . (28) 

Using the equation (28) and putting it to (26) the 
dynamical flexibility, it equals: 
 

42
)( sin

EIkA
kxY n

xl .  (29) 

 
When x=l, then (29) is given as  
 

422
)( 1
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Y n
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,  (30) 

where: 
F

EIa .  

 
The absolute value of dynamical flexibility at the end of the 

beam, i.e. when x=l takes the following form: 
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Y
. (31) 

In a global case of the dynamical flexibility at the end of the 
beam, it gets a shape of: 
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For sum k=0, 1, 2, 3 the plot of absolute value of dynamical 
flexibility defined by expression (32) is shown in Fig.2.  
 
 

3. Hypergraphs as models of vibration 
free beam  

 
 

To fix the meaning of necessary terms and symbols, the 
review of essential concepts of graph theory was presented before 
modelling the flexibly vibrating continuous beam systems and 
problems connected with it.  

Weighted hypergraphs (in this paper called also weighted 
block graphs or weighted graphs of category k) have been applied 
for modelling the considered mechanical systems. Definitions of 
graphs, as mathematical objects, have been presented on the basis 
of the literature [2]. The bibliography of this subject is very 
extensive and regards the theory as well as its applications (see [1, 
4-11, 13-19]). 

 
The couple  
 

XX,X= kk
21 . (33) 

 
is called a hypergraph, where: X1  is the set as in (33), and 

N)(
22 /iXX= ikk , (k=2,3, ... N) is a family of subsets of set 

X1 ; the family Xk
2  is called a hypergraph over X1  as well, and 

)(
2

)2(
2

)1(
22

mkkkk X, ... ,X,XX= is a set of edges [2], called 
hyperedges or blocks, if  
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 I),( 
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ik

i
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 (34) 

Hypergraphs Xk  have been shown in their geometrical 
representation on plane. Sets of edges X2  have been marked by 

lines, subsets of family Xk
2  (hyperedges or blocks) - two-

dimensional continuum with enhanced vertices, in the shape of 
circles. In this paper hypergraphs - graphs of category k - Xk  
(k=2, 3) are used (see [2, 4, 5, 17]). 

In the case of flexibly vibrating beam (i) of constant cross-
section and constant flexible rigidity )(iEI (where )( iE - 
Young's modulus of the beam, )(iI  - polar moment of inertia of 

cross-section of the beam) as well as length )(il is considered. The 
model in the form of a determined and continuous system is 
introduced.  

The model in this way takes the root also and - this beam as 
well as every studied beam in farther draught in a figure of limited 
arrangement. In this model, generalized displacements – 
deflections )(

11
is  and )(

21
is  correspond to its extreme points. 

Moreover, the extreme points of the beam were 
subordinated, generalized displacements also - the slopes of the 
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beam - )(
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is  and )(
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is . These general displacements are measured 

in the inertial system of reference. Furthermore, the origin of the 
inertial system of reference has generalized a coordinate 0)(
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is  

assigned to it. So, a set of the generalized displacements of a 
flexibly vibrating beam can be formulated as follows: 
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the five-vertex hypergraph as a model of flexibly vibrating beam 
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Graphical representation of transformations (35) by the way 

of (36) in case of the flexibly vibrating beam of constant cross-
section is shown in Fig. 3.  
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shown in Fig. 4.  
 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  The plot of absolute value for dynamical flexibility of the sum for n=1, 2, 3 mode vibration 
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vertex hypergraph (Fig. 5a) into three-vertex block graph (Fig. 5b, 
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Graphical representation of these subgraphs is shown in [4-6, 17].   
In the case of synthesis of n-segment model of the system, 

composed of subsystems of constant section, vibrating flexibly, it 
is modelled by the loaded graph of the third category – after 
Galerkin transformation - with n three-vertices-blocks, connected 
to those vertices to which the corresponding generalized 
coordinates are assigned to (see i.e. [4,6]).  

The use of a weighted hypergraph and its weighted subgraphs 
(as a model of flexibly vibrating system) in this way may provide 
the basis for the formalization which is the necessary condition of 
discretization of the considered class of continuous mechanical 
systems. 

 
 

4. Last remark 
 

On the base of the obtained formulas it is possible to make 
the analysis of the considered class vibrating mechanical and 
mechatronic systems as introduction to a synthesis. In case of 
other boundary conditions of the beams, it is necessary to achieve 
the offered researches in this paper. In the future research, these 
problems shall be discussed.  

 
 

 
 

 
 
Fig. 3. Hypergraph of model of flexibly vibrating free beam of constant cross-section as graphical representation of transformations (36) 
and (37) 
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The use of a weighted hypergraph and its weighted subgraphs 
(as a model of flexibly vibrating system) in this way may provide 
the basis for the formalization which is the necessary condition of 
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Fig. 4. Hypergraph of flexibly vibrating beam as representation of transformation (38) 
 
 
 

 
 

a)     b)     c) 
 

 
 

Fig. 5. The illustration of transformation of the five-vertex hypergraph into three-vertex one as an effect of use of Galerkin method 
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