
Short paper66 © Copyright by International OCSCO World Press. All rights reserved. 2010

VOLUME 40

ISSUE 1

May

2010
of Achievements in Materials
and Manufacturing Engineering
of Achievements in Materials
and Manufacturing Engineering

Dynamic scheduling for agent based
manufacturing systems

J. Madejski*
Division of Materials Processing Technology, Management and Computer Techniques
in Materials Science, Institute of Engineering Materials and Biomaterials,
Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
* �Corresponding author: E-mail address: janusz.madejski@polsl.pl

Received 12.02.2010; published in revised form 01.05.2010

Analysis and modelling

Abstract
Purpose: Development of the decision making architecture for the multi-agent societies with temporal
restrictions. General ideas for the necessary architecture based on the blackboard one is presented.
Design/methodology/approach: Fuzzy logic approach that makes it possible to reach suboptimal solutions
within the acceptable timeframe. Development of the relevant systems calls for compiling the experience
gathered over the years in the system served by human ‘agents’. Multiagent systems negotiation needs were
analysed and cooperation issues in the form of clustering, cloning, and learning were analysed in search for the
relevant tools.
Findings: Detailed review of the approach to development of the agent based Intelligent Manufacturing from
the fundamental considerations to the latest hands-on developments.
Research limitations/implications: Many presented technologies call for detailed study before they can be
implemented in practice.
Originality/value: Analysis of the local interactions among agents meeting the real-time reaction requirements.
Keywords: Artificial software agents; Multiagent systems; Scheduling; Negotiation

Reference to this paper should be given in the following way:
J. Madejski, Dynamic scheduling for agent based manufacturing systems, Journal of Achievements in Materials
and Manufacturing Engineering 40/1 (2010) 66-69.

1. Introduction

The conventional scheduling approach, known as static
scheduling may solve the problem and provide the - usually
suboptimal - schedule, yet in real life conditions they turn out to
be impractical because of their mostly unrealistic assumptions.
This is because the real manufacturing systems are complex and
dynamic with a big number of products and processes, with many
production levels, and subject to random disturbances. One may
name some of these disturbances like: new orders may come,
those queued already may be cancelled, some jobs may become
more or less important in time, technological equipment may fail,
moreover some resources may temporarily become unavailable,

as deliveries may be delayed, raw materials may be depleted,
tools may not be available for a number of reasons (e.g., due to
shorter service life due to poor quality), staff may get ill, etc.
Therefore such dynamic entity needs dynamic scheduling. This
boils down to real-time control, as all decisions have to be made
based on the current state of the manufacturing system. The
artificial software agents may take over manufacturing scheduling
which consists in allocating and timing the manufacturing system
resources in order to complete the queued jobs within the
timeframe allowed using some desired criteria [1-4].

Efficient and timely collection and access to data describing
the manufacturing system status feature an important issue in
development of the decision making systems that will perform
properly their tasks in the dynamic environment. The main

1.	�Introduction

problem then is how to acquire the right decision in these
uncertain conditions. Moreover, making a decision does not mean
that it will be an optimal one, as the time to obtain it is limited,
and usually the decision making system will not have the power
to develop the globally optimal modified work plans. A good
approach to solve this problem is using the fuzzy logic approach
that makes it possible to reach suboptimal solutions within the
acceptable timeframe. Development of the relevant systems calls
for compiling the experience gathered over the years in the system
served by human ‘agents’. Such knowledge base may be later
used first to mimic the behaviour of the system controlled by
human operators, and later - to populate it, sometimes modified,
‘cleaned’ and optimised as the decision making system prototypes
for new manufacturing systems. The fuzzy models based on this
knowledge are event oriented and represent single agents which -
when needed - should be able to solve jointly problems
exceeding the capacity of a single one. To this end negotiation
skills are needed which lead either to delegation of a task to a
single agent or in setting up an ad-hoc task group to handle the
problem. To this end the following framework is proposed
(Fig. 1).

Fig. 1. Task planning and execution framework

The proposed agent architecture may incorporate three types
of agents:
 Type A - representing the physical system entities, like a

workpiece, a machine or production line/cell, humans, the
shop floor subsystem, or the entire plant in a supply chain,
part-oriented scheduling, and even the whole scheduling
process - here represented as the Database in Fig.1

 Type B - agents either existing already or created on the fly to
resolve a scheduling conflict

 Type C agent, as a high-level supervisory entity focused the
overall manufacturing goals - the Work Plan Compiler in
Fig. 1.
In general all system elements - agents - function in a layered

architecture; using different mechanisms at different levels. The
agents used include the functional agents, usually designed using

the BDI approach, employing the voting protocol for
communication and Contract Net negotiation protocol to reach final
decisions and complete task allocation problems [7-18].

The Database, developed in My SQL, in addition to the domain
knowledge contains relations allowing it to store the production and
resource data. The Work Plan Compiler accesses the necessary
information whenever an event occurs which needs its intervention.
Such even may be either a new task to be allocated to an agent, a
machine break down, or, e.g., a tool setup request. The minimum
relevant database entity types required to store the data needed for
system status logging and task planning are as follows:
 Resource status: data on the particular resources’ service

history, including, but not limited to its current status,
maintenance schedule, down times, expected time to repair,
mean time between failures, resources recommended for
tending, maintenance, and repairs, current physical location,
availability, etc.

 Domain knowledge: in the form of the precompiled fuzzy
projects, specifying the optimal course of actions to be taken in
case of any events, like allocation of a new task, machine
breakdown, maintenance required, etc.

 Decisions: this entity type is used for storing the history of all
decisions made - and realised, along with the relevant statistics
describing the efficiency of the action taken, which will be used
in improvement of the plan development strategy for the future
decisions.

 Production: necessary for recording the manufacturing system
core tasks flow, like the production rate, time requirements,
resources used, and all events that affected the efficient work
flow, like a list of broken machines, including machine name,
machine age, degree and cause of breakdown.

2. Decision making architecture proposal

To guarantee that the agent finds the relevant solutions within a
time limit, as is in the case of many agents, shown in Fig. 1 who –
learning from the Blackboard about the new events - have to react
to them, either committing to carry out the new task, or looking for
assistance, or simply getting involved in negotiations with others
which one of them would do the job, the architecture is needed that
will ensure this goal. Meeting this requirement calls for a two level
approach, as reaching a solution in real time does not allow lengthy
deliberation process, so - as mentioned above - calls for a number of
pre-compiled procedures, contingency plans to be carried out
whenever is needed. The most important issue remaining how to
select them and evaluate which will be the most relevant at a given
system state [5-9].

To this end the task execution levels should use the following
approaches:
 Real-time scheduler, the fixed-priority one, ensuring the

timely reaction with the reasonable system operation quality
and letting it function safely until a better solution is not
worked out. As many agents processes run on the same CPU,
it means that some minimum amount of time should be
guaranteed for each of them to eventually take over the tasks
and execute it in an immediate reaction to an event, so that
there is no delay in waiting for the allocated CPU time slot for
the agent.

http://www.journalamme.org
http://www.journalamme.org
http://www.readingdirect.org
http://www.readingdirect.org

67READING DIRECT: www.journalamme.org

Analysis and modelling

1. Introduction

The conventional scheduling approach, known as static
scheduling may solve the problem and provide the - usually
suboptimal - schedule, yet in real life conditions they turn out to
be impractical because of their mostly unrealistic assumptions.
This is because the real manufacturing systems are complex and
dynamic with a big number of products and processes, with many
production levels, and subject to random disturbances. One may
name some of these disturbances like: new orders may come,
those queued already may be cancelled, some jobs may become
more or less important in time, technological equipment may fail,
moreover some resources may temporarily become unavailable,

as deliveries may be delayed, raw materials may be depleted,
tools may not be available for a number of reasons (e.g., due to
shorter service life due to poor quality), staff may get ill, etc.
Therefore such dynamic entity needs dynamic scheduling. This
boils down to real-time control, as all decisions have to be made
based on the current state of the manufacturing system. The
artificial software agents may take over manufacturing scheduling
which consists in allocating and timing the manufacturing system
resources in order to complete the queued jobs within the
timeframe allowed using some desired criteria [1-4].

Efficient and timely collection and access to data describing
the manufacturing system status feature an important issue in
development of the decision making systems that will perform
properly their tasks in the dynamic environment. The main

problem then is how to acquire the right decision in these
uncertain conditions. Moreover, making a decision does not mean
that it will be an optimal one, as the time to obtain it is limited,
and usually the decision making system will not have the power
to develop the globally optimal modified work plans. A good
approach to solve this problem is using the fuzzy logic approach
that makes it possible to reach suboptimal solutions within the
acceptable timeframe. Development of the relevant systems calls
for compiling the experience gathered over the years in the system
served by human ‘agents’. Such knowledge base may be later
used first to mimic the behaviour of the system controlled by
human operators, and later - to populate it, sometimes modified,
‘cleaned’ and optimised as the decision making system prototypes
for new manufacturing systems. The fuzzy models based on this
knowledge are event oriented and represent single agents which -
when needed - should be able to solve jointly problems
exceeding the capacity of a single one. To this end negotiation
skills are needed which lead either to delegation of a task to a
single agent or in setting up an ad-hoc task group to handle the
problem. To this end the following framework is proposed
(Fig. 1).

Fig. 1. Task planning and execution framework

The proposed agent architecture may incorporate three types
of agents:
 Type A - representing the physical system entities, like a

workpiece, a machine or production line/cell, humans, the
shop floor subsystem, or the entire plant in a supply chain,
part-oriented scheduling, and even the whole scheduling
process - here represented as the Database in Fig.1

 Type B - agents either existing already or created on the fly to
resolve a scheduling conflict

 Type C agent, as a high-level supervisory entity focused the
overall manufacturing goals - the Work Plan Compiler in
Fig. 1.
In general all system elements - agents - function in a layered

architecture; using different mechanisms at different levels. The
agents used include the functional agents, usually designed using

the BDI approach, employing the voting protocol for
communication and Contract Net negotiation protocol to reach final
decisions and complete task allocation problems [7-18].

The Database, developed in My SQL, in addition to the domain
knowledge contains relations allowing it to store the production and
resource data. The Work Plan Compiler accesses the necessary
information whenever an event occurs which needs its intervention.
Such even may be either a new task to be allocated to an agent, a
machine break down, or, e.g., a tool setup request. The minimum
relevant database entity types required to store the data needed for
system status logging and task planning are as follows:
 Resource status: data on the particular resources’ service

history, including, but not limited to its current status,
maintenance schedule, down times, expected time to repair,
mean time between failures, resources recommended for
tending, maintenance, and repairs, current physical location,
availability, etc.

 Domain knowledge: in the form of the precompiled fuzzy
projects, specifying the optimal course of actions to be taken in
case of any events, like allocation of a new task, machine
breakdown, maintenance required, etc.

 Decisions: this entity type is used for storing the history of all
decisions made - and realised, along with the relevant statistics
describing the efficiency of the action taken, which will be used
in improvement of the plan development strategy for the future
decisions.

 Production: necessary for recording the manufacturing system
core tasks flow, like the production rate, time requirements,
resources used, and all events that affected the efficient work
flow, like a list of broken machines, including machine name,
machine age, degree and cause of breakdown.

2. Decision making architecture proposal

To guarantee that the agent finds the relevant solutions within a
time limit, as is in the case of many agents, shown in Fig. 1 who –
learning from the Blackboard about the new events - have to react
to them, either committing to carry out the new task, or looking for
assistance, or simply getting involved in negotiations with others
which one of them would do the job, the architecture is needed that
will ensure this goal. Meeting this requirement calls for a two level
approach, as reaching a solution in real time does not allow lengthy
deliberation process, so - as mentioned above - calls for a number of
pre-compiled procedures, contingency plans to be carried out
whenever is needed. The most important issue remaining how to
select them and evaluate which will be the most relevant at a given
system state [5-9].

To this end the task execution levels should use the following
approaches:
 Real-time scheduler, the fixed-priority one, ensuring the

timely reaction with the reasonable system operation quality
and letting it function safely until a better solution is not
worked out. As many agents processes run on the same CPU,
it means that some minimum amount of time should be
guaranteed for each of them to eventually take over the tasks
and execute it in an immediate reaction to an event, so that
there is no delay in waiting for the allocated CPU time slot for
the agent.

2.	�Decision making
architecture proposal

http://www.journalamme.org
http://www.journalamme.org
http://www.readingdirect.org
http://www.readingdirect.org

Short paper68

Journal of Achievements in Materials and Manufacturing Engineering

J. Madejski

Volume 40 Issue 1 May 2010

The second level scheduler (deliberative one) improves the
solutions quality while there is enough time for that. Results
of this planning are used for modifications of the pre-
compiled procedures used by the first level scheduler, and
therefore, affect agents’ plans from the moment when the
priorities are updated. This deliberative scheduler can carry
out global optimisation of the work plans, including, e.g.,
earlier maintenance, when the workload is lower.
This architecture ensures an agent reaction that meets the

requirements of the real-time systems, being also capable of
adapting the system behaviour to the dynamic environment
conditions.

3. Local interactions in the multi-agent
environment

The architectures proposed in the literature for agent-based
manufacturing systems fall into three approaches: the Hierarchical
approach, the Federation one, and the Autonomous Agent one.
Any modern manufacturing enterprise is composed of many, most
often distributed physically, semi-autonomous units, all having a
certain degree of control over local resources or having varying
information requirements. In such real situations, a certain
number of agent-based industrial applications still use the
hierarchical architecture.

In any multi-agent system their coordination efficiency is a
key factor. As mentioned above, the agent may carry out tasks
alone or jointly with the others, when it would otherwise not be
able to cope with, thus increasing its status with the award
function, profiting from the actions of other agents.

Negotiations leading to cooperation among agents should not
only be aimed at benefitting the individual agents but, first of all,
at improving the overall system performance. In the multi-agent
systems, there are the following relationships types:

Order - when one agent - a ‘supervisor’ one delegates some
task to another agent, usually after negotiations, so that the
best option is selected (e.g., the task will be carried out as
soon as possible, taking into account the current workloads of
the available agents)
Cooperation - two or more agents may join forces to carry a
task together (e.g., lift and transport an element which is too
heavy or too big for one of them, or doing a task together may
cut the operation time)
Non-cooperation - when agents act in a ‘selfish’ way
disregarding other agents’ plans and invitations to cooperation
negotiations.
Analysing cooperation among agents one should take into

account their relative location at the time. The agents may be
located close to each other or stay far away from each other. The
issue of ‘closeness’ is relative as the cooperating software agents
running on different distributed CPUs may still act as if they were
close, albeit the physical distance among the computers may be
significant.

Anyway, according to literature [3] the agents tend to choose
partners close to their own localisation. Moreover they tend to
mimic other adjacent agents approach which leads to two
additional classes of interactions among the agents:

coordinated agents - the agents that currently are executing
some task together, and
local interacted agents - developing some collective behaviour
common to a group of adjacent agents.
This approach assumes [3,4] that every agent gets into

interactions frequently with only a limited number of the agent
group, which may be called its ‘neighborhood’ and, as the studies
show [10-16] agents interact with other agents in more or less
stable way, so that the connections between them do not
change much.

Agents may be of various types, and thus their society may be
split - in federation architectures - to the following approaches
have been used: Facilitators, Brokers and Mediators. Facilitators
are several related agents which are combined into a group. A
facilitator is a communication interface between agents. Every
facilitator is responsible for ensuring communication between a
local collection of agents and remote agents, by: routing outgoing
messages to their destinations, translating incoming messages for
its agents.

Brokers resemble the facilitators having two additional
functions such as monitoring and notification. The difference
between a facilitator and a broker is that a facilitator is
responsible only for a given group of agents, whereas any agent
may contact any broker in the same system for finding service
agents to complete a special task.

In addition to the functions of a facilitator and a broker, a
mediator assumes the role of system coordinator by promoting
cooperation among intelligent agents and learning from the
agents’ behavior. The Federation multi-agent architectures can to
coordinate multi-agent activity via facilitation as a means of
reducing overheads, ensuring stability, and providing scalability.

The Autonomous Agent approach is different. The
autonomous agent should have the following characteristics at
least: it is not controlled or managed by any other software agents
or human beings; it can communicate/interact directly with any
other agents in the system and also with other external systems; it
has knowledge about other agents and its environment; it has its
own goals and an associated set of motivations. The Autonomous
Agent approach is well suited for developing distributed
intelligent design systems where the system consists of a small
number of agents and for developing autonomous multiple robotic
systems.

4. Temporal restrictions

As mentioned above the problem solving task has requires
splitting it into some smaller entities, which makes it easier to use
the domain knowledge in a modular way, i.e., for simple tasks
there are always good procedures, while there are non for the
complex ones. Moreover, splitting the big problem into smaller
chunks makes it easier to allocate the sub-tasks to the particular
agents, and these sub-tasks may be carried out in parallel at times.
In addition, this approach makes it possible to launch the relevant
-fixed priority - reactions in real time.

Sharing of the solutions of sub-problems - extending the
Database with the Domain Knowledge (Fig. 1.) helps the other
agents to benefit in future from the ‘experience’ gathered by the
other agents.

3.	�Local interactions in the
multi-agent environment

4.	�Temporal restrictions

Development of the efficiently operating agent-based
manufacturing systems, including the real-time ones, is usually
carried out so far using such programming languages like C++,
Java, Lisp, Prolog, Objective C and SmallTalk.

5. Conclusions

Efficient and timely collection and access to data describing
the manufacturing system status feature an important issue in
development of the decision making systems that will perform
properly their tasks in the dynamic environment. Meeting the real-
time reaction requirement calls for a two level approach, as
reaching a solution in real time does not allow lengthy
deliberation process, so - as mentioned above - calls for a number
of pre-compiled procedures, contingency plans to be carried out
whenever is needed. There are two different approaches to agent
design: the physical decomposition approach and the functional
decomposition one. In the physical decomposition approach,
agents represent physical entities, like workers, machine tools,
tools, fixtures, or products, etc. On the other hand, in the
functional decomposition approach, there is no relationship
between agents and physical entities, but agents are assigned to
some functions like product distribution, , transport management,
order acquisition, scheduling, material handling, etc.
Development of multi-agent systems requires taking into account
the specific features of these two abovementioned approaches.

References

[1] L. Hernández, V. Botti, A. García-Fornes, A deliberative

scheduling technique for a real-time agent architecture,
Engineering Applications of Artificial Intelligence 19/5
(2006) 521-534.

[2] Kun-Yung Lu, Chun-Chin Sy, A real-time decision-making
of maintenance using fuzzy agent, Expert Systems with
Applications 36/2 (2009) 2691-2698.

[3] Y. Jiang, T. Ishida, A model for collective strategy diffusion
in agent social law evolution, Proceedings of the 20th

International Joint Conference on “Artificial Intelligence
IJCAI’07”, Hyderabad, India, 2007, 125-132.

[4] Yichuan Jiang, Toru Ishida, Local interaction and non-local
coordination in agent social law diffusion, Expert Systems
with Applications 34/1 (2008) 87-95.

[5] K.J. Wróblewski, R. Krawczy ski, A. Kosieradzka,
S. Kasprzyk, Priority rules in production flow control, WNT,
Warsaw, 1984 (in Polish).

[6] N. Jennings, M. Wooldridge, Applications of Intelligent
Agents, in: N. Jennings, M. Wooldridge (Eds.), Agent
Technology. Foundations, Applications, and Markets,
Springer-Verlag, 1998, 3-28.

[7] K .J. Wróblewski, Fundamentals of production flow control,
WNT, Warsaw, 1993 (in Polish).

[8] J. Madejski, Agents as building blocks of responsibility-
based manufacturing systems, Elsevier, (ref no PROTEC
4585 - 27 June 2000).

[9] L. Interrante, S. Goldsmith, Emergent Agent-Based Scheduling
of Manufacturing Systems, in: Working Notes of the Agent-
Based Manufacturing Workshop, Minneapolis, 1998.

[10] B. Burmeister, S. Bussmann, A. Haddadi, K. Sundermeyer,
Agent-Oriented Techniques for Traffic and Manufacturing
Applications: Progress Report, in: N. Jennings, M. Wooldridge
(Eds.), Agent Technology. Foundations, Applications, and
Markets, Springer-Verlag, 1998, 161-174.

[11] S. Ossovski, Co-ordination in Artificial Agent Societies.
Social Structure and Its Implications for Autonomous
Problem-Solving Agents, Springer-Verlag, 1999.

[12] C. Meloni, Autonomous agents architectures and algorithms
in flexible manufacturing systems, in: IIE Transactions
32/10 (2000) 941-951.

[13] L. Kerschberg, Knowledge Rovers: Cooperative Intelligent
Agent Support for Enterprise Information Architectures, in:
P. Kandzia, M. Klusch (Eds.), Cooperative Information
Agents, Proceedings of the 1st International Workshop,
CIA’97, Kiel, Germany, Springer-Verlag, 1997, 79-100.

[14] T. Ohko, K. Hiraki, Y. Anzai, Addressee Learning and
Message Interception for Communication Load Reduction in
Multiple Robot Environments, G. Weiss (Ed.) Distributed
Artificial Intelligence Meets Machine Learning. Learning in
Multi-Agent Environments, ECAI’96 Workshop LDAIS,
Budapest, Hungary, 1996 and ICMAS’96 Workshop LIOME,
Kyoto, Japan, 1996, Springer-Verlag 1997, 242-258.

[15] J. Madejski, Survey of the Agent-Based Aproach to Intelligent
Manufacturing, Journal of Achievements in Materials and
Manufacturing Engineering 21/1 (2007) 67-70.

[16] R.C Arkin, T. Balch, Cooperative Multiagent Robotic
Systems, in D. Kortenkamp, R.P. Bonasso, R. Murphy
(Eds.), Artificial Intelligence and Mobile Robots, AAAI
Press / The MIT Press, 1998, 277-296.

[17] T. Schael, Workflow Management Systems for Process
Organisations, Springer-Verlag, 1998.

[18] J. Madejski , Modelling of the Manufacturing System
Objects Interactions, Journal of Achievements in Materials
and Manufacturing Engineering 24/2 (2007) 167-170.

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org

69

Analysis and modelling

Dynamic scheduling for agent based manufacturing systems

The second level scheduler (deliberative one) improves the
solutions quality while there is enough time for that. Results
of this planning are used for modifications of the pre-
compiled procedures used by the first level scheduler, and
therefore, affect agents’ plans from the moment when the
priorities are updated. This deliberative scheduler can carry
out global optimisation of the work plans, including, e.g.,
earlier maintenance, when the workload is lower.
This architecture ensures an agent reaction that meets the

requirements of the real-time systems, being also capable of
adapting the system behaviour to the dynamic environment
conditions.

3. Local interactions in the multi-agent
environment

The architectures proposed in the literature for agent-based
manufacturing systems fall into three approaches: the Hierarchical
approach, the Federation one, and the Autonomous Agent one.
Any modern manufacturing enterprise is composed of many, most
often distributed physically, semi-autonomous units, all having a
certain degree of control over local resources or having varying
information requirements. In such real situations, a certain
number of agent-based industrial applications still use the
hierarchical architecture.

In any multi-agent system their coordination efficiency is a
key factor. As mentioned above, the agent may carry out tasks
alone or jointly with the others, when it would otherwise not be
able to cope with, thus increasing its status with the award
function, profiting from the actions of other agents.

Negotiations leading to cooperation among agents should not
only be aimed at benefitting the individual agents but, first of all,
at improving the overall system performance. In the multi-agent
systems, there are the following relationships types:

Order - when one agent - a ‘supervisor’ one delegates some
task to another agent, usually after negotiations, so that the
best option is selected (e.g., the task will be carried out as
soon as possible, taking into account the current workloads of
the available agents)
Cooperation - two or more agents may join forces to carry a
task together (e.g., lift and transport an element which is too
heavy or too big for one of them, or doing a task together may
cut the operation time)
Non-cooperation - when agents act in a ‘selfish’ way
disregarding other agents’ plans and invitations to cooperation
negotiations.
Analysing cooperation among agents one should take into

account their relative location at the time. The agents may be
located close to each other or stay far away from each other. The
issue of ‘closeness’ is relative as the cooperating software agents
running on different distributed CPUs may still act as if they were
close, albeit the physical distance among the computers may be
significant.

Anyway, according to literature [3] the agents tend to choose
partners close to their own localisation. Moreover they tend to
mimic other adjacent agents approach which leads to two
additional classes of interactions among the agents:

coordinated agents - the agents that currently are executing
some task together, and
local interacted agents - developing some collective behaviour
common to a group of adjacent agents.
This approach assumes [3,4] that every agent gets into

interactions frequently with only a limited number of the agent
group, which may be called its ‘neighborhood’ and, as the studies
show [10-16] agents interact with other agents in more or less
stable way, so that the connections between them do not
change much.

Agents may be of various types, and thus their society may be
split - in federation architectures - to the following approaches
have been used: Facilitators, Brokers and Mediators. Facilitators
are several related agents which are combined into a group. A
facilitator is a communication interface between agents. Every
facilitator is responsible for ensuring communication between a
local collection of agents and remote agents, by: routing outgoing
messages to their destinations, translating incoming messages for
its agents.

Brokers resemble the facilitators having two additional
functions such as monitoring and notification. The difference
between a facilitator and a broker is that a facilitator is
responsible only for a given group of agents, whereas any agent
may contact any broker in the same system for finding service
agents to complete a special task.

In addition to the functions of a facilitator and a broker, a
mediator assumes the role of system coordinator by promoting
cooperation among intelligent agents and learning from the
agents’ behavior. The Federation multi-agent architectures can to
coordinate multi-agent activity via facilitation as a means of
reducing overheads, ensuring stability, and providing scalability.

The Autonomous Agent approach is different. The
autonomous agent should have the following characteristics at
least: it is not controlled or managed by any other software agents
or human beings; it can communicate/interact directly with any
other agents in the system and also with other external systems; it
has knowledge about other agents and its environment; it has its
own goals and an associated set of motivations. The Autonomous
Agent approach is well suited for developing distributed
intelligent design systems where the system consists of a small
number of agents and for developing autonomous multiple robotic
systems.

4. Temporal restrictions

As mentioned above the problem solving task has requires
splitting it into some smaller entities, which makes it easier to use
the domain knowledge in a modular way, i.e., for simple tasks
there are always good procedures, while there are non for the
complex ones. Moreover, splitting the big problem into smaller
chunks makes it easier to allocate the sub-tasks to the particular
agents, and these sub-tasks may be carried out in parallel at times.
In addition, this approach makes it possible to launch the relevant
-fixed priority - reactions in real time.

Sharing of the solutions of sub-problems - extending the
Database with the Domain Knowledge (Fig. 1.) helps the other
agents to benefit in future from the ‘experience’ gathered by the
other agents.

Development of the efficiently operating agent-based
manufacturing systems, including the real-time ones, is usually
carried out so far using such programming languages like C++,
Java, Lisp, Prolog, Objective C and SmallTalk.

5. Conclusions

Efficient and timely collection and access to data describing
the manufacturing system status feature an important issue in
development of the decision making systems that will perform
properly their tasks in the dynamic environment. Meeting the real-
time reaction requirement calls for a two level approach, as
reaching a solution in real time does not allow lengthy
deliberation process, so - as mentioned above - calls for a number
of pre-compiled procedures, contingency plans to be carried out
whenever is needed. There are two different approaches to agent
design: the physical decomposition approach and the functional
decomposition one. In the physical decomposition approach,
agents represent physical entities, like workers, machine tools,
tools, fixtures, or products, etc. On the other hand, in the
functional decomposition approach, there is no relationship
between agents and physical entities, but agents are assigned to
some functions like product distribution, , transport management,
order acquisition, scheduling, material handling, etc.
Development of multi-agent systems requires taking into account
the specific features of these two abovementioned approaches.

References

[1] L. Hernández, V. Botti, A. García-Fornes, A deliberative

scheduling technique for a real-time agent architecture,
Engineering Applications of Artificial Intelligence 19/5
(2006) 521-534.

[2] Kun-Yung Lu, Chun-Chin Sy, A real-time decision-making
of maintenance using fuzzy agent, Expert Systems with
Applications 36/2 (2009) 2691-2698.

[3] Y. Jiang, T. Ishida, A model for collective strategy diffusion
in agent social law evolution, Proceedings of the 20th

International Joint Conference on “Artificial Intelligence
IJCAI’07”, Hyderabad, India, 2007, 125-132.

[4] Yichuan Jiang, Toru Ishida, Local interaction and non-local
coordination in agent social law diffusion, Expert Systems
with Applications 34/1 (2008) 87-95.

[5] K.J. Wróblewski, R. Krawczy ski, A. Kosieradzka,
S. Kasprzyk, Priority rules in production flow control, WNT,
Warsaw, 1984 (in Polish).

[6] N. Jennings, M. Wooldridge, Applications of Intelligent
Agents, in: N. Jennings, M. Wooldridge (Eds.), Agent
Technology. Foundations, Applications, and Markets,
Springer-Verlag, 1998, 3-28.

[7] K .J. Wróblewski, Fundamentals of production flow control,
WNT, Warsaw, 1993 (in Polish).

[8] J. Madejski, Agents as building blocks of responsibility-
based manufacturing systems, Elsevier, (ref no PROTEC
4585 - 27 June 2000).

[9] L. Interrante, S. Goldsmith, Emergent Agent-Based Scheduling
of Manufacturing Systems, in: Working Notes of the Agent-
Based Manufacturing Workshop, Minneapolis, 1998.

[10] B. Burmeister, S. Bussmann, A. Haddadi, K. Sundermeyer,
Agent-Oriented Techniques for Traffic and Manufacturing
Applications: Progress Report, in: N. Jennings, M. Wooldridge
(Eds.), Agent Technology. Foundations, Applications, and
Markets, Springer-Verlag, 1998, 161-174.

[11] S. Ossovski, Co-ordination in Artificial Agent Societies.
Social Structure and Its Implications for Autonomous
Problem-Solving Agents, Springer-Verlag, 1999.

[12] C. Meloni, Autonomous agents architectures and algorithms
in flexible manufacturing systems, in: IIE Transactions
32/10 (2000) 941-951.

[13] L. Kerschberg, Knowledge Rovers: Cooperative Intelligent
Agent Support for Enterprise Information Architectures, in:
P. Kandzia, M. Klusch (Eds.), Cooperative Information
Agents, Proceedings of the 1st International Workshop,
CIA’97, Kiel, Germany, Springer-Verlag, 1997, 79-100.

[14] T. Ohko, K. Hiraki, Y. Anzai, Addressee Learning and
Message Interception for Communication Load Reduction in
Multiple Robot Environments, G. Weiss (Ed.) Distributed
Artificial Intelligence Meets Machine Learning. Learning in
Multi-Agent Environments, ECAI’96 Workshop LDAIS,
Budapest, Hungary, 1996 and ICMAS’96 Workshop LIOME,
Kyoto, Japan, 1996, Springer-Verlag 1997, 242-258.

[15] J. Madejski, Survey of the Agent-Based Aproach to Intelligent
Manufacturing, Journal of Achievements in Materials and
Manufacturing Engineering 21/1 (2007) 67-70.

[16] R.C Arkin, T. Balch, Cooperative Multiagent Robotic
Systems, in D. Kortenkamp, R.P. Bonasso, R. Murphy
(Eds.), Artificial Intelligence and Mobile Robots, AAAI
Press / The MIT Press, 1998, 277-296.

[17] T. Schael, Workflow Management Systems for Process
Organisations, Springer-Verlag, 1998.

[18] J. Madejski , Modelling of the Manufacturing System
Objects Interactions, Journal of Achievements in Materials
and Manufacturing Engineering 24/2 (2007) 167-170.

5.	�Conclusions

References

http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org
http://www.journalamme.org

