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T h e M a th em a tics  of th e  P h y s ic a l P rop erties of Crysta ls  

By WALTER L. BOND

SEC T IO N  1 

I n t r o d u c t io n

TH E  use of crystals as oscillating elements and as ligh t'v ilw S 'in  electric 
circuits has given the m athem atics of crystalline media an  engineering 

im portance. Soon after the first simple quartz  oscillators were m ade it was 
noticed th a t some ways of cu tting  the block from the na tu ra l crystal gave 
lower tem perature coefficients of frequency than  did o ther ways. T his led 
to  studies of the change of elastic modulii w ith direction and tem perature 
and  finally to the discovery th a t there are directions in quartz  for which the 
shear m odulus does no t change w ith tem perature.

Such com putations are ra the r involved, and there is, in the English 
language, no general reference book on these new problems. The existing 
works were evidently no t w ritten  w ith the idea in m ind th a t anyone would 
ever actually  do m uch numerical work w ith directional properties of crystals, 
since the m ethods used are no t the best suited to this. The m atrix  algebra 
has the  advantages of a symbolic algebra and is also, through the concept of 
m atrix  m ultiplication, a scheme for com puting numerical results.

As the problem  of tem perature coefficients of frequency involves the 
tem perature coefficient of expansion, the tem perature coefficient of density 
and the tem perature coefficient of elastic modulii, these problem s m ust be 
p u t into the language of m atrix  algebra so th a t they will fit into the general 
structu re  being bu ilt for more difficult problems. For this reason, after an 
introduction  to the idea of linear vector functions, through consideration 
of the relation between the electric field and the induction in a crystal, and 
a has ty  sketch of sym m etry types found in crystals, we proceed to  the 
consideration of stress and strain  and their relations to each other.

Following these, we take up piezo electricity and the converse piezo 
electric effects; these are im portan t as they tell us the ways a crystal m ay be 
driven. We have not seen anywhere a general proof th a t the modulii of 
the converse effect are the same num bers as the modulii of the direct effect 
—to the first order of small quantities, though L ippm an predicted the 
converse effect and dem onstrated  its m agnitude to be about this; he ap 
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paren tly  d idn ’t consider the  general case of six sim ultaneous stress com 
ponents, six strain  com ponents, three electric field com ponents and  three 
induction com ponents. T he fac t th a t the m entioned relation  is true  only 
to the first order of small quan tities seems to have escaped the  a tten tio n  of 
some experim enters who have sought to show non-linearity  of the piezo
electric effect by  dem onstrating  non-linearity  in the converse effect.

As a basis for light valve problem s, we handle the  p ropagation  of light 
through crystals, then  the electro optic effect and  the  piezo optic effect.

S E C T IO N  2 

A L i n e a r  V e c t o r  F u n c t io n

F or alm ost every physical constan t of an  isotropic m edium  a crystalline 
m edium  has several constants. F or instance, a piece of glass has a  co
efficient of therm al expansion b u t a crystal has m any coefficients of therm al 
expansion, the  coefficient depending on direction. I t  m ight be thought 
th a t there were no necessary relations between the  coefficients in different 
directions b u t there are necessary relations.

As an  example of the  simplifying relations betw een the values of physical 
constants in different directions let us consider a crysta l in an  electric field. 
M easurem ents show th a t the  dielectric constan t varies w ith  direction in a 
crystal. If the field is no t in the direction of g rea test dielectric constant, 
the  displacem ent curren t m ight veer over a little, m uch as a nail tries to 
follow the  grain of the wood. W e shall assum e th a t  for any  electric field 
vector E  there corresponds an  electric induction vector D  which m ay not 
coincide w ith E. Also we assum e th a t  the  m agnitude of D  is proportional 
to  E , th a t  is, if E  results in D, then  n E  results in nD . L astly , we assume 
th a t if E i results in D h E 2 in A  . . . and  E m results in D m, then  E x +  E 2 . . . 
E m results in D\ +  D 2 +  • ■ • D m. If these assum ptions hold, then  as any 
a rb itra ry  field E  can be expressed as the vector sum of its  three com ponents 
E\, E 2, E 3 along three a rb itra ry  u n it vectors i, j ,  k, th e  induction  vector 
resulting from  E  can be com puted from  the induction vectors respiting from 
Ei, E-i, and  E 3. For, let E i result in D ni +  IJnj +  D 3 \k, E 2 result in D ni +  
D a j T  D32k and  E 3 result in D i3i -f- D23j  -)- D 3 3k, then  E \ T  E 2 T  E 3 — E  
results in the  induction vector:

D  =  (E iD u  -f- E 2D h  T  E 3Diz)i
+  (EiD 2i +  E 2D 22 -\- E 3D23) j .............................(2 .1)
+  {EiD3i +  E 2D 3 2 +  E 3D33)k

I t  is seen then, th a t n o t m ore th an  9 constan ts are needed to  describe 
the dielectric p roperties of a crystal. T he energy required to establish the
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electric field is half the p roduct of the com ponent of the induction in the 
direction of the  field and  the  electric field. T his is, therefore:

2W  =  E\Dw  +  E 2A 2 +  E 3D 33 +  EiEiiD-a -f- £>32) +  EzEi(Dzi +  £ 13) +
EiE2(Di2 +  Ai)

Considering then a condenser m ade from  a  u n it cube of crystal, the charge
is D  and the energy content is W . If there is no leakage loss, the charge

dW  dW
th a t can be draw n from  the condenser is D  = —- . W hence A  =  — - =

dE dE x
A i A  +  \{ D X2 +  A i)  £2 +  5 ( A 3 +  A i)  E 3. If, therefore, the induction
is derivable from  a po tential, A 2 =  § (£12 +  A i)  or A 2 =  A i-  Similarly
A 3 =  A i  and  A 3 =  A 2- By a proper choice of axes the rem aining six
A s  can be reduced to three. In  the case of isotropic dielectrics A i  =  A 2 =
£33 and 47r£ n  corresponds to k, the dielectric constant.

SEC T IO N  3

T h e  S y m m e t r y  o p  C r y s t a l s

If a crystal has certain sorts of sym m etry the  num ber of constants re
quired to  describe each property  is m aterially  reduced. F or th is reason 
we now tu rn  our a tten tion  to a study of sym m etry.

In  general, p lo tting  a vector property  of the  medium for a crystal gives a 
com plicated surface which we shall call a p roperty  surface. Each property  
surface of a homogeneous isotropic m edium  is a sphere.

Because of the  orderly arrangem ent of m atte r in a crystal, the property  
surfaces of crystalline media are commonly sym m etrical. If a casting of a 
p roperty  surface were m ade it m ight fit into its mold in several positions. 
A property  surface for quartz  for example, if lifted from its mold and ro ta ted  
through a th ird  of a tu rn  about the proper axis, would fit back into the mold. 
T h a t is, quartz  has a three fold axis. The na tu ra l requirem ent th a t mole
cules be laid down in a  way economical of space lim its the k inds of sym m etry 
possible for crystals to axes of two fold (binary) sym m etry, of three fold 
(trigonal), of four fold and of six fold sym m etry, planes of reflection sym m e
try  and  com binations of axis-reflection sym m etry, besides a  simple sym 
m etry  through a center. F rom  these elements it is possible to  divide all 
possible property  surfaces into 32 classes. No o ther classes bu ilt from these 
elem ents could be self-consistent.

A diagram  study will prove this point. On a sphere let us m ark axes of 
two fold sym m etry by  m eans of a solid boat shaped figure, three fold w ith a 
solid triangle, four fold w ith a square, six fold w ith a hexagon, planes of 
sym m etry  w ith a solid line (great circle) and com bination axis reflection, 
by  m eans of similar hollow figures. Finally, we shall pro ject the sphere
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T R I C L I N I C  SYSTEM

O I

FIG. I 
A SY M M ETR IC

FIG. 2 
PINACOIDAL

Figs. 1-15—Crystal classes.
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FIG. 20  FIG. 21 FIG. 2 2
DITRIGONAL DITRIGONAL DITRIGONAL
PYRAMIDAL SCALENOHEDRAL BtPYRAMIDAL

FIG. 26 FIG. 27
DlHEXAGONAL PYRAMIDAL DIHEXAGONAL BIPYRAMIDAL

FIG. 31 FIG.32
HEXAKIS-TETRAHEDRAL HEXAKIS-OCTAHEDRAL

T R I G O N A L

FIG. 16 FIG. 17
PYR AM ID AL RHOMBOHEDRAL

I 'x x\ W  I\ /\ /
v

FIG. 23 
PYRAMIDAL

F IG .25 
BIPYRAMIDAL

FIG. 28  
TETRAHEDRAL- 
PENTAGONAL- 

DODECAHEDRAL

CUBIC SYSTEM

mmV xr i */0 w

F IG .29 
PENTAGONAL 

ICOSITETRAHEDRAL

FIG .30 
D YAK IS 

DODECAHEDRAL

S Y S T E M

<  1°
!

FIG. 18 
TRAPEZOHEDRAL

FIG. 19 
BIPYRAM IDAL

HEXAGONAL SYSTEM

FIG. 24 
TRAPEZOHEDRAL

Figs. 16-32—Crystal classes.
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and  m arkings onto a p lane through the center. F igures 1 to  32 is a set of 
such diagram s. Fig. 23 for instance shows a six fold axis. Fig. 1 represents 
a m edium  w ith  no sym m etry  w hatever. T h e  cross represents a  typical 
vector p roperty , the  vector piercing the  sphere above the  projection  sheet. 
I f  the vector pierced below the  sheet it would be m arked w ith a circle. The 
dashed circle of Fig. 23 indicates the  boundary  of the  sphere w ithou t im 
plying it  to be a p lane of sym m etry. T he presence of six fold sym m etry  
requires the  typ ical vector to  be shown in six places. I f  an  axis of two fold 
sym m etry  is added a t  r igh t angles to  the  six fold axis, i t  m ust appear six 
tim es and  the  typ ical vector m ust now appear twelve tim es, six tim es above 
and  six tim es below the projection  sheet. C ontinuing in th is w ay we shall 
find the self-consistent classes of sym m etry  to  be the  32 shown in th e  d ia
grams. O ften the sym m etry  of a crysta l class is expressed by  m eans of a 
form ula. A center of sym m etry  is sym bolized by  the  le tte r C, a b inary  
axis by  A 2, a trigonal axis b y  A  3 , a te rnary  axis by  A 4 , a six fold axis by  Ae, 
a p lane of reflection by  P , and  a com bination ro ta tio n  reflection b y  the 
com bination sym bols AC or AV In  th is  way the sym m etry  form ula of 
qu artz  .for example, is 3 A 2 -A 3.

S E C T IO N  4 

M a t r i x  A l g e b r a

In  the  solution of problem s of crysta l physics we are involved in the 
handling of m any sets of linear sim ultaneous equations. As th e  m atrix  
algebra lessens the work involved in handling sets of linear sim ultaneous 
equations we tu rn  now to a  s tudy  of m atrix  algebra.

Several independent variables x h x2 . . .  x n a re  linearly  rela ted  to several 
o ther independent variables y it y 2 . . .  y m as

yi — 011*1 +  012*2 +  • • • 01n*n 

yi =  021*1 +  . . .

y m 0ml*l I . . .  0mn*n
or briefly

n

yi =  ah xi I =  1 , 2  • • •  m ..........................................(4 . 1)
j=i

In  m ost all such equations as (4.1) the  variab le to be sum m ed over appears 
tw ice in the  subscrip ts of one side. As a convention we agree to om it the 
sum m ation sign and  sum  w herever subscripts are repeated.
T hus: y i  =  aaXj is to  be sum m ed over j
again, if x,- =  bjkZk the  z’s being a th ird  set of variables we have: 

y i  =  aabjicZk to  be sum m ed over j  and  k.
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W e can th ink  of th is as a  special m ultiplication of hyperquantities a, b 
and  z. If  we define

element of which is to be go tten  by  m ultiplying the  ith  row of a by  the 
j t h  column of b, term  by term  thus:

A fter a  little  p ractice it becomes alm ost au tom atic to form the i j th  term

follow across the ith  row of the left m atrix  while the right index finger 
follows down th e y th  column of the right m atrix. The fingers step along in 
synchronism  and  a t  each pause the quantities under the two fingers are 
m ultiplied and  the p roduct added algebraically to the accum ulated sum.

T he algebra of these special m ultiplications is no t com m utable, i.e. 
ab 9^ ba.

Eq. (4.1) can be considered as a special case of eq. (4.2), in which the 
m atrices x  and y have one column only. In  th is m anner a vector w ith

com ponents X\ x2 x3 can be considered as the m atrix

If eq. (4.1) has the same num ber of x ’s as y’s we m ay solve (by m eans of

Cik — Oi-,bjk (4.2)

we m ay go from  the y ’s to the  z ’s directly  th ru  y t- =  c^z&. W e can now 
consider the “ tab le”

as being the  q u an tity  a, and  the  table

as the  q u an tity  b.
These “ tables” are called m atrices.
Going to eq. (4.2) we see th a t  the  q u an tity  c is to be a “ tab le,” the typical

of the p roduct of two m atrices by  le tting  the index finger of the  left hand

determ inants) for the .r’s in term s of the y ’s. We would then get a new set 
of equations

- l
=  a n  y ,-•
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T he significance of the  a-1 is th a t the  m atrix  p roduct of a and  d ~1 is a m atrix
w ith ones on the  m ajor diagonal and  all o ther term s zero. W henever the
p roduct of two square m atrices gives such a m atrix  (known as th e  idem- 
factor, I )  they  are said to be reciprocal. Only square m atrices have 
reciprocals. M ultip ly ing any  m atrix  by  the  idem factor leaves the  m atrix  
unchanged. W e m ight consider, as p a r t  of our m athem atical short hand, 
th a t  eq. (4.1) was solved for x  by  m ultip ly ing th rough by  cTl, as

a~l y  =  a~l ax = I x  =  x.

W e m ust rem em ber th a t  the  order m ust n o t be d istu rbed  as the quan tities 
are no t com m utable, and  th a t  only square m atrices have reciprocals.

T he m ajor diagonal of a square m atrix  is the set of term s running  diagon
ally from  the upper left to  the  lower right.

A sym m etrical m atrix  has any  term  Mi,- = M ,i
An an ti-sym m etric or skew sym m etric m atrix  has any  te rm  M y  =  — M y  

for i  9 ^ j .

Rotation Theory

T he m atrix  algebra can be used to  express a vector as a  function  of another 
vector, th a t is to handle such relations as exist betw een E  and  P  of section 2.

There is ano ther im portan t aspect of m atrix  m ultip lication , th a t  of tran s
form ing a function  from  one set of axes to  another. L e t us assum e th a t the 
new set of u n it axes, x[ x 2 and  x[ are m erely the  old ones ro ta ted  through 
angle <£ abou t some axis A  which is a u n it vec to r passing th rough th e  origin. 
F rom  Fig. 33 we see th a t in the  expression:

'  i '  i '%i — an x i T- 0 2 1X2 +  a3 1X3

the  a,ij s are the cosines of the  angles betw een x\ and  the  three quantities 
x'j. Conversely they  are the  cosines of the angles betw een the  x '/s  and x\. 
Consequently, if the  prim ed u n it vectors are given in term s of the  unprim ed 
ones by  the th ree equations

r
X  ̂  — & ijX  j

then  the  unprim ed x’s are given in term s of the prim ed ones by  the  ex
pression:

X  j  CL j \ X  j

T his reversible relationship is well depicted by  the table:

X\ X2 x3
Oil 0\2 Oiz
021 022 023
Ö31 U32 033
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In  th is direction cosine table we can “ look u p ” the com ponents of any un it 
vector in term s of the o ther system.

The m atrix  a a  is merely the m atrix  a» y w ith rows and columns in ter
changed. a ,i is called the conjugate of a¿y. W e shall denote the conjugate 
of any  m atrix  M  by  M c.

Obviously V ' is the  vector sum of the 3 com ponents (on the new system ) 
of each of its 3 com ponents on the old system.

If  the expression giving the com ponents of V  on the new system  is de
noted by V ' we m ay write

Since xi is of u n it length, the sum of the squares of its three com ponents 
(on the prim ed system ) is unity .

Now ac can be considered as a ro tation  similar to the ro tation  a. Con
sequently their p roduct aac is a similar rotation . L et us consider this 
product.

*i
Fig. 33—The direction cosines of X! on Xq X '2 X '3.

conversely

V ' =  a V 

V  =  a- 1  V '

T h a t is 

sim ilarly 

and

(4.3)
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T he squares of its term s m ust sum  to zero, row by  row as in (4.3)

(0n0i20i3\ / 01102103A  / I  • A
021022023 I I 012022032 j  =  I • 1 - I

<231032033/ \013023033/ \ -  • 1 /

Because of the  relations ah  +  ah  +  0is — 1, etc., we see th a t  the  term s of 
th e  th ird  m atrix  are zero for all term s n o t on the  m ajo r diagonal. T here
fore, aac is an  idem factor and  the reciprocal m atrix  of a is the same as its 
conjugate m atrix .

ac =  0 ' ....................................................... (4.4)

Also x[ is of u n it length, and  the sum  of the  squares of its com ponents on 
the unprim ed system  is un ity . T hus we find:

2 ■ 2 | 2   a
011 +  021 +  031 — 1

012 +  022 +  032 =  1 ............................................ (4.5)
013 +  023 +  033 =  1

W e now in troduce from  vec to r analysis the  concept of the  scalar product. 
The scalar p roduct of two vectors u  and  v is u c v. I t  is the  p ro d u ct of the 
lengths of the  two vectors and  the  cosine of the  angle betw een them .

If we take the scalar p roduct of X\ and  x 2 as expressed in the  prim ed 
system  we have, since they  are m utually  perpendicular:

h \(011, 012, 013) I 022 I — 011021 +  012022 +  013023 =  0
\ 0 23/

Sim ilarly m ultiplying x 2 and  xs scalarly, and  x 3 and  ay we find:

011021 +  012022 +  013023 =  0

021031 +  022032 +  023033 =  0 ..................(4-5)
031011 +  032012 +  033013 =  0

If we m ultip ly  x[ and x 2 etc. as expressed on the unprim ed system  we get 
the relations:

011012 +  021022 +  031032 =  0
012013 +  022023 +  032033 =  0 .................. (4.7)
013011 +  023021 +  033031 =  0

The vec to r p ro d u ct of two vectors u  and  v requires the  defining of a
special m atrix , the cross m atrix .

0 —  U z «2
U z 0 — Ml

«2 H i 0 ,

u  X  =  u3 0  —ui I .....................................................(4 .8 )
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We note th a t this is form ed by w riting zeros on the m ajor diagonal, then 
going back from the lower right corner w riting u\, w2 and u 3 around the edges. 
W e then m ake the lower left term  negative, then  operate on the opposite 
side of the m ajor diagonal so as to m ake the m atrix  skew sym m etric.

T he reciprocal of any m atrix  m  is

x =  M d - l ) l+J ................................................. (49)
\ m \

where M u  is the j i  m inor of \m \ .

T he cross m atrix  has no reciprocal as for it (4.9) becomes indeterm inate.
Since the vector product of two vectors u  and  v is another vector per

pendicular to bo th  u  and v and  of a length uv sin (uv) we m ay write, on the 
prim ed system

xi X  % 2 = x 3 in the  form

/  0  — O13 Ox2\  /  «2l \  / — O13O22 +  <2l2U*A /  U3l \

I ai3  0 —flu I I U22 I =  I U13U21 — U11U23 I =  ( U32 I
—  0x2 Oxx 0  /  \ 0 2 3 /  \  —  O 12O2X “h  Oxxfl22/ \ d 33/

M atrices including vectors are equal only when their corresponding term s 
are equal. Hence, we get the relations

3O22
.(4.10)

=  Oxx022 — Ox202X

Similarly we get the relations:

.(4.11)

0 3 X = 0 1 2 O 2 3  — 0 x3 0 2 2

0 3 2 = ; 0 1 3 O 2 X — O x x f l 23  • •

0 3 3 = O X 1 O 2 2  — O 1 2 O 2 X

> n s :

O x x = 0 2 2 O 3 3  " O 2 3 O 32

0 x2 = 0 2 3 O 3 1  — 0 2 I Û 33

O l 3 = O 2 XO 32 0 2 2 Û 3X

0 2 1 = 0 3 2 0 X3  — O X 2 O 33

0 2 2 = O 3 3 O 1 X — 0 3 X0 X3

0 2  3 = 0 3 x0 x2  — 0 3 2 0 xx

T he 21 relations between the a ^ ’s allow us to  com plete the m atrix  given 
four term s.

Several Useful M atrix Relations
/d /d  Xx\

The del operator is the pseudo vecto rV  =  I d /d  x 3 I ...........................(4.12)
\ d / d  x j
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/  On 0 o o . .  A -1 /  1 /on 0 0 . . . \

°
022 IIOO

' 0 1 / Û22 0 . . .

°
0 033 .......... I 1

1 °
0 1/033 ■ ■ • 1

I t  transform s upon a ro ta tio n  of axes as does an  ordinary  vector:

V ' =  a V ......................  (4.13)

grad m =  V  iic, a  m a tr ix ..................................... (4.14)

div  u  = S 7 C u, a  s c a la r ..................................... (4.15)

curl u  =  V X u ,  a  m a tr ix .................................... (4.16)

grad radius vector = \ /p  = I ,  th e  idem facto r................. (4.17)

(■abc . . .) _1 =  . . .  c~]b~]a~l ................................... (4.18)

(■abc . . .) Cc =  . . .  ecbcac .......................................... (4.19)

.(4.20)

(Scalar tim es m atrix) 1 =  (m a^ x)  .........................(4.21)
scalar

S E C T IO N  5

T h e  G e o m e t r y  o f  R o t a t io n s

As a first application of the  m atrix  algebra le t us com pute the  a m atrix  
for a few general ro tations. A lthough we can consider a general ro tation  
as one of angle <j> abou t the  u n it vector* A , i t  is easier to  consider a general 
ro ta tion  as three successive ro ta tions abou t coordinate axes.

A study  of Fig. 34 shows th a t  for a counterclockwise ro ta tion  0 abou t xh 
th e  new com ponents of a vector V are:

V[ =  Vx
V 2 = V 2 cos <j> +  F 3 sin <f>
V s = — V 2 sin <t> +  Vs cos <t>

whence V ' =  a V  where

a =  [ 0  cos 0 sin <£ I ...................................... (5.1)
'1 0 0
0 cos <j> sin

,0 — sin 4 > cos 4>,

* A general rotation of amount <t> about the unit axis A is given by 

a = A A c +  ( /  — A A c) Cos <f> +  Sin <t> A 

See Vector Analysis (Gibbs Wilson, Yale Press) pp. 338.
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><2
Fig. 34—The relationship between the components of a vector on one coordinate 

system and on another.

In  the  appendix we give the special transform ations corresponding to the 
sym m etry operations of the 32 crystal classes. If we have three successive 
ro tations:

x ' = ax

the  resu ltan t ro ta tion  is
x '"  = a" a'ax

or x '"  =  R x ...................................................... (5.4)

where R  — a" a! a .................................................. (5.5)

Similarly, for a counterclockwise ro ta tion  <j> abou t x 2 we have

(cos ii> 0 — sin <t>\
0  1  0  ) .....................................

sin 4> 0 cos <t>/

and for a counterclockwise ro tation  4> abou t xs:

( cos (¡> sin </> 0 \
— sin cj) cos 0 1....................

0 0 1/
x3
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The I .R .E . Orientation Angles and the I .R .E . M atrix

T he In s titu te  of R adio Engineers has proposed th a t, for q u artz  crystals, 
all o rien tations be given in term s of th ree ro ta tions 4>, 9, \p ab o u t x3, x '2 

and  x 3  respectively, s ta rtin g  w ith  the  p la te  leng th  along x\ w id th  along 
x 2 and  thickness along x3. (H ere x 3  is the  z or optic axis, Xi is th e  electric 
axis.)
W hence, here:

COS \p sin \p
° \

/co s  9 0
sin \p cos \p

° °
1

0 0 1 / Vsin 9 0

and  carrying ou t the  two m atrix  m u ltip lications:

Xi
cos <t> cos 9 

— sin (j) sin ip
cos \p

x 2

sin (j) cos 9 
+COS 4> sin \p

cos 4> sin 4 >
— sin (j> COS (/>

0 0

x 3

cos \p — sin 9 cos \p 1 %{

- cos 0  cos 9 sin \f/ — sin c¡> cos 9 sin \p 
- s i n ^ c o s ^  - f  cos <f> cos ^

cos <f> sin 9 sin <j) sin 9

sin 9 sin \]/

cos 9

.(5.6)
Xi

X 3

If we denote the  u n it vectors along the  length, w idth  and  thickness as P \P 2  
and P 3  respectively we have as a m atrix  defining the  p la te :

P  = R x .(5.7)

T he I .R .E . o rien ta tion  system  is useful to  the  designer of crysta l plates 
because his problem  is to  choose such values of <£, 9, ^  as to  give the p la te  
certain  physical p roperties along its  length, w id th  and  thickness. T he m an 
who cuts the p la te  has a different problem , th a t  of m oving the crystal (and 
hence th e  x 3 x 2 x3 axes) ab o u t a  fixed saw so th a t the  p la te  cu t parallel to the 
saw b lade is w hat the designer ordered.

L e t us consider such a  system  as shown in Figs. 37, 38 and  39. In  Fig. 
38 the  crysta l stands w ith its  optic axis along P 3, its +  electric axis (for 
rig h t hand  quartz ) along P. Since the  shop' m an considers clockwise ro ta 
tion  as positive we now ro ta te  th e  crysta l th rough angle U3  ab o u t P 3 clock
wise, we then  tu rn  th e  cry sta l th rough angle C/2 clockwise ab o u t Pi, and 
finally, a fte r cu tting  o u t a slab of required  thickness, we tu rn  it clockwise 
th rough  angle Ui abou t P 3 to  cu t its  length and  w idth.

On the  p la te  axes P i the crystallographic axes xi x 2 x3  are  now given by

X  =  rP (5.8)
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*3

*3

Fig. 36—The final position (<t>, 0, i ')  for the I.R.E. direction angles.
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where

/  cos i/ i  sin U iO \ / l  9 9 \  /  cos U3  sin Z73 ON
r =  I — sin Ui cos tĄ 0 I I 0 cos £/2 sin Z72 I I —sin U 3 cos U 3 0 

V 0 0 1 /  \ 0  —sin U2 cos u J  \  0 0 \ )

or

r =

cos Z71 cos U3 cos Ui sin U3  sin Ui sin U2

— sin Ui cos U2 sin U 3  + s in  Ui cos U2 cos U3

— sin Ui cos U3  —sin Ui sin U3  cos L \  sin U2

— cos Ui cos U2 sin U3 + c o s  Ui cos U2 cos U 3

sin U 2 sin U3 — s in  Z72 c o s  U3 cos U2

(5.9)

in e  (U. U, U) position of a shop system of directi 
Fig. 38—The second position of a shop system.

F rom  (5.8) we see th a t P  = rx and  hence, if th is is to be the  sam e p la te  
the  designer specified by  P  — R x  we m ust have R  =  r whence we m ay 
equate the term s of (5.6) and  (5.9) to get the relations
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cos U2 =  cos 9 or U2 =  ±
ta n  U\ — cot i / ' ......................
tan  Us =  cot <t>

( 5 . 10)

U i =  \p — 90 +  nir 
U2 =  e 
Us =  4> —  90  +  mr

J1SHAFT 

Jl   SAW

¥

Fig. 39—Cutting the slab and trimming it to the piezoid boundaries.
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W here n  is any integer positive or negative, including zero. If we take

Z7 j  =  i  -  90
u 2 = e  ................................................................... ( 5 . i i )

Us =  <t> +  90

T he m atrices are consistent term  by  term .

S E C T IO N  6 

C r y s t a l l in e  D i e l e c t r i c s

As a first application  of the  m atrix  algebra considered as a linear vector 
function let us reconsider the  problem  of th e  crysta l in an  electric field.

T he relations of chap ter I I ,  equation  (1) can be w ritten  in the abbrev iated  
form :

D  = D ijE  where D r, — D sr

in accordance w ith the system  of abbreviations adop ted  in the  appendix.
If we p u t

4 7T Dfg k  rs

equation  (1) can be w ritten

D  =  ± - k raE ................................................. (6.1)
4 7T

In  order to  investigate the  effects of crystal sym m etry  in determ ining 
the  least num ber of dielectric constan ts th a t  are required for a given class of 
sym m etry  it is desirable to find the  electric induction  D  for any system  of 
axes. Suppose th a t  we choose a system  for axes * i , *2 , x 3 rela ted  to  X\ , 
x2 , x3 th rough  the  relations:

i i i  
*1 — 011*1 +  012*2 "T  013*3

*2 =  021*1 +  022*2 +  023*3 ..................................... (6.2)I . I . I
*3 — 031*1 “T 032*2 T  033*3

where an is the cosine of the  angle betw een *1 and  x [ , 012 is the  cosine of the 
angle between x i  and  x 2 etc.

E quation  (6.2) can be abbrev iated  to

x ' =  ax

w here 0 is th e  m atrix
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( an an «13 \
<321 a-?> <323 I 

<331 <332 <333/

(V\
I t  is shown in the  sec. 4 th a t any vector V  =  I V 2 I can be w ritten  on the

W
new system  of axes as V ' where V ' =  aV , conversely V = a 1 V / ; a 1 is the 
m atrix  reciprocal to  a. Since the induction D  and the  electric field E  are 
simple vector functions they  transform  as the  vector V, th a t is:

D ' = a D .................................................... (6.3)

B u t by  (6.1)

w hence:

or

E ' =  a l i .......................................................(6.4)

D  =  - } -k E  
Aw

aD  =  4 -  akac aE  
At

D ' =  -  W E ' ................................................ (6.5)
47r

k ' =  akac .....................................................(6.6)

W e see th a t the  form  of (6.5) is the same as th a t of (6.1) for any  set of 
axes if (6.6) is used to define the  new dielectric m atrix  k.

To apply  th is relation (6.6) to  a particu lar crystal let us consider a te trag 
onal crystal (which has its properties unchanged by  a ro tation  of 90° 
about a four fold axis). L e t us choose the four fold axis as x3 and  then ro ta te  
the  axis 90° abou t x3 . In  th is case

/o  - 1  0 \  /  0 1 o \
a =  I 1 0 0 I and the reciprocal m atrix  a-1 =  I — 1 0 0 I

Vo 0 1/  V 0 0 1 /

whence equation (6.6) becomes:
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B u t because of the  sym m etry  ¿ is unchanged by  th is transform ation, 
hence

k =  k '

Two m atrices can be equal only if corresponding term s are equal, hence

¿11 =  ¿2 2  , ¿12  =  — ¿12 =  0 ,  ¿2 3  == — ¿31 a n d  ¿31  =  ¿23

whence

¿2 3  =  ¿3 1  =  0 .

W e are left then, w ith the  dielectric constan t m atrix  for the  te tragonal 
bisphenoidal class:

/¿ n  0 0 \
k =  0 ¿ii 0 I

\ 0  0  ¿ 3 3 /

A pplying o ther transform ations possible for te tragonal crysta ls gives no 
fu rth e r sim plification.

If we go through all the sym m etry  transform ations possible for the 32 
classes we find th a t cubic crystals require b u t one dielectric constan t, hex
agonal, trigonal and  te tragonal crystals require two constants, orthorhom bic 
monoclinic and  triclinic crystals require 3.

As the  triclinic class has no fixed axes or p lanes of sym m etry  the  reduction 
of its 6 constan ts to 3 is n o t so obvious. I t  m ay be seen by  expanding into 
ord inary  xyz  coordinates, th a t  pckp =  1 is the  equation  of an  ellipsoid, (p 
is the  radius vector) where the  six ¿ ’s are the  coefficients of x ,  y  , z , yz, 
zx  and  xy  respectively. I f  we choose th e  coordinate axes along the  axes of 
the  ellipsoid the  yz, zx  and  xy  term s drop ou t and  only th ree ¿ ’s are needed. 
W ith  triclinic crystals then, if we determ ine the  axes of the  ellipsoid, then 
choose th e  coordinate axes along them , only th ree dielectric constan ts are 
needed to  com pletely specify the  po larization  in term s of the  electric field. 
T he determ ination  of the  ellipsoid axes m ust be m ade experim entally as 
there  are no sym m etry  elem ents to  guide us. I t  is possible to  com pute the 
positions of the  axes from  th e  6 k ’s b y  solving a cubic equation.

T he values of the  ¿ ’s depend on th e  frequency of the  applied field. In  
crystals of low sym m etry  the  ellipsoid axes for different frequencies do no t 
necessarily coincide.

A nother vector q u an tity  of in terest is the  polarization, P  = D  — ~  E .
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Using (1) th is becomes

P  =  ! ( * - / ) £ ........................................... (6.7)

SEC T IO N  7

Q u a d r a t ic  F o r m s

O ften the  elem ents of a m atrix  are themselves functions of o ther q uan ti
ties. In  order to  relate the elem ents of one m atrix  w ith those of another by 
m eans of a m atrix  m ultiplication, we m ay m ake a single column m atrix  of 
each of them . W e then  wish to  know how a transform ation of axes changes 
the  elem ents of this single column m atrix . Consider a sym m etrical m atrix  
b th a t relates two vectors u  and  v:

u  — bv.

A transform ation  of axes, a, changes u  and v to  u ' and v '. M ultiplying u  =  
bv through by  the prefactor a we have

au = abv.

W e now replace au by  its equivalent a_V  whence:

u ' =  abaTxv'

so th a t

u ' = b'v'

if we define V  as

b' =  abaT1  ..................................................(7.1)

To be in accord w ith common usage we now rearrange b according to the 
a rb itra ry  scheme:

(kbn 'B i

¿>22 b 2

¿>33 = b 3

¿>23 .

¿>31 .

¿>12 A

W e wish to know w hat operation to perform  on B  to get B ' corresponding 
to  b'. If we expand b' — abaT1 it is easily seen th a t b' — aB  where



22 BELL  S Y S T E M  TECHNICAL JOURNAL

2
a n

2
O l2

2
O 13 2 o i 2  a  13 2 O 13 O 11 2 o n  a n

2
Û 21

2
0 2 2

2
023 2 0 2 2  O23 2 0 2 3  O2I 2 a 2 i  O22

2
0 3 1

2
O32

2
0  33 2  032 O33 2  033 O3I 2 û 3 1  O32

0 2 1  U31 022 032 O23 O33
O22 033 

+ 0 2 3 0 3 2

O2I O33 

+  O23 O3I

022 O31 

+ 0 2 1 O 3 2

031  O n O32 O12 O33 a  13
0 12  033 

+ 0 1 3 0 3 2

O13 O31 

+  0 1 1 0 3 3

O il  O32 

+ 0 1 2 O 3 1

OH 021 O12O22 O 13 023
012  023 

+  O13O22

O 13O 2I 

+  O ll  O23

O il  022 

+  012  0 2 1 ,

Because we shall often need to  form  the  a  m atrix  from  the  a  m atrix  we 
need an  easily rem em bered m echanism  for doing so. W e notice th a t those 
are four kinds of term s in the  a  m atrix  and  th a t  the four k inds can be sepa
ra ted  from  each o ther by  two center lines, one horizontal, one vertical. 
T his gives us four squares of nine term s each and  we can correlate each term  
of any  square to  a term  of the  a m atrix  by  m eans of its position in  the  square. 
T he term s of the upper left square are the squares of the  corresponding term s 
of the  a m atrix. To form  any  term  of the  lower left square we cover the 
corresponding term  of the a m atrix  w ith our finger and  m ultip ly  the  visible 
term s of th a t  column. To form  any  te rm  of the upper righ t square we cover 
the  corresponding a te rm  and  w rite down double the  p roduct of th e  visible 
term s of th a t row. To form  any  term  of the lower righ t square we find the 
corresponding a -term, strike ou t th a t row and  column and  w rite down the 
sum  of the rem aining cross products. A study  of the following diagram  
will help to  rem em ber these rules.

Terms are squares 
of corresponding 

a terms
Omission products 

doubled

Omission products Sum of omission 
cross products

Fig. 40

S E C T IO N  8 

C ry sta l  E la sticity

Stress

Consider a po in t P  in a  m edium  ac ted  on by  forces. If  a small area is 
chosen ab o u t P  th e  m edium  on one side of the  area exerts a  force on the 
m edium  on th e  o ther side. T he force will depend on the  size of the  area and



MATH EMATICS  OF PHYSICAL  PROPERTIES OF CRYSTALS  23

on the  direction of its norm al n. We shall choose a triangular area ds such 
th a t an  a rb itra rily  chosen set of m utually  perpendicular un it axes xx , x2 , 
x 3  pass through the vertices of the triangle. L e t us consider the conditions 
of equilibrium  of the  te trahedra l element of volum e so formed. The areas 
norm al to  X \, x2 , x 3  are d s i , ds2 , ds3 , respectively, and  the forces per un it 
area acting  through these faces are:

A ny body forces (such as gravity) depend on a higher order of smallness 
( th a t is on the volum e ra the r than  on the  area) and hence are negligible. 
W hence for equilibrium :

F or the  body to be in ro tational equilibrium  the tangential forces m ust 
balance, hence f a  =  /21 , f a  =  f a  and f a  =  f a  .

Transformation of A xes

A change of axes th a t transform s vectors through F ' = aF changes F  =  
f n  to aF = afa 1an so th a t if f  =  afa 1 then F ' =  f ' n ' .

In  order to  rela te  the stress to o ther quantities through a m atrix  we wish 
to convert it into a single column m atrix. W e p u t f a  =  Xj , f a  — X 2 , 
fa  =  X 3 , f a  =  f a  =  X 4 , f a  =  f a  — X ,  a n d /12 - f a  =  X 6 .

Changing to the  X  represen tation  we find

I  ds — F\dsi -(- Fidsi T  F 3ds3

B ut

ds\ =  n\ds, ds2 =  n2ds and ds3 =• n3ds

(8.1)

where a  is the  m atrix  eq. (7.2).
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Strain Theory

( p \
If  the dimensions of a body change, a  po in t p  =  I p 2 I is m oved to  p  +  ap

A A
where <j p =  I <r2 I. A neighboring po in t p  +  u  is m oved by  an  am ount

Vo's/
o-p+u given by  <x7>fu =  (Vo-c) cm +  o-p . T he m ovem ent of p  +  «  relative to 
p  is a Op+u o"p — (V^c)c^-

T he 9 com ponents of (V cc)c describe the  so rt of m ovem ent in the  neighbor
hood of a po in t; they  are the strain  coefficients. If th e  stra in  m atrix  is 
« =  ( V<rc) c , a transform ation  x ' = ax causes th is to becom eaeac =  (a \7 <jcac) c 
and  if aV  =  V ' and  ao =  o’ so th a t crcac =  o'c we have e' =  ( V'<tc)c if

« ' =  a e a c ................................................................( 8 .2 )

W hen we arrange e as a single colum n m atrix  e we shall, following custom, 
d(j da

take e4 =   ---- 1- —- ,  e6 =  etc. This has the  effect of m oving the  2’s of the  a
dx3 dx3

m atrix  to the  conjugate position so th a t, while x  transform s as x ' =  ax, 
e transform s as e' =  a ^ e .

W e shall take tensions as positive stress elem ents, and  elongations as 
positive strain  elements. T he shear strain , ec =  (0, 0, 0, 0, 0 eg) becomes

t t Cft \upon ro ta ting  through 45° abou t x3 , ec =  I - ,  — - ,  0 ,0 , 0 ,0  ). This shows

th a t  to be consistent, a positive shear s tra in  abou t x 3 m ust m ean an  expan
sion along the  line x\ — x 2 and  an  equal contraction  along th e  line xi = —x 3 .

A positive shear stress is one th a t  tends to  produce a  positive shear 
strain .

B y superposing such stra in  elem ents we see th a t  the  e m atrix  (useful in 
d isplacem ent problem s) m ay be form ed from  the  e m atrix  (which is useful in 
stress stra in  relation) as

) fee 2eB '
-  i . ■6 e2 I ............................................ (8.3)

2^4 e3 /

T his slightly aw kw ard relation  is used solely to  m ake the  “w ork done in 
stra in ing” expressible as

2 W  =  X ce = ecX .................................................(8.4)

If the  e’s were taken  as equal to  the  e’s the  work would be: 2IT =  X xe\ +  
X 2e2 +  X 3e3  +  2X 4e4 +  2A 5e6 +  2X 6e6 • T his would be aw kw ard in some 
la te r problem s.
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If the scalar W  is to  be unaffected by  a transform ation a we m ust have 
W  =  ecX  unaffected. If we w rite

W  = eca Xa X  =  eca lX '

we have

W' — W =  ec X'

if
> - lec = ec a

when

e' =  «7* ec .................................................. (8.5)

This substan tia tes our previous statem ent.

Relation Between Stress and Strain

If the strain  in an  elastic body is proportioned to  the  stress we m ay w rite:

Ci = Sn-Xi + ■S12.X2 T • ■ • .S'i6Xe
C2 =  S 2 1X 1  +  • ■ •

W here the S ’s are elastic modulii. In  m atrix  no ta tion :

e = S X  .................................................... (8.6)

Conversely X  — S  le or if S~ l = C

X  =  Ce .................................................... (8.7)

The C’s are called elastic constants to distinguish them  from the modulii S.
As e = S X , c tj'e  = SoT la X ,  and  since <x^e = e', (the representation 

of e on a new axis system  related to the old one through the m atrix  a) and 
a X  is X ' , then  we m ay w rite (a 7 1 e) =  ( a ^ S a  ^ (« X ) as:

e' =  S 'X '  where S ' =  1 .............................. (8.8)

Similarly operating on X  = Ce we find

X '  =  C'e' where C' = aC ac .................................. (8.9)

T he energy required to  cause the strain  e is

W  =  f  X Tder = ^ X r er =  \  S r ,X TX a ...................... (8.10)

whence, if IT is a perfect differential,



26 BELL S Y S T E M  TECHNICAL JOURNAL

Sim ilarly

Cre = Cs. (8 -12)

This reduces the constan ts and  m odulii to 21 of each.
If a transform ation  is perform ed th a t is perm itted  by  the sym m etry  of

the m edium  the  elastic m odulus m atrix  is unaltered . T he monoclinic
system  has a b inary  axis. If we choose th is as x3 and  ro ta te  the axes 180°

/ - I  0 0 \
abou t th is by  m eans of the  m atrix  a =  I 0 — 1 0 I we have S ' =

\ 0 0 1/
a c lS a  1 =  5 .

1 0 0 0 0  o ' S llS u S a S u S l  5.S16 ' 1  0 0 0 0 0 '

0  1 0 0 0 0 S 12S22S 23S 24S2 5*5*26 0  1 0 0 0 0
0 0  1 0 0  0 S13S23-S'33*5*34*5* 35536 0 0  1 0 0 0
0 0 0 - 1 0 0 5'145'24‘S'345*44^4 b5'46 0 0 0 - 1 0 0
0 0 0 0 - 1 0 5 ,15525‘S 35,S455'55.5'56 0 0 0 0 - 1  0
0 0 0 0 0  1/ _ 5 ,165’26*S'365'465'56‘S '66 / v0  0  0 0 0  1 ^

S n 5'12 S13 — S u — Sis S16
S i  2 S22 S23 — S24 - S 2s S26
Sis 5*23 S33 — S34 — S3 B S3S

— S i4 5'24 — S34 S i  4 S i  B —  Sis
—Sis —Sis — S3S *5*45 S5S —Sss

Sis Sis Sss — *546 — Ss6 Sss,

E quating  term s, those whose signs differ in S  and  S '  m ust vanish.
Proceeding in th is way through the 32 crysta l classes we arrive a t  the 

ten  following m atrices th a t cover the  elastic behaviour of all 32 classes.

Triclinic System f S u S i 2 S a S u ¿ 'lB Sis
21 modulii S12 S22 S23 5*24 S25 5*26

5  =
S l3 S23 S33 534 S35 S36 The C m atrix  is
S li 5*24 S 3i 5*44 S4S Sis entirely analogous
¿"is 5'2B Sis Sis Sss Sss
Sis S26 Sss Sis Sss SsS y . . . . ( 8 . 13)

M onoclinic System S u S12 S13 0 0 Sis
X3 axis b inary S12 S22 S23 0 0 S 2s
13 modulii

5  = S12 S23 S33 0 0 5*36 T he C m atrix  is
0 0 0 S44 5*45 0 entirely analogous
0 0 0 ■S« Sss 0

^Sis S2S 5*36 0 0 Ss6y . . . . ( 8 . 14)
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Phom bis System 
x3 b inary  
9 modulii 5  =

Tetragonal System 
x 3  a fourfold axis 
(Classes 9, 10, 13) ^  _  
7 m odulii

T etragonal System 
x3  a fourfold axis 
x\ a twofold axis 
(Classes 11, 12, 
14 ,15)
6 modulii

Trigonal System  
x3 trigonal axis 
(Classes 16, 17)
7 modulii ^  _

¿ 1 1 ¿ 1 2 ¿ 1 3 0 0 0

¿ 1 2 ¿ 2 2 ¿ 2 3 0 0 0

¿ 2 3 ¿ 2 3 ¿ 3 3 0 0 0

0 0 0 S 44 0 0

0 0 0 0 ¿ 6 6 0

, 0 0 0 0 0 ¿ 6 6 ,

' ¿ 1 1 ¿ 1 2 ¿ 1 3 0 0 ¿ 1 6

¿ 1 2 ¿ 1 1  ¿ 1 3  0 0 - s 16

¿ 13 ¿ 1 3 ¿ 3 3 0 0 0

0 0 0 ¿ 4 4 0 0

0 0 0 0 ¿ 4 4 0

¿ 1 6  “ - ¿ 1 6  0 0 0 ¿ 6 6

¿ 1 1 ¿ 1 2  ¿ 1 3 0 0 0
¿ 1 2 ¿ 1 1 ¿ 1 3 0 0 0

¿ 1 3 ¿ 1 3 ¿ 3 3 0 0 0
0 0 0 ¿ 4 4  0 0
0 0 0 0 ¿44 0
0 0 0 0 0 ¿ 6 6 ,

The C m atrix  is 
entirely analogous

....................... (8.15)

T he C m atrix  is 
entirely  analogous

 (8-16)

The C m atrix  is 
entirely analogous

..........................(8.17)

S n  ¿12 ¿13
¿ 1 2  ¿ 1 1  ¿ 1 3

¿ 1 3  ¿ 1 3  ¿ 3 3

¿ 1 4  — ¿ 1 4  0
* ¿ 2 5  ¿ 2 6  0

0 0 0

¿ 1 4  - ¿ 1 6  0

—  ¿ 1 4  

0
¿ 4 4

0

¿ 2 6  0  

0 0 
0 2¿26 
¿ 4 4  2 ^ 4

2¿25 2¿14 2 (¿11 ¿ 12)

Trigonal System 
x 3 trigonal axis 
xi b inary  (Classes 
18, 20 , 21) ¿  
6 modulii 
(alpha quartz)

H exagonal System 
x 3 a sixfold axis 
X\ a twofold axis ^  
(Classes 19, 22,
23, 24, 25, 26, 27)
5 m odulii

¿ 1 1  ¿ 1 2  ¿ 1 3  ¿ 1 4  0  0

¿ 1 2  ¿ 1 1  ¿ 1 3  — ¿ 1 4  0 0
¿ 1 3  ¿ 1 3  ¿ 3 3  0 0 0
¿ 1 4  - ¿ 1 4  0 ¿ 4 4  0 0
0  0  0  0  ¿ 4 4  2 ^ 4

0  0  0  0  2 ^ 4  2 ^ 1 1  ¿ 12)

The C m atrix  
is analogous 
except th a t 
C46 =  C25
C 66 =  ¿ 1 4

¿66 =  i
(¿11 —¿ 12) 
 (8.18)

T he ¿  m atrix  
is analogous 
except th a t
¿ 6 6  =  ¿ 1 4

¿ 6 6  =  h
(¿11 - ¿ , 2)
 (8.19)

¿ 1 1  ¿ 1 2  ¿ 1 3  0  0  0

¿ 1 2  ¿ 1 1  ¿ 1 3  0  0  0

¿ 1 3  ¿ 1 3  ¿ 3 3  0 0 0
0 0 0  ¿44 0 0
0 0 0  0  ¿44 0
0  0  0  0  0  2  ( ¿ 1 1  - ¿ 12X

The ¿  m atrix  
is analogous 
except th a t 
¿ 6 6  =  |
( ¿ 1 1  — ¿ 12)
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C ubic System  ÎAU S n S n  0  0 0
Xi, x 2 and  x 3 S n  S u  S n  0 0  0
fourfold axes _  S n S i 2  S n  0 0 0
3 modulii 0 0 0 ^44 0  0

0  0 0 0  S44 0
0 0 0 0 0  S u

S u  S n  S n  0 0 0
S n  An S i2 0 0 0
S i2 Sj2  S u  0 0 0
0 0 0 S2 0 0
0 0  0 0 s 2 0
0  0  0  0  0  s 2

' S 2 =  2  (Su  - S n )

Several Elastic Ratios in com mon use are given here for reference: 
Young's M odulus : A tension stress X  d ivided by  the  com ponent of

X .
stra in  in the  direction of X , Y { =  —  . If  the  coordinate axes are chosen so

ei

Iso trop ic bodies 
2 m odulii

5  =

T he C  m atrix  is 
entirely  analogous

 (8 .21)

T he C  m atrix  is 
analogous except 
th a t
C2 =  \  (Cn ~ C n )

. (8 .22)

th a t  the  stress lies along X i , F i = 1
To find th e  value of Y  in an  arbi-

tra ry  direction, (9, <p) find S ' for a transform ation  th a t p u ts  X '  in the di
rection (6 , <p)

S ' =  a ^ 1 S a  1 

W here a  is taken  as form  (21.4). W hence we ob ta in :

~  C ^ S ^ n  S l S 2^22 +  C 0A 33 +  s \s \c \S u  +  c \c \s \S ii  +  C i 5i S 2566

+  2ciiiC252A56 +  2CiSiC2S2S46 +  2 ciSiC2S2Sm +  2 Cisls2 S 23

T 2ci5i52Ai6 "h 2ci52CiAi6 T 2ci5iS2c2S'i4 T 2clcls2Sn

+  2ciSi525'i2 +  2 îic2s25 23 +  2siS2c2S3i +  2ciîic2î 25'46
%

+  2cic2î 25'35 +  2ciSiC2s2S 2s +  2siC2s lS 2i ...................................(8.23)

R igid ity  M odulus: T he shearing stress divided by  the  com ponent of shear 
ab o u t the  axis of shearing stress. F o r shear ab o u t x i ,

Nl = ł044
.(8.24)

I ts  value in ano ther directions can be found as Yev was above.



The hulk modulus: The change in volume per u n it volum e for u n it hydro
sta tic  pressure is the bulk m odulus, H. F or a stress X c — (1, 1, 1, 0, 0, 0)

e  =  ( ¿ 1 1  +  ¿ 1 2  +  ¿ 3 1  , ¿ 1 2  +  ¿ 3 3  +  ¿ 2 3  , ¿ 3 1  +  ¿ 2 3  +  ¿ 3 3  , ‘ )

H  — («1 +  «2 +  «3 =  ¿11 +  ¿22 +  ¿33 +  2¿12 +  2¿3l +  2¿23).................... (8.25)

T his is obviously independent of the choice of axes.

The Temperature Coefficient of the Elastic M odulii and Constants 

If

C = C° +  th +  t h 1  +  t h 2 +  • • • .............................. (8.26)*

and

¿  =  ¿ °  +  th +  t2H l +  t i l 2 +  • • • .............................. (8.27)

(C° and  ¿ °  denote the values of the C’s and ¿ ’s for some standard  tem pera
tu re  t — 0) then  as the transform ations are

C' =  a C a c and  S '  =  a c '¿ a  1 or

C' = a  (C° +  lh +  f t i  +  t3hU ■■■)ac

and

sf = a~\s° + tn + r //1 + nr  • ■ •) «-1

MATHEMATICS  OF PHYSICAL PROPERTIES OF CRYSTALS  29

we see th a t

C  =  C01 +  th' +  i l l '  ■■■..................................(8.28)

S '  =  ¿ ol +  tH ' +  t l l v  ■■■ ................................. (8.29)

where

h' = a h a c e tc ................................................. (8.30)

I I ' =  t f f i ' l l a '  e tc .......................................... (8.31)

T h a t is, the  h’s transform  as the  C’s do, and  the H ’s transform  as the ¿ ’s
do. Consequently we m ay copy their respective forms from the C and ¿
m atrices for any particu lar crystal class.

W hen the  tem perature coefficients of the constants or modulii are known 
in the form :

Cn  =  C°i (1 -t- t T Cii) ..................................... (8.32)

¿ u  =  ¿ 'y  (1 +  tT ,{j) ..................................... (8.33)

* The n of tn denotes the »th power of the scalar t; the n of hn is merely another matrix, 
it does not mean a power.



we m ay w rite:

h u  =  C°xj T Cij.................................................(8.34)

H a  =  S ° j T Sij  ...............................................(8.35)

M ultip ly ing  (5) by  (6) we get:

s c  =  /  =  S°C° =  S°C° +  t(S°h +  H C °)  +  /2( 5 ' ° ä 1 +  H h  +  A 'C ° )  +  • • • 

whence, for th is relation  to hold for all values of t:

S°h  +  H C° =  0 ...............................................(8.36)
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whence

also

so th a t

h = —C°HC° 

H  = - S ° h S °
.(8.37)

S°li +  H h +  H lC° =  0 ................................... (8.38)

. (8.39)
hl =  hS°h -  C°II'C°

H 1 =  H C °H  - S ^ ' S 0 ............................

F rom  these we can com pute the  h’s given the H ’s and vice versa.

S E C T IO N  9 

T e m p e r a t u r e  E x p a n s i o n

T he change in  the  dim ensions of a  crysta l caused b y  a  tem peratu re  change 
can be considered as a  strain . The sh ift of the  term inus of a vector I 
rela tive to  its origin is given from  the s tra in  m atrix  e by  the equation  AI =  
tel

Since e is sym m etric a p roper choice of axes m akes it possible to m ake the 
s tra in  per degree a  diagonal m atrix ,

AI =  tA l  where 4  =  1 0
A 1 0 ° \

0 A i o  ............ ................ ( 9 . 1)

.0 0 A  3/

As I and  AI b o th  transform  as vectors, a  transform ation  a causes A  to 
transform  as

A ’ =  a A a - 1 ......................................................... (9.2)



The elongation per un it length per degree in the direction (0, 3>) is

(cos 0 sin <p, sin 0 sin p, cos <A lA \  0 0 \  / cos 0 sin <p • - \
I 1 0  A 2 0 I I sin 0 sin <p • • I

/  \  0 0 A 3J  \ c o s  =  <p ■ J
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whence

Alev = A i  cos2 0 sin2<p +  A 2 sin2 0 sin2<p +  A 3 cos2 <p.....................................(9.3)

T he strain  can easily be extended to a function of t and T as follows:

AI = tA l +  f 'B l ............................................................. (9.4)

Applying the prefactor a to  bo th  sides and  p u ttin g  the idem factor in
between A  and I and between B  and I in the form I  =  a~xa we have:

aAl = t{aA arx)al +  t2(aBa l)al or

AV = t A  'V +  f B ' l '  where

A '  =  aAcT 1  B ' =  aBaT 1 .......................................(9.5)

SEC T IO N  10

T e m p e r a t u r e  V a r ia t io n  o f  t h e  I s o t h e r m a l  E l a s t ic  M o d u l ii  a n d  

S t r e s s  V a r ia t io n  o f  t h e  T e m p e r a t u r e  E x p a n s i o n  C o e f f i c i e n t s

W e can w rite the  isotherm al elastic m odulus m atrix  a t  tem perature
6  +  t as

S< =  S i0  +  tH .................................................... (10.1)

and the coefficient of tem perature expansion a t constan t stress X  as

À  =  i °  +  L X .................................................... (10.2)

L et us take a un it cube of crystal about the cycle indicated in the table; 
starting  w ith the cube in the unstressed unstrained sta te  a t absolute tem 
pera tu re  6 :

O peration Change 
in Stress Change in Strain Tem p.

0
X
0

- X

tA°
(Sic +  tH )X  
- t ( Â °  +  L X )  

- S i0X

e to e + 1 
6 T  t 

6 T  t  to 6
e

Apply X  isothermally.............................

If we sum the strain  changes in th is cycle to zero We have

H  =  L



so th a t  we m ay w rite

5  = S  +  t i l .................................................(10.1)

A  =  A °  +  H X .................................................(10.3)

T his tells us th a t  we m ay determ ine the tem peratu re  coefficients of the
elastic m odulii by  m easuring the  effect of stress on the  tem p era tu re  ex
pansion coefficients.

In  a sim ilar way we find th a t if the isotherm al elastic constan t m atrix  a t 
tem p. 6  +  t is:

C  =  C °  +  th ................................ (10.4)

th en  the  rela tion  betw een tem peratu re  and  stress a t  co n s tan t s tra in  e is

X  =  t B .....................................(10.5)

where

B  =  B ° +  h e ................................................. (10.6)

The Difference between the Specific Heats at Constant Stress and Constant 
Strain
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W riting  for th e  specific h ea ts  a t  constan t stress and  a t  constan t s train  
<j v and  o ’, respectively, we can perform  th e  following cycle:

O peration Change 
in  Stress

Change 
in  S train T em peratu re W ork In H ea t O ut E n tropy

H eat a t zero stress.. 
Restore zero strain

- tA° 0 to d +  t 0 —pUrp —ptap
e +  t/2

iso therm ally........ - —tA° 6 4“ t 2 A ° C A ° Q Q
0 t

Cool a t zero strain .. — 0 6 +  Had 0 pUrv ptav

• ~ + l

E quating  the  sum  of th e  en tropy  changes to  zero:

Q  =  ( l  +  -  -  —  ■■■)pK<rP -  a )
V \  28 id 2 J

E q u atin g  the  w ork in to  th e  h ea t ou t:

(<rp -  O  = - A ° c C A ° ...................................... (10.7)
P '
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Isothermal and Adiabatic E lastic M odulii

L e t us take a u n it crysta l cube a t  tem perature 6 , apply  any stress X  
ad iabatically , h ea t it to  bring  the  tem perature back to 6  a t  constan t stress 
then release it iso therm ally . T he cycle is analyzed in the table:

O peration

C
ha

ng
e

in
1 

St
re

ss
 

|

Change in S train Tem perature W ork In H ea t Out E ntropy
Change

Apply X  
adiabati
cally........ A SaX 8 to 8 -  t \ X CS°X 0 0

Heat to 8 at 
const. X  . 0 t(À° +  HX) 8 — t to 8 tX c{A° +  HX) — tp(Tp — tp<Tp

8 -  i/2
Remove X  

isother- 
mally — - A —S'°X 8 - \ X CS{°X Q Q/8

Summing the strains to zero:

(,S i0  -  S ° )X  =  t(A °  +  H X )

If we equate the to ta l en tropy  change to zero we ob ta in  an  expression 
for Q th a t can be substitu ted  in the relation  “ work in =  H ea t o u t.” T his 
gives us:

- i  -  S a) X  +  tX (A °  +  H X ) =  \

and from these two expressions we derive, w riting cf> for S '°  — S 1:

4> =  —  (A 0  +  H X )(A °  +  H X ) C...........................(10.8)
pap

which is, to  the  first order of the sm all quan tities X :

=  —  A °A °  +  2 H X A ° .................................. (10.9)
P<Tp

and since X  =  Ce we have also

—  (A °  +  2 E C e )A ° ...................................(10.10)
pcrP

W hence we see th a t  as the  stress approaches zero as a lim it <£ approaches

=  J L  A ° A ° ■ If  we write similarly C'° — Ca = \p we have multiplying
pap

S'° =  5° +  <t> by C-° — C a +  'P and dropping higher orders of Small quan
tities:

$  =  -  Ci0 4> C '° ..................................................................(10.11)
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F or exam ple we have for q uartz  a t  20° Centigrade

0 °  =

293 X10"

2.65 X 7.37 X 10b

14.4
14.4

7 .8
0
0
0
0

(14.4  14.4 7 .8  0 - 0  0)

whence

3 .13  3 .13 1 .69 0 o o'
3 .13  3 .13 1.69 0 0 0

—
1.69 1.69 
0 0 
0 0 
0 0

.907
0
0
0

0 0 0 
0 0 0 
0 0 0 
0 0 0

IO-15 and as

' 1298 - 1 6 6 - 1 5 2 - 4 3 1 0 0
- 1 6 6 1298 - 1 5 2 431 0 0

P* 0 1 0 '15 X
- 1 5 2 - 1 5 2 990 0 0 0

o —
- 4 3 1 431 0 2005 0 0

0 0 0 0 2005 862
0 0 0 0 862 2928

<£n = ■SÍÍ (1 - .00241)

012 = SÍS (1 - .0189)

013 = 5Í°3 (1 - .0111)

033 = 55? (1 - .000917)

For Rochelle Salt we have:

293 X 10“
1.79 X 15.5 X  10b

59 .9
38.1
44 .8

4
0
0

(59.9  38.1 44 .8  0 0 0 )

38 .0 24 2 28. 5 0 0 0
24.2 15 4 18 1 0 0 0
28.5 18 1 21 3 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

X 10“
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4690 - 7 9 5 -2 1 8 0 0 0 0
- 7 9 5 3205 1691 0 0 0

-2 1 8 0 1691 2815 0 0 0
0 0 0 6060 0 0
0 0 0 0 3060 0
0 0 0 0 0 8020

So th a t

<pn =  Aii (1 — .0080) 012 =  A12 (1 — .0305)

022 =  A22 (1 — .0050) 013 =  A13 (1 — .0103)

033 =  A33 (1 — .0076) 023 =  A23 (1 — .0107)

044 =  A44

065 =  A55

066 =  ^66

A t the  tem peratu re  of m axim um  piezo ac tiv ity  the com ponents of 0  
for Rochelle are smaller by  abou t 3J% .

S E C T IO N  11

T h e  P i e z o -e l e c t r i c  E f f e c t

Some crystals develop an  electric charge when subjected to mechanical 
stresses. As far as the effect is linear it  m ay be expressed by:

D i  =  d n X i  - j -  d is X z  • • • d \§ X §

Di =  ¿21X 1 +  • • •  (11-1)
Dg =  dz\X\ -)- • • • dggXg

or in m atrix  no tation

I)  =  d X ............................................(11.2)

where the  18 constants d a  are called piezo-electric constants, and D  is the 
electric induction.

On ro ta ting  the  axes by  m eans of a transform ation a, the vector D  be
comes D ' where D ' = aD. T he stress transform s as X '  =  a X  whence D  =
d X  becomes D ' — adaTlX '  or D ' = d 'X ' where:

d' = ada ” 1 (11.3)
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If transform ations perm itted  by  sym m etry  are perform ed, the d  m atrix  
is unchanged. Class 3 has a b ina ry  axis only, if we choose th is as x3  and 
perform  the  transform ation

/ - I  0 0 \
a =  I 0 —l O l  we find:

\ 0  0 1/

d  =
/ - I 0 ° \ /¿n ¿12 ¿13 ¿1 4 ¿ 1 5 ¿ i e \

0 •-1
0 I ¿ 2 1 ¿22 ¿23 ¿2 4 ¿ 2 5 ¿2 6  I

\  0 0 1/ \ ¿ 3 1 ¿32 ¿33 ¿34 ¿ 3 5 ¿ 3 ö /

f l 0 0 0 0
\

0^
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 - 1 0 0
0 0 0 0 - 1 0
0 0 0 0 0 l j

/ - ¿ I I —  ¿1 2  — ¿13 du ¿1 5 —  ¿16

d =  1 — ¿ 2 1 —  ¿2 2  —  ¿23 ¿2 4 ¿ 2 5

CO1

V ¿ 3 ! ¿3 2  ¿3 3 —  ¿3 4 —  ¿ 3 6 ¿36,

F or th is to be consistent w ith the original d  m atrix  the  term s w ith conflicting 
signs m ust vanish.

A pplying sim ilar analyses to  each of the  32 classes we arrive a t  the  set of 
m atrices:

Class 1 (asym m etric) / ¿ n  ¿ 12  ¿ 13  du  ¿ 16  ¿ 16\
No sym m etry  d  =  I du  ¿22 ¿23 d2i ¿2 5  das I (11.01)

\ d 3 1  ¿3 2  ¿3 3  ¿ 3 4  ¿ 3 5  ¿ 3 6 /

Class 2 (triclinic pinacoidal), center of sym m etry  d =  0 ......................(11.02)

Class 3 (monoclinic sphenoidal 
x 3 is b inary

Class 4 (monoclinic dom atic) 
x 3 p lane is p lane of 

sym m etry

/ 0  0  0  ¿1 4  ¿ 1 5  0

d —  i 0  0  0  ¿2 4  ¿ 2 5  0

\ ¿ 3 1  ¿3 2  ¿3 3  0  0  ¿ 3 6 /

/  ¿11  ¿1 2  ¿1 3  0  0  ¿1 6  )

d  —  I ¿2 1  ¿2 2  ¿2 3  0  0  ¿26

Vo 0 0 ¿34 ¿35 0 y

(sucrose)
(11.03)

(11.04)

Class 5 (monoclinic prism atic) center of sym m etry , d =  0 ................. (11.05)

Class 6 (O rthorhom bic 
bisphenoidal)

%u %2 , x3 b inary

Class 7 (O rthorhom bic 
P yram idal) 

x3  b inary , X\ and  x2 
p lanes of sym m etry

d =
du 0 0 \
0  ¿ 2 5  0

0 0 ¿36/

(Rochelle)
(11.06)

d =
32 U33

0  ¿15 0 )
¿2 4  0 0
0 0 0/

(11.07)
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Class 8  (O rthorhom bic bipyram idal), center of sym m etry, ¿  =  0 (11.08)

(11.09)
Class 9 (Tetragonal 

bisphenoidal) 
x$ is quaternary  alternating

70 0 0 di4 ¿ib 0 '
0 0 • 0 — ¿15 ¿14 0

V ¿31 — ¿31 0 0 0 ¿36/7

Class 10 (Tetragonal 
pyram idal) 

is quaternary

Class 11 (Tetragonal
scalenohedral) 

x3 quaternary , X\ and x2 

binary

Class 12 (Tetragonal
trapezohedral) 

Xz quaternary , xi and x2 

binary

/o  0 0 ¿14 ¿15 0
¿ — I 0 0 0 ¿15 —¿14 0 

\¿31 ¿31 ¿33 0 0 0

/ 0  0  0  ¿14 0  0  \
d  =  I 0  0  0  0  ¿14 0  )

\0  0 0 0 0 ¿36/

/0  0 0 ¿14 0 0 \
d =  0  0  0  0  -¿14 0

\0  0 0 0 0 0 /

Class 13 (Tetragonal bipyram idal) center of sym m etry, ¿  =  0

Class 14 (D itetragonal /0  0 0 0 ¿ 1 5  0 \
pyram idal) ¿  =  ( 0  0 0 ¿ 1 5  0 O j

xz quaternary  \ d 3i ¿ 3 1  ¿33 0  0  0 /
x\ and xz planes of sym m etry

Class 15 (D itetragonal bipyram idal) center of sym m etry, ¿  =  0

/  ¿ 1 1  — ¿ 1 1  0 ¿14 ¿15 2 ¿ 22^
¿  — I — ¿ 22 ¿22 0 ¿15 — ¿14 2¿ll

\  ¿31 ¿31 ¿33 0 0 0 )

Class 16 (Trinonal
pyram idal) 

xz trigonal

Class 17 (Trigonal rhom bohedral) center of sym m etry, d =  0

Class 18 (Trigonal)
trapezohedral) ¿ =  j

%z trigonal, Xi b inary

Class 19 (Trigonal bipyram idal) 
x3 trigonal, x3 p lane of ¿  =

sym m etry

Class 20 (D itrigonal pyram idal) 
x3 trigonal, x2 p lane of ¿  =

sym m etry

(¿11 — ¿11 0 ¿14 0 0 \
0  0  0  0  — ¿ 1 4  — 2¿n

VO 0 0 0  0  0 )

/  ¿11 — ¿11 0 0 0  2 ¿22\
( — ¿ 2 2  ¿2 2  0 0 0 2¿n
\ o  0 0 0 0  0  y

/  0 0 0 0 ¿16 —2 ¿22)
I — ¿ 2 2  ¿2 2  0 ¿ 1 5  0 0
\  ¿ 3 1  ¿ 3 1  ¿ 3 3  0 0 0 )

(11.10)

(11.11)

(11.12)

(11.13)

(11.14)

(11.15)

(11.16)

(11.17)

(Quartz) 
i l l . 18)

(11.19)

(tourm a
line)

(11.20)

Class 21 (D itrigonal scalenohedral) center of sym m etry, d — 0 (11.21)



38 BELL S Y ST E M  TECHNICAL JOURNAL

Class 22 (D itrigonal
bipyram idal) /  du — dxx 0  0 0 0

x3 trigonal, x3  p lane of d =  0 0 0  0 0 - 2 c
sym m etry \o 0 0  0 0 0

x 2 p lane of sym m etry  

Class 23 (Hexagonal / ° 0 0 du die
pyram idal) d  =  0 0 0 dis -d u

x3  Hexagonal \ d 3i d3x d33 0 0

Class 24 (Hexagonal
1 °

0 0 du 0

trapezohedral) d =  0 0 0 0 -d u
x 3  hexagonal, xx b inary \ 0 0 0 0 0

r
0 0 du 0 0

0
0 0 0 ¿14 0

\o 0 0 0 0 d,

(11.22)

(11.23)

(11.24)

Class 25 (Hexagonal b ipyram idal) center of sym m etry , d  =  0 (11.25)

Class 26 (Dihexagonal
pyram idal) d =  I 0 0  0  ¿15 0  0 I (11.26)

x3  hexagonal, x2 p lane 

Class 27 (Dihexagonal b ipyram idal) center of sym m etry , d  =  0 (11.27)

Class 28 (Cubic te trahedra l-
pentagonal-dedoca- d =  ( 0  0  0  0 du  0  J  (11.28)
hedral) 

xx , x2  , x3  b inary

Class 29 (Cubic pentagonal-icositetrahedral) d =  0 (11.29)

Class 30 (Cubic, dyakisdodecahedral) center of sym m etry , d =  0 (11.30)

Class 31 (Cubic, hexakis-
te trahedra l) d  =  [ 0  0 0 0 du  0 J  (11.31)

xx , x 2 , x 3  qua ternary  
alternating

Class 32 (Cubic, hexakis-octahedral) center of sym m etry , d =  0 (11.32)

W henever a center of sym m etry  exists the  piezo-electric p roperty  vanishes 
since a center of sym m etry  requires d' — ( —I ) d l  — —d = —d'. Also 
d =  0  for the  pen tagonal icosite trahedral class.

Classes 6 , 11, 12, 24, 28 and  31 polarize only by  shear.
Classes 1, 3, 4, 7, 10, 14, 16, 20, 23, 26 can be polarized by  hydrosta tic  

pressure. As an  exam ple of th is le t us consider tourm aline (which is d itri- 
gonal pyram idal). F or hyd rosta tic  pressure, X x = X 2 =  X 3 , X 4 =  X 6 
=  X 6 =  0, whence from  the  po larization  stress m atrices we find, D x =  0, 
D 2 =  0, D 3  =  (2d3X +  d23) X  pressure. As d3X =  0.75 X 10~8 and dS3 =  5.8 
X 10 s for tourm aline, we get 7.3 abcoulomlos per cm ' per dyne p er cm2.
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SEC T IO N  12 

T h e  C o n v e r s e  P i e z o -e l e c t r i c  E f f e c t  

A stress X  causes an  electric induction

D = d X .....................................................(11.2)

and a strain

e = S X .......................................................(8.7)

If the charge is allowed to leak aw ay a fu rther strain  occurs, a t  constant 
stress. T his is the strain  th a t would be go tten  if the stress were originally
applied w ith surfaces rendered conducting:

e° — S ° X  ................................................(12.1)

In  the first sort of stress, the work per un it volume done on the crystal by 
establishing the stress X  is:

W  = %Xce =  %XCS X .......................................(8.4)

T he energy stored electrically in the m edium  is:

W B =  2x/JUf 11) ......................................... (12.2)

while the work done on a conducting crystal is:

W ° = i X cS ° X ............................................. (12.3)

If a crystal be stressed in its insulated sta te  by expenditure of energy W , 
the charges then  absorbed by  an  external circuit taking up energy W E ,
the strain  changes from e to e° a t  constant stress so th a t the stresses perform
additional work

Wa = X c(e° -  e) = X C(S° -  S ) X  

and the  crystal is left containing energy W °. W hence

i r  -  ir  -  u  K +  i r „ .......................................(1 2 .4)

or:

§X C5 °X  =  ± X CS X  -  2t D c k~l D  +  X C(S° -  S ) X

so th a t:

X C(S° -  S ) X  =  4irDck-'D  

If we substitu te  D — d X  we find 

X C(S° -  S ) X  =  4ttX cdck~ 'dX
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so th a t:

5 °  -  5  =  4T d J T 'd .........................................(12.5)

T he change in strain  caused by  rendering the surfaces conducting is:

-  e =  (5° -  S ) X  =  4v d ck~ld X  .......................(12.6)

If the  crysta l be now insulated and  the stress rem oved, an  induction of 
opposite sign will occur and  because of the  assum ed linear dependence of D  
on X  the new induction  will be equal to the  negative of the previous one. 
T he induction  D  =  —d X  indicates an  electric field:

E  = iivk~lD  =  4nvkT'dX  ........................................(12.7)

Also, the  stra in  will a lte r by  an  am ount — e", where, since the  action  takes
place w ith non-conducting surfaces:

e" =  S X

T his leaves a strain  on the crystal, of am ount:

e '  =  e° -  e" = (S° -  S ) X ................................. (12.8)

From  (12.6), (12.7) and (12.8) it follows th a t:

e' =  dcE ..................................................... (12.9)

As the m edium  is in ju s t the  condition th a t  an  electric field E  would p u t the
unstressed m edium , (12.9) is the  equation  of th e  converse piezo-electric
effect. I t  is to  be noted  th a t  the  set of constan ts th a t  rela tes polarization 
and stress is the conjugate of the set th a t rela tes electric field and  strain. 
F or convenience in no ta tion  the converse effect will be w ritten  as

e =  gE  .................................................(12.10)

where

g = dc....................................... (12.11)

R ew riting (13) as ou ' e — (a^lgcTl)aE  we see th a t

e'  =  g'E '

where

g' =  otc'ga (12.12)
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SEC TIO N  13

T h e  C o n v erse  P iezo -e l e c t r ic  E ff e c t  as a N on -L in e a r  F u n ctio n

If the strain  of a crystal is no t stric tly  a linear function of the electric field 
causing it we m ust relate the com ponents of strain  to  field term s of the  sec
ond power as well as to first power term s. T h a t is, the equation e =  gE  
(which gives the strain  e in term s of the electric field E  through the  18 
constants g) m ust be modified to  include term s E i E . All such term s are 
included in the sym m etric m atrix  (E  E c).

A transform ation a th a t replaces E  by  acE ' also replaces E c by  E ca so 
th a t ( E E C) is replaced by  (acE'E 'ca), th a t is (E  E c) being self-conjugate, 
transform s similarly to the stress m atrix. We m ay rearrange this as a one 
column m atrix  similar to the stress m atrix  X ,  as follows:

=  E .....................................(13.1)

We m ay now relate the strain  to E  and E  through the two m atrices g 
and G :

e = gE +  G E ............................................. (13.2)

If transform ations perm itted  by  the sym m etry of the crystal are per
formed, g' m ust equal g and G' m ust equal G, th is allows us to simplify the 
m atrices; g is no different th an  before and hence vanishes for all types having 
centers of sym m etry (and for the pentagonal icositetrahedral class). 

Rew riting (1) as a ^ e  = ( a j1ga l)aE  +  a J lGa laE  we see th a t

e' =  g 'E ' +  G 'E

where

g' = a~ l ga

G' = a j 'G a  1 ..............................................(13.3)

T he m atrix  G transform s as the elastic modulii m atrix  does b u t G,-,- ^
G j i . Applying G' =  a cG<x we arrive a t the set of m atrices th a t follow

(E E c) =

E t
E l
E l
E^E-i
E 3E 1

E \E i
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Triclinic (36 consts) M onoclinic (20 consts)
G11 G12 G i3 G i4 G i6 G 16 Gn G 12 G 13 0 0 G l3
G21 G22 G23 G24 G25 G26 G21 G22 G23 0 0 G26
G31 G32 G33 G34 G35 G36 G31 G32 G33 0 0 G36
G41 G42 G43 G44 G45 G46 0 0 0 G44 G45 0

G 61 G 62 G 63 G  64 Gee G 56 0 0 0 G54 G55 0
Ga Gß 2 Ges Gß4 G 66 G 66 ^61 G 62 G 63 0 0 G$6t

(13.5)

O rthorhom bic (12 consts) T etragonal Classes 9, 10, 13) 
(10 consts)

Gn G12 G i3 0 0 0 G n G12 G13 0 0 G16

G21 G22 G23 0 0 0 G12 G n G13 0 0  -_ G i6
G31 G32 G33 0 0 0

( \  T.
G31 G31 G33 0 0 0

0 0 0 G44 0 0
tlo.OJ

0 0 0 G44 G45 0
0 0 0 0 G 66 0 0 0 0  --G 45 G44 0
0\ 0 0 0 0 G66 Gei-'G ei 0 0 0 Ge 6y

(13.7)

T etragonal Classes 11, 
12, 14, 15) (7 consts)

Trigonal (Classes 16, 17) 
(10 consts)

G n G12 G13 0 0 0 G n G12 G i3 G i4—G25 0
G12 Gn G l3 0 0 0 G12 G11G13 — G l4 G26 0
G31 G31 G33 0 0 0

(13.8)
G31 G31 G33 0 0 0

0 0 0 G44 0 0 G41 —G41 0 G44 G452G62
0 0 0 0 G44 0 — G 62 G52 0 — G45 G442G41
0 0 0 0 0 G66y 0 0 0 2G25 2G l42(G ll — G 22)^

(13.9)

Trigonal (Classes 18, 20, 21) 
(8 constants)

G il C l2 G i3 G i4 0  0
G l2 G il G l3 — G l4 0  0
G31 G31 G33 0 0 0
G41 —G41 0 G44 0 0

0 0 
0 0

0  G44 2G41
0  2G i4 2 (G h -Gn)

(13.10)

T rigonal (Classes 19, 2 2 )
(6 constants)

Also Hexagonal (Classes 2 3 , 2 4 , 2 5 , 2 6 , 2 7 ) 

G11 G12 G13 0 0 0
G12 G11 G13 0  0  0
G31 G31 G33 0  0  0
0 0 0 G44 0 0
0  0 0 0  G44 0
0  0  0  0  0  2 (G n  -  G12),

(13.11)
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Cubic (Classes 28, 29, 30, Isotropic Bodies
31 and 32) (5 C onstants) (2 Constants)
G\\ 6712 67i2 0 0 0 67n 6712 6712 0 0 0  '
G12 67n 67i2 0 0 0 6?12 6?n 6?12 0 0 0
6712 6?12 67n 0 0 0 (13.12) 6/12 67i2 67u 0 0 0
0 0 0 6744 0 0 0 0 0 67 0 0
0 0 0 0 67 44 0 0 0 0 0 G 0
0 0 0 0 0 6?44 ^0 0 0 0 0 G

67 =  2(GU - G 12)

According to th is analysis, all bodies suffer a change in dimensions when 
subjected to an  electric field. These strains resulting from  a field are 
generally m uch smaller th an  those strains e = gE  present only in crystals 
lacking a center of sym m etry. F or example, quartz  has a  strain  of about 
6.5 X 10~8 cm s/cm /ab  volt. Glass in a field of 1000 practical volts per cm 
has a strain  of about 4 X 10~12, in a 100,000 volt field it has 4 X 10-8. 
R ubber in the 1000 volt field strains by  about 7 X 10~8 and in the 100,000 
volt field by  abou t 7 X 10 4. T he 1st order quartz  strain  in these fields 
would be abou t 2.2 X 10-7 and 2.2 X 10~~5 respectively.

T h e  Se c o n d  Or d er  P ie z o -e l e c t r ic  E f f e c t

If the induction stress relation is no t stric tly  linear one can assume the 
induction to depend also on second order term s of the stress:

D  =  d X  +  p ( X X C)

where (X X  c) is a single column m atrix  formed from the 21 elements of
X X C and p  is a m atrix  of the 63 elem ents p n , 1 . . . ¿>33,3-

Since X  transform s as X '  =  a X ', ( X X c) transform s as X 'X C =  a X X ca c. 
In  the same way th a t a  was formed from a we can form a m atrix  a  th a t 
transform s the single column m atrix  ( X X C) through ( X X C)' =  a ( X X c)'.

aD = adoT 1  X  +  ap(a)~l a ( X X c) or

D ' = d 'X ' + p'(xxcy
where

d' =  ada 1 and  p ' — ap(a )~1

T he first order effect is the same as before. W ith  the relation p ' =  ap
(a)-1 we could perform  the  operations of sym m etry perm itted  by  the  32 
crystal classes and obtain  the reduced m atrices. However since a  has 484 
elem ents we shall lim it ourselves to crystals w ith centers of sym m etry.

As X  is unchanged by  an inversion through the origin, a  is the idem factor 
for th is transform ation and a is —I ,  also (a) =  I .  Therefore D 1 =  — D 
= D  so th a t D  vanishes.
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I t  is to  be no ted  th a t  although there is a sort of reciprocity  betw een the 
first order piezo effect and  the  converse effect, in th a t  the  m atrices for one 
are the  conjugates of the  m atrices of th e  other, there is no such reciprocity  
in the  second order effects: if a center of sym m etry  exists no polarization  
can be brough t ab o u t b y  stress either as a  first order effect or as a second 
order effect; if a  center of sym m etry  exists an  electric field can cause a 
strain  th rough  the  second order effect b u t n o t th rough  the  first order effect.

Dielectric Constants at Constant Stress and at Constant S train

L e t us consider a  u n it crystal cube, initially  unstressed, unstrained  and in 
zero electric field. W e w rite kp and  kv for the  dielectric constan t m atrices 
a t  constan t stress and  constan t strain , respectively, CE as th e  elastic con
sta n t m atrix  a t  constan t electric field E , C° as the same for zero field. We 
study  a cycle consisting of a stra in  caused by  application  of an  electric field 
E  a t  zero stress followed by  a  stress applied a t  constan t E  to  reduce the 
stra in  to  zero and com pleted b y  conducting aw ay th e  electric charges a t  
zero stra in  so th a t  th e  body is left in  its original sta te . T he Cycle is de
scribed by  the  table:

O peration Change 
in  Stress

Change 
in S train

Change in 
D isplacem ent C urrent

Change 
in F ield Energy P u t  In

Apply E .......

Apply —t. . . .

Apply — E ...

0

- C EdcE

CdcE

dcE

—dcE

0

T - k pE  4 tr

- r — kvE

E k

i
4a-

- E ~ h

E M E  

E cd CBdcE  — 

E c(k” -  kv)E  

E M E

w hence C =  CE \ also

k p -  k v =  4 tt dCdc ....................................... (13.14)

S E C T IO N  14

P y r o - E l e c t r i c i t y

If the  electric polarization  b rough t abou t by  heating  some k inds of crystals 
is sim ply a  function of the uniform  tem perature change, th a t  is if this 
polarization  can be produced by  tak ing  the whole body quickly from  the
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uniform  tem perature to to the uniform  tem perature to +  / the pyro-electric 
effect could be described by the equation:

where p is the pyro-electric m atrix.
T his can be approached in another way by  considering the polarization 

as due to the uniform  strain. W e m ay hence write, since X  = Ce: (i.e . 
stress m atrix  =  elastic constant m atrix  tim es the strain  m atrix)

where e is the strain  brought abou t by  the  tem perature change t. If

0
0  /

Now since d has 3 rows and the A  m atrix  has b u t one column the product 
dCA has 3 rows and one column so th a t we m ay define p as dCA.

As D  of D  =  tp transform s by  D ' = aD, so does p:

W hen a center of sym m etry exists a perm itted  transform ation is a — —I ,  
whence p =  —p' =  —p so th a t p =  0. No pyro-electric effect (on this 
theory) could exist for a crystal w ith a center of sym m etry.

If a b inary  axis exists and is chosen as x3 we have

whence for this case

If another b inary  axis exists a t  right angles to th is one we find p =  0.

( 14 . 1)

p  = d X  =  dCe

A -.
P  = td C  q

p' =  ap

(14.2)
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T his is seen seriously to  lim it the num ber of classes showing th is k ind of 
pyro-electric effect. In  fac t we find p =  0 for classes 2, 5, 6, 8, 9, 11, 12, 
13, 15, 17, 18, 19, 21, 22, 24, 25, 27, 28, 29, 30, 31 and 32. T h e  expression

. M
0 3 /

describes th e  pyro-electric effect in the  classes, 3, 7, 10, 14, 16, 20,

Pl\23 and  26, while the  expression p =  I p2 I describes class 4, an d  only class
\0 ,

1 is described by

. (14.3)

I t  is to be noted  then  th a t  th is theory  excludes m any classes ordinarily 
described as pyro-electric, such crystals as qu artz  in  Class 18 for example. 
Consequently it would seem th a t  w hether or no t th is effect exists we m ust 
seek elsewhere for the  explanation of the  effect in  quartz .

T he effect can easily be explained as due to  non-uniform  tem perature, 
which causes stress which in tu rn  give rise to  electric phenom ena in piezo 
active crystals. F or example a suddenly chilled crystal has its  ou ter layers 
in a  s ta te  of tension. T h is would produce ju s t the p a tte rn  of positive and 
negative charges th a t one actually  observes. As to  w hether the  first effect 
exists, m uch argum ent betw een Lord K elvin and  o thers seems to  have left 
the  question still uncertain.

In  pyro-electric crystals we would expect to  find a difference in the piezo 
constan ts m easured isotherm ally or adiabatically . If  a  tem perature 
change t causes an  electric displacem ent D  =  pt the application  of an  electric 
field E  should cause a tem peratu re  change t given b y  a  rela tion  such as:

t =  <pE ..................................................... (14.4)

Also the  tem perature coefficient of expansion, A e (for a  crystal w ith faces 
rendered conducting) would differ from  the  coefficient A » (for a  crystal w ith 
an  insulated surface).

If a crystal a t  tem peratu re  to has suddenly applied to  it  a field E  the 
tem perature rises to  to +  <pE and the  crysta l strains, because of the  converse 
piezo effect, by  am ount e = gaE  where ga is the ad iaba tic  converse piezo 
m atrix . If the  field is now rem oved isotherm ally a  fu rth e r stra in  giE  
takes place. If the faces are short-circuited and  the tem perature restored 
to to a fu rthe r stra in  A„t =  A B<pE takes place and the  crystal is then  in its
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in itia l s ta te . E quating  th e  sum of the  strains to  zero we find (ga — g.) 
E  = A & E  or

ga -  g. =  - - V ............................................(14.5)

L et th e  in itial s ta te  of a  crystal be, tem perature =  to, stress, strain  and 
field =  0. If the  (electrically insulated) crystal is heated  by  am ount t, 
a strain  .4 ¿/ is caused and also an  electric displacem ent D  = pt. There now 
exists an  electric field E  =  rirk~lpt. L et th is field be discharged a t  con
s ta n t tem perature, giving a fu rthe r strain  of g ,£  =  4irgik~lpt. The crystal 
is now short-circuited and  if the initial tem perature is restored a strain  
— A j,  follows. The crystal is now in its initial s ta te . If we equate the 
sum of the strains to  zero we find :

A i — A  =  47Tg,k 1p ....................................... (14.6)

S E C T IO N  15 

T h e  T h e r m o - E l e c t r ic  E f f e c t  i n  C r y s t a l s

I t  should be possible for an  electric field to  be set up  by  a tem perature 
gradient. L e t us assume th a t  the  vector T  is th e  tem perature gradient and 
is related  to  the vector field E  through the  m atrix  II by  m eans of the equa
tion:

/ n u His
E  =  n r  where II =  I n a  ILs H a 1................................( 15 . 1)

\ I I 3 1  II32 IT33/

Exam ination shows th a t  II transform s through

I I '  =  a n a , .......................................................................( 15 .2)

For Class 1 the  n  m atrix  has the 9  term s of ( 15 . 1) .  Class 2 has a center of
sym m etry. F or a center of sym m etry  a = —I  b u t a =  —I  causes no
change in (15.2) so th a t  class 2 has 9 constants. T he therm o electro effect 
is n o t killed by  the  presence of a center of symmetry". T he ordinary therm o
electric effect of m etals is a  case in point.

/ - I  0 0 \
If xz is a  b ina ry  axis 0  =  I 0 —1 0 1  and n  reduces to 

\  0 0 1/
(Uu nB 0 \

II -  II21 II22 0  ) ..........................................(15.3)
\ 0  0  II33/

E xam ination  shows th is form  to  answer for classes 3 and 4 and 5.



If x\ and  £3 are b ina ry  (15.3) reduces to

/ n u 0 0 \
II =  0 1I22 0 I .......................................... (15.4)

\0  0 u j

which described classes 6, 7 and  8.
For x3  q uarte rnary  a lternating :

/  II11 11x2 0  \
n  = I — iii2 nu  0 I ................................ (15.5)

\  0  0  I I 3 3 /

T his is found to  handle classes 9 and  10. If x 3 is q u arte rn a ry  alternating  
and Xi is b inary:

/nix 0 0 \
n  = 0 nu 0  (15.6)

\o 0
which is found to  cover classes 11, 12, 13, 14 and  15. F or classes 16, 17, 
19, 23 and 25 n  reduces to  the  form  (15.5).

If x 3 is trigonal and Xi is b inary  the  m atrix  is (15.5) which then  handles 
cases 18, 20, 21, 22, 24, 26 and 27.

F or cubic crystals, no t only are XiX? and  x3 b ina ry  as for m atrix  (15.4) 
> 1 \ /0  1 0 \

b u t the vector I 1 I is an  A 3, for which a — 0 0 1 I whence, for classes
V  \l 0 0/

28, 29, 30 and 31 we find the m atrix :

/ n u  0 0 \
II =  0  n u  0 ............................................(15.6)

\o 0 n „/

R eports of a pyro  electric effect in qu artz  should probably  be a ttr ib u ted  
to  nonuniform  heating  exciting the  piezo electric effect. R eports of a pyro 
electric effect in such crystals as topaz and colem anite which have a center 
of sym m etry and hence cannot be piezo electric should probably be a t
tribu ted  to th is therm o electric effect.

S E C T IO N  16 

T h e  P r o pa g a t io n  o f  L ig h t  in  Cr y st a l l in e  M e d ia
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M axw ell’s equations are:

C V  X  B  = 4irj 

C V  X  E  =  - B



when C is the velocity of light in free space, E  is the (vector) electric field, 
j  is the induction current and B  is the m agnetic induction. In  a crystalline 
m edium  the current is given by  4%j = kE  where k is the dielectric constant 
(m atrix), whence:

CV  X B  = k E ................................................(16.1)

C V  X  E  =  - B .................. (16.2)

As the divergence of the  Curl is always zero :

sjckE  = V c j  =  0
...........................................(16.3)

V cB  =  0

d
applying — to (16.1) and substitu ting  (16.2) in the result: 

dt

- C 2v  X V  X E  =  kE  or

C2(V ,V  -  VVc) E  =  k 'E ............ (16.4)

We shall try  as a solution:

E  = E ,e i{incr~at)............................................(16.5)

where Eo is the vector am plitude of the electric field, z is - \ /  — 1, r  is the 
radius vector from  the origin to  any point, q is a constant, n  is the un it 
norm al (a t r) of surfaces of equal phase, and w is 2ir tim es the frequency of E. 

Substitu ting  (16.5) in (16.4) we find:
2

E  — n E cn  =  k E ....................................... (16.6)
q2 c2

Exam ination of (16.5) shows th a t -  is the phase velocity along n. W rit-
2 ^

ing AirkT1]  for E  and V 2 for — we have:

- i  - i  V 2 .
k j  — n j ck  n = — j ..................................... (16.7)

c

T his equation  is independent of the absolute value of j  so let us restric t j  
to  being a  un it vector.

SJokE =  0 =  VckEoei(qn°r- wt) = j cniqeiiqn‘r- ul)

whence j cn  =  0 .............................................................................. (16.8)

T h a t is, the curren t is always norm al to the direction of propagation.
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M ultip ly ing (16.7) th ru  by  the prefactor j c and cancelling the term  in 
j cn  we h a v e :

- i  V 2
jc k  V  =   (16.9)

T his tells us th a t the velocity  is a single valued function of the  direction 
of the current.

W ith  the  idem factor I ,  (16.7) m ay be w ritten :

(k ~ l -  ^  I^j j  =  n(k~ lj ) cn

( -i v2 V 1If we m ultip ly  th is th ru  by  I ¿ — — I  1 we get

j  =  ^  n(y X3 ) ° n ............................. (16.10)

M ultip ly ing th is th ru  by  n c and  dropping the scalar factor (k~xj ) cn:

n c ( k ~1 — 7^ n  =  0 ................................. (16.11)

If the  axes are so chosen th a t ¿ is a  diagonal m atrix  (16.9) and (16.11) 
become:

j t 2 -2 .2 .2

n r  =  r  +  r  +  r .....................................<16-12)C k n  ¿2 2  ¿3 3

+  1 --------172 + -7 --------172 -  0 ................... ( 16-13)
J_  _  Y1 _L _  Y1 J_  _  Y1kn C2 ¿22 C2 ¿33 c 2

E xam ination  of (16.13) shows th a t  (16.11) m ust have two values of 
V 2 for each value of the  vector norm al n. As F 2 is a single valued function 
of j  there m ust be two d istinct values of j  ( /  and j "  say) for an y  particu lar 
n\ and  given n, only waves having the ir cu rren t vectors in the  directions 
of j '  a n d j "  can be propagated . A ray  in the  direction  N  b u t no t having
its  j  in  one of the directions j '  or j "  will be broken up in to  two com ponents
having the ir cu rren t vectors along j ' and  j "  respectively.

If the  velocity  F j corresponds to  j '  and F 2 to  j "  we have by  m eans of 
(16.10) since n ' = n "  :

j 'c j"  =  n c ( k  1 - Y j .  i ' j  ( k  1 -  ~  i j  n (k  1 j ' ) cn (k  xj ' )cn

(The quan titie s in the braces are scalar)



n

t  2 \ - 1

B y m eans of the iden tity

(m- 1  — zT1) - —u ~ \u  — v)v~x

since

the idem factor can be m ultiplied in to  an  ad jacen t m atrix  giving

- r A *  ■ ■ ( • - ■ - H ' - C - ' L ) ' '  

= 0 - 0 = 0  

so th a t  j '  and j "  are m utually  perpendicular.

S E C T IO N  17

T h e  E l e c t r o -O p t i c  E f f e c t

The velocity of light in a crystalline m edium  is a single valued function 
of the u n it curren t vector j

K = j c k  v ..............................................( i6 . i l )
c

where c is the velocity of light in vacuo and k is the dielectric m atrix, also
a  i r, ■ dD

7 — D  where D  is —  .
at

We developed the induction as a linear function of the electric field, 
deriving the  relation:

4 t D  =  k E ......................................................... (6.1)

If the induction is no t a linear function of the electric field we can improve 
on eq. (6 .1) by  adding second order term s:

AirDi = kn E i +  kiiE i +  knEz +  k n E i +  k ^ E i  -j- kaEz

+  \  hiJLiEz +  |  haEzEz +  . . . § h^E iE^

or

4irDi = (kn  +  kn E i  +  \  hi$Ei +  \  haEz) E \

+  (ki2 +  5 hi(E\ +  hiiE i +  \  hnEz) E 2

■T (ki3 "T i  hi^Ei -T ^ hnEz -f- hizEg) £ 3 .(17.1)
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E xam ination  of (17.1) suggests th a t  we m ight consider the  k ’s as being 
lineraly  modified by  the  field. W riting  k as a single colum n m atrix :

K  =

kn
k?2 k 2

&33

ka
&13 ,

K 6i

we m ay w rite

A  =  A ° +  h E . .(17.2)

where K °  is the  dielectric m atrix  for vanishingly small fields.
W e can develop the  modified reciprocal m atrix  in the  sam e m anner:

A “ 1 =
k \ 2 k n

II
T-ts k u k 22 k 23

k n &23 kÿZ ,

AT1 k n
AT1 k 2 2

kzz
k z l
k n

A ^1 k \ 2  _

where

R - 1  =  R ~ l° +  zE (17.3)

I t  is to  be no ted  th a t  K ~ l is n o t the reciprocal of K  b u t m erely a  symbol 
for th e  single colum n m atrix  form ed from  k ~1 in  th e  usual way. T aking 
reciprocals of bo th  sides of k ' =  a ka c we find {k~1) ’ =  aET^ a c. T h a t is, 
k~l transform s exactly  as did k. W hence, K ~ l transform s exactly  as K  
does, i. e.

K ~ v  = K~

W e can rew rite (17.3) as

a K  1 =  a  K  1 +  (a zac) aE

or

K ~ v  =  [KT1') ' +  z 'E '■IV

z =  a  zac (17.4)

In  case a  1 =  ac th e  z’s transform  as do the  conjugates of the  piezo
electric constants, d. Of the  transform ations perm itted  by  th e  sym m etry
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of the 32 crystal classes only those of the trigonal and hexagonal system s 
fail to have aT l =  a c. These 12 classes m ust be examined individually b u t 
the other classes m ay have their z m atrices copied from the corresponding
dc m atrices.

Applying z' = azac for a ro ta tion  of 120° abou t X3 we find for class 16

T he rem aining 11 classes m ay be derived from  class 16 by  operations for 
which either a -1 =  a c or a center of sym m etry exists. Consequently, we 
m ay form  our z m atrices from  the dc’s in all cased i f  we leave out the 2 ’s.

The electro-optic effect can be p u t in term s of the polarization instead of 
the field by  substitu ting  in (17.3).

The r] m atrices transform  exactly as did the z’s and hence m ay be formed 
from the dc’s b u t om itting the  2’s.

If the  dielectric constants of a crystal are changed by the application of 
stress, th is m ay be represented by:

Zll — Z22 Z13 
—  Z 11  Z22 Z l3

0 0 Z33
z =  Z41 Z51 0

Zbi — Z41 0 
—  Z22 —  Z n  0 _

E  =  47t (k—/)  1 P  whence

I T 1  =  K ~ l° +  nP (17.5)

where

77 =  4 Tz(k — I )  1
Conversely (17.6)

SEC T IO N  18

T h e  P ie z o -O p t i c a l  E p f e c t

K  1 =  (A'_I)° -1 ttX ...............................

where the 36 constan ts im  • ■ ■ Tree are stress-optical constants. 
W e m ay then  form  k  1 as

(18.1)

(18.2)
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As the velocity of a light ray  of un it cu rren t vector j  is given by

We can, by  (18.2) and  (16.9), com pute the  change in the  velocity  caused 
by  the  stress, if we know the  constan ts ir.

A ltering (18.1) to  a K =  aK ~ l +  an  a 1a X  we see th a t:

A  1 =  K  1 +  n 'X '  where ir' =  ana  1 ....................(18.3)

T he altera tion  of K ~ l can be expressed as a  function  of the strain  by
substitu ting  ce for X  in  (18.1).

K  1 =  K  1 +  nee = K  1 -f- m e .......................... (18.4)

m  =  ire, it =  m s .......................................... (18.5)

O perating in (18.4) as we did on (18.1) we find m  transform s as

m ' - a m a c .................................................. (18.6)

Applying the crystal sym m etry  operation  to these m atrices shows th a t 
they  reduce to the following

Triclinic system 7Tn 7T12 IT 13 IT14 n u  7Tl6
36 constan ts 7T21 7T22 7T23 7T24 7T2B 7T26 

7T31 1132 1133 H3i H3 6 7T36 
7T41 7T42 7T43 HU X45 7T46 
7T51 7T62 7T53 7T54 7T55 7T66

T h e m  m atrix  
is entirely  
analogous

7T61 7T62 H33 HĘA 7T65 7T66

oo1—4

M onoclinic system U li  H12  1113 0 0 7T16
x3 is b inary  
20 constan ts

H2I H22 1123 0 0 7T26 
7T31 7T32 H33 0 0 X36

0 0 0 7T44 7T4B 0
0  0  0  7T54 H56 0

T he m  m atrix  
is entirely  
analogous

•¡T61 7T62 7T63 0 0 ^ 66^ .................................. (18.8)

O rthorhom bic tin n  12 7Ti3 0  0  0

system  x 3 7T21 7T22 7T23 0 0 0 T he m  m atrix
is b inary 7T31 n 32 n 33 0  0  0 is entirely
12 constan ts 0  0  0  I 4, 0  0 analogous

0 0 0 0 7T55 0 (Rochelle salt)
0 0 0 0 0 nee/ .....................................(18.9)
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T etragonal system 7*11 7*12 7*13 0 0 7*16
#3 is a four-fold 7*12 7*11 7T13 0 0 — 7T16

axis 7*31 7*31 7*33 0 0 0
(Classes 9, 10 0 0 0 7*44 0 0

& 13) 0 0 0 0 7*44 0
9 C onstants _7*61 — 7*61 0 0 0 7*66y

T he m  m atrix  
is entirely 
analogous

(18.10)

T etragonal system  
x 3 is a four-fold axis 
X\ is a b inary  axis 
(Classes 11, 12, 14 & 

15)
7 C onstants

7Tn 7TJ2 TTis 0 0
7112 7*11 7*13 0 0
7T31 7*31 7T33 0 0
0 0 0 7T44 0

7T44 0
0 7T66-

T he m  m atrix  is entirely 
analogous

 (18.11)

Trigonal system  
x3  is a trigonal 

axis 
(Classes 16 & 

17)
11 C onstants

7Tn 7T12 7*13 
7T12 7Th 7Tl3 —7TJ4 
7*31 713\ 7T33 0
7T4X 7T41 0 7T44

— 7*52 7*52 0 —7T45
0 0 0 7*25

7*14 — 7T25 0 
7T25 0
0 0
7*45 27T52

7T44 27141
7114 (tTh —7T12)

T h e m m atrix  is analo
gous except th a t
»*46 =  »*52 
»*56 =  »*41

»*11 _  »*12
»*66 =

(18.12)

Trigonal system  
x3 is a trigonal 

axis
xi is a b inary  axis 
(Classes 18, 20 & 

21)
8 C onstants

H exagonal system  
x 3 is a sixfold axis 
x\ is a b inary  axis 
(Classes 19, 22, 23, 

24, 25, 26 & 27) 
6 C onstants

Cubic system  
3 C onstants

Till 7112 7113
7Tl2 Tin 7T13
7131 7131 7*33
7*41 — 7*41 0
0 0 0
0 0 0

7T14 0 0
- 7*14 0 0
0 0 0 
7*44 0 0
0 7*44 27*41
0 7*14 (7*11 — 7*12)

T he m  m atrix  is analo
gous except th a t
7» 66 =  »*41

»*11 — »*12V7 66 =

(quartz)
(18.13)

Till 7T12 7*13 0 0 0
7*12 7*11 7T13 0 0 0
7*31 7*31 7*33 0 0 0
0 0 0 7744 0 0
0 0 0 0 7*44 0
0 0 0 0 0 (7*11 — 7*12)

7*11 7*12 7*12 0 0 0
7*12 7*11 7*12 0 0 0
7*12 7T12 7*11 0 0 0
0 0 0 7*44 0 0
0 0 0 0 7*44 0
0 0 0 0 0 7*44

The m  m atrix  is ana
logous except th a t

mn ~  »*12 
»*66 =   ^-----

............................(18.14)

T he m  m atrix  is en
tirely analogous

(18.15)
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For isotropic bodices, the  7r m atrix  is formed by  setting  ttu =  (irn—7112)
in the 7r m atrix  of the cubic system ; the  m  m atrix  is sim ilarly form ed by

m n — m w 
p u ttin g  m u  =     .

Iso tropic
bodies

7T n  7Tl2 7Ti 2 0 0 0
7Tl2 7T u  7TJ2 0 0 0
7T12 7Ti 2 7Th 0 0 0
0 0 0 T i l l 7T12 0 0
0 0 0 0 7 T ll 7T12 0
0 0 0 0 0 7Tlx

T he m  m atrix  has

, TWn — W12
m u  etc =  ----------

 (18.16)

S E C T IO N  19

A p p l ic a t io n  o f  th e  E lec tro  and  P lezo O pt ic a l  E f f e c t

In  the  equations K T 1  =  K T 1  +  zE  and K T 1  =  K ~ v  +  m E, etc. the  K ~h s 
are to  be used in form ing k~l for th e  equation  giving the  velocity  of the  light 

V 2
used nam ely — =  j ck~ lj .  Obviously then K ~ l° should be form ed from the

squares of the  reciprocals of the refractive indices, the  lower th ree members 
being zero. A fter applying the electric field or strain  a transform ation of 
coordinates m ay be necessary to  rediagonalize, i.e. m ake K J 1' =  K T 1' = 
K J U =  0. F rom  the  rediagonalized K ~ l we m ay w rite the new principle 
refractive indices by  taking .the reciprocals of the square roots of K T 1', 
K T 1' and K J 1'. I t  should be noted th a t if K ~ u = K J 1’ +  A,- then

/ '3
Hi +  A/X, =  Hi — ~  A . ........................... (19.1)

F or a given direction of the wave norm al there are two velocities, a wave 
splitting  in to  two com ponents traveling w ith different velocities. B y defini
tion  the  refractive indices, Ha and  Hb in a given direction are the norm al
velocities in th a t direction divided in to  the velocity of light in free space.

W hence in a p a th  length / there are ~  waves in one com ponent and —
a X

waves in the other, where X is the w ave-length in vacuum . C onsequently if
I is the  thickness of the crystal along th a t p a th  the  two com ponents can
recom bine after passing through the  m edium  b u t they  are ou t of phase by

7 =  -  (Ha — Hb) whole waves so th a t  the  light which entered  as p lane polar-

ized will leave elliptically or circularly  polarized, except when 2y is an  integer.
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T he q u an tity  B = fia -  n ¡, is known as the birefringence.

IB (19.2)

If a phase difference of gV wave can be ju s t detected, using a wave length of 
6000 A  and a path  length / =  1 cm the ju st detectable birefringence would

0.2 X 10-6. Obviously th is detectable difference between refractive indices 
is much smaller than  could be detected by m easuring each refractive index 
and subtracting.

I t  is custom ary to choose the coordinate system  so th a t looking along x-z 
the very lowest refractive index is for polarization in the plane of Xi and the 
very highest for polarization in the plane of £3 . T h a t is, the xz axis is the 
axis along which light should be passed to get the greatest birefringence.

Birefringence in  any Direction

If the  axes are so chosen th a t K  is diagonal and A 3 >  K i  >  K \ then, 
somewhere in the plane perpendicular to #2 are two directions, the optic 
axes, along which there is a single norm al velocity. These directions make* 
equal angles V w ith the  xz axis where

Also the two refractive indices Ma and nb for a wave norm al making angles gi 
and g2 w ith these optic axes satisfy the equation:

be B  =  ^  =  2 X 10 6; if the p a th  were 10 cms the detectable. B  would be 
I

or (19.3)

2 =  ( f t 'i1 +  A 31) -b (K i — Kz ) cos (gi gf)

\  =  (AT1 +  AT1) +  (A 1 1 -  A 3 1) cos (gl +  gj)

whence

=  ( A ! 1 -  A 3 1) cos (gi -  g2) -  cos (gi +  g2)

* Theory of Optics, P. Drude, pg. 320.
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as B  = ßb — Ha is the  birefringence we have:

B  =  - (K i ' — K 3 1) sin gi sin g2
ß a  +  ß b

(19.4)

B y spherical trigonom etry:

(19.5)
cos g 1 =  cos V  cos 9 +  sin V  sin 9 cos <£

cos g2 =  cos V  cos 9 — sin V  sin 9 cos 0

where 9 is the angle the wave norm al m akes w ith x 3 and <f> is the angle the
plane containing the  norm al and  x 3 m akes w ith x\.

F rom  (19.5) it follows th a t: 
sin gi sin g2 =

1 /
(1 — cos2 V  cos2 9 — sin2 V  sin2 9 cos2 4 > )2

— 4 sin2 V  cos“ V  sin2 9 cos2 9 cos2 <f>. 

Hence if the rediagonalized K ~ l is

(k ^ [  +  a ;
K 2 ~F Ao 
K 3  +  A3 

0 
0 
0

(19.6)

then

B  =
2  2 

ß a ß b

ß a  —  ß b

( K i 1 —  K J 1 +  Ai — A 3)  —  ( K i 1 —  K 3 1 +  A 2 —  A 3)  c o s 2 9 

-  (KTl° -  K i l° +  A j  -  A 2)  sin2 9 cos2 </>2 -  4 ( K t °  -  K ? °
+  Ai — A2 ) (K 31 — K 3l +  A2 — A3) sin2 9 cos2 9 cos2 <p. . (19.7)

B = B 0 +  —  (Ai A3) sin gi sin g2 (3')

For m ost practical purposes we m ay take
2 2 

ß a ß b

Ma +  2

where n is some in term ediate value of the refractive index.*

* Note: I t  might seem that as K j 1 = K~w +  A,- gives us =  M? — — +  §MiAi • • •

we could form the 3 principal birefringences directly from the n’s instead of using (6a ■■■ e). 
From the n expressions we would get B3 =  yu2 — mi — ?(m|A2 — Mi3Ai) +  I  which differs 
from 6 b if H2 4  mi ■ Equation 65 is correct; the one from the ju expression is an approxi- 
madon.



In  a few special cases (18.7) m ay be simplified. If (</>, 0) falls along an 
optic axis gi =  F  — F° and g2 = V  +  V° whence
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B a =  ^  [(Ai -  A2) cos2 F ° -  (A2 -  A3) sin V o] . . . .(19.61)

if 0 =  0

if 0 =  90°

B  = uz — mi +
2 2 

Ml M2
Ml +  M2

( A i  —  A 2 ) (19.62)

B  = (ß3 — mi)(1 — cos </> sin ^ ° )

+  (Ai — A3 — (Ai — A2) cos2 <t>) . (19.63)

if <t> =  0

5  =  (ms -  mi)(sin2 F ° -  sin2 d) +  y  (Ai -  A2 -  (Ai -  A3) sin 0). . (19.64) 

if 4> =  90°

B =  (ß3 — mi)(1 — cos2 0 cos2 F°)

+  (Ai -  As -  (A2 -  As) cos 0). . (19.65)

The Electro Optics of Quartz
—1 _ + zE

Zu 0 0 '

— Zn 0 0 If E  is
0 0 0 Z n  =
Z41 0 0 Z 41 =
0 — Z41 0

0 — zu 0 ,

Z  =

Obviously the E% com ponent produces no effect so we shall examine the

-effects due to the  com ponents E \ and E-> separately. If E  — I 0 1 E \
w

K \ 1 zniSi 
K T X° -  zu £ i

Z41 E \
0 
0

ÜT1 = which can be diagonalized

* Computed from F. Pockels data, see his Lehrbuch der Kristall-Optik, (B. G. Tuebner).
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by a small ro ta tion  abou t Xi of am ount 6  =  241 giv jng
K  i — K  3

K \ 1 +  Z nE i 
K i 1 — zu E i

K ~ L = K l

3
AH

Mi -  j  X  0.47 X K T 10̂
3

Mland  M w  +  y  X 0.47 X  K T 10̂

M3

T he grea test “ added birefringence” is go tten  by  viewing along *3 , when 
A B  — 1.544 X  0.47 X  10 0 E i . I I  E i  =  104A 5 =  1.73 X 10 6 a quan tity  
detectable if the p a th  length is abou t 1 cm. Viewing along x3  (the optic 
axis) is com plicated by the ro ta tion  of the p lane of polarization  in quartz. 
Hom ogeneous strains have never been found to  a lte r th is ro tation , b u t the 
ro ta tion  com plicates and p artly  m asks the  birefringence phenom ena. If 

/ 0 \
E  = E i we find

K T 1  =

K 7'°
K 7'°
K 7 1'

0
—Z41.E2 
- z n E z

R otating  the coordinate axes through 45° ab o u t x 3 then  applying the 
transform ation

where

we find:

K ~ l"  =

a = ~ V 2 Z ilE *
K T 1 K l

K \ 1 +  ZnEz 
K 7 l° -  Z nE i 

K 7 10  
0 
0 
0

M =

Ml -2- Z n £ 2
3

I All 17Ml +  ~2 zn  £2 

M3



which is identical to the m for field along X i , b u t the final axes in th is case 
do not coincide w ith the final axes for E  = E X, b u t again, the greatest added 
birefringence is utilized by viewing along .r3. In  the second case the Nicols 
would be best set along x x and x2, i.e., a t 45° to x[ and x 2 whereas in the 
first case they would be best set a t  45° to  xx and x2.

The strain Optics of Quartz 

K~l =  K Tl° +  me,
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mn m X2 mn m u 0 0 m n = .138

m n mn mn — mu 0 0 m n = .250

m3i m3i m 33 0 0 0 mn  = .259

mix mn 0 m u 0 0 where* m u — .029

o 0 0 0 m u mn m 31 = .258

1° 0 0 0
m n — mn m 33 — .098

m u
2 mn - - .0 4 2

m u - -  .0685

If the  strain  is a simple tension along x x ,

K i 1 +  Wnei] K i 1 +  m n  ei

K T  +  Wi2£ij which diagonalizes, K J 1 4 "  M l l 2  € l

K 3 1 +  m u ei through a  sm all K  1 =
K n 1 +  m3 iei

m uei transform ation to : 0

0 0

0 J I o

applying 18.63 or 18.64 we find the birefringence along xx to  be:

-Bn =  M3 — Mi +  y  (w i2 — ?»3i )  e i -  -0091 — .0148 e i

Similarly the birefringence along x 2 is B X2 =  .0091 — .225 £i and B n  =  
0 -  .207 «i. W ith  a strain  of 10~4, which is about a ten th  of the breaking 
strain , B n  would be 20.7 X 10-6, a q u an tity  detectable in a thickness of one 
millimeter.

T he values of B 2X • • • B n  corresponding to birefringence along x6 for a 
tension along % etc., can be com puted in ju st the same way. B ut B n  
B63 require ro tations of 45° abou t x 3 to  diagonalize, so the birefringences 
can be com puted by  setting d =  45° in equations (19.6).

* Lehrbuch der Kristalloptik—F. Pockels.
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T he following table sum m arizes these simple strain  birefringence effects, 
the rows indicating the strain  and the columns the direction of light passage.

$0 — .0148 £i $  0 — .222 £i .207 £i
$0 + .222 £2 Bo — .0148 e2 .207 £2
$0 .298 £3 Bo — .298 £3 0
$0 ■ .0536 £4 Bo — .0536 «4 - .1 0 7 £4

($0 + 0 Bo + 0 \ o -<r £b)
($0 + 0 Bo + 0 .208 Co)

(the parentheses indicate the 45° transform ations).
A similar tab le for the electro-optic effect in qu artz  is

B 0 -  .87 X K T10̂  Bo +  .87 X lO-10^  1.74 X K T 10̂
Bo +  0 Bo +  0 1.74 X K T 10̂
$ o + 0  $ o  +  0  0

Since a driving voltage of E x =  100 vo lts m ay, due to the building up of 
oscillations, cause a periodic strain  of e =  10~4 in a qu artz  p la te , it would 
seem from the foregoing th a t 99.99%  of any  birefringence change m ust be 
due to the m echanical effect.

The 18° Cut Crystal

A crystal, the thickness of which is along the electric axis, x \ , the  w idth 
m aking an  angle 9' =  18° w ith the optic axis, x3 , can be caused to oscillate 
w ith a simple m otion along its length. (If O' is no t abou t 18° or 72° the 
oscillation is no t a simple extension along the length, as is shown by  the  node 
which then lies diagonally across the crystal.) On a set of axes defined by 
the edges of the crysta l block, x[ being in the  direction of the thickness or 
xh x 3 in the  direction of the w idth and m akes an  angle 9 ' w ith x3, x '2 is the 
length and m akes an  angle 9' w ith x2, on these block axes the strain  is £2. 
R o tating  the axes abou t x[ th rough an  angle 9' we find the  strain  expressed 
on th é  crystal axes to  be:
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whence

K T 1 =  +  me gives us

'K TV +  (mu  cos2 9' +  m u  sin2 9' — m u sin 6 ' cos 9 ')ej
KTV +  (mn  cos2 9' +  m i3  sin2 9' +  m u  sin 9' cos 9')ei

i _  K 3l° +  (jw3i cos2 9' +  m 33 sin2 9 ')ei
— — (mu  cos" 9' +  m u  sin 9' cos (pOi?

0 
0

A small transform ation removes the 4 th  term  w ithout altering the others to 
the  first power of small quantities.

To obtain the birefringence along the w idth x 3, we set 9 = 9 '  in equation 
(18.65):

B y  =  3 — jui) sin" 9' +  [m u  cos2 9' — m u  cos4 9' +  (mi3 — m33) sin 6 '

■ 2 ^ / 1 +  COS2 9' . 2 2 n, \  J— m u  sin 9 ' ------------    — m 31 sin 9 cos 9 > ej,

which, for 9' =  18° is B 3  =  .00087 +  .20 eu1 I
For the birefringence along the length x 3  we set 

Q =  90° +  9' in (6 e) giving:
3

B  =  (n3 -  Ml) cos2 9' +  ^  {mu  COS2 9' -  mn  cos4 9' +  (m 13  -  m n -  mS3)

sin2 9' cos2 9' — m u  sin 9' cos 9'( 1 +  sin2 9 '))e2 

which, for 9 ' =  18° is B 2 =  .00824 +  .049 e_2.

SEC TIO N  20 

T ra n sv erse  I sotropy

A m aterial th a t has identical properties in all directions norm al to a given 
line is called transversely isotropic. Any line parallel to this line m ay be 
considered as an  axis of transverse isotropy.

Dielectric Properties, Optical Properties, Thermal Expansion

W ith respect to these, a transversely isotropic m aterial behaves as does a 
uniaxial crystal, only two constants being needed to describe each. For 
example, the displacem ent current in term s of the electric field and the dielec-
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trie  constan t m atrix  is D  

isotropy:

—  kE  where, if x 3 is the axis of transverse

D =
A i 0 0
0 D n 0
,0 0 D-

(20 . 1)

Elasticity

W e m ust find the form s of S  and C, (the elastic m odulus and  elastic con
s ta n t m atrices) th a t are no t changed by ro ta tions ab o u t the  axis of trans
verse isotropy. We can simplify the work by  s ta rting  w ith the  crystal 
class th a t has hexagonal sym m etry  only. On applying the transform ation 
S ' = a cS a  = S  for a rb itra ry  ro ta tions abou t X 3 we find no fu rthe r simplifi
cation follows. Hence the S  and C m atrices can be copied from  those for 
the  H exagonal P yram idal Class.

The Piezo-Electric Effect

Again choosing x 3  as the axis of transverse iso tropy and  sta rting  with 
hexagonal sym m etry  abou t X 3 we find th a t  in order to be invarian t to  all 
ro tations abou t X 3 th e  m atrix  m ust sim plify to :

/0  0 0 0 0 o \
d =  10  0 0 0 0 0 )  ........................................(20.2)

\ d 3i  ¿3 1  ¿3 3  0 0 0 /

A p itch  solidified in an  electric field would probably  exhibit th is kind of 
piezo electric behaviour. I t  m ight also be expected to  show an  electro optic 
effect governed by  a m atrix  like the  conjugate of the above m atrix .

S E C T IO N  21 

A p p e n d i x

Transformations

A counterclockwise ro ta tion  of the axes through an  angle <f> abou t the xi
axis is represented by  the m atrices a and  a  as follows (where c is w ritten  for
cos ¿> and s for sin <j>):

Í1 0 0 0 0 0
0

2
c s 2 2 sc  0 0

0
2

5
2

C — 2 sc  0 0

0 — sc SC
2 2 

c — s 0 0

0 0 0 0 c — s

0 0 0 0 s c

• (21 .1)
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A counterclockwise ro tation  abou t x% is given by:

a =

c s O'

0 0 1;

2 A 2c 0 s 0 — 2sc O'
0 1 0 0 0 0
2 a 2s 0 c 0 2 sc 0

a =
0 0 0 c 0 s
sc 0 — sc 0 2 2 c —s 0
0 0 0 —s 0 c

abou t X3 is given by:

2 2 A c s 0 0 0 2  cs
2 2 As c 0 0 0 - 2  cs

0 0 1 0 0 0
a  = 0 0 0 c — 5 0

0 0 0 — s c 0
—cs cs 0 0 A 20 c 2— s

(21 .2)

.(21.3)

In  case one w ants only the value of a tensor property  in a given direction 
not all the elem ents of a and a  need be used, b u t only a row or column. A 
special case is th a t of com puting such a p roperty  in the direction (6 , <j>) 
of polar coordinates. The .vi axis is chosen in this direction; and x$ are 
not determ ined. W riting Ci for cos 9, c2 for cos <£, Si for sin 6  and s2 for sin <£ 
the required m atrices are

• (21.4)

2  2
C 1 S 2  •

'

2  2
S i  S 2  •

2
C2

S 1 S 2C2 ’

C 1 C 2 S 2  •
2

C 1 S 1 S 2  ‘ .

From  these the (11) term  can be com puted for any tensor.
A few special transform ations needed constantly  are: A ro tation  of 180 

about X3 :

a =

1 0 0 0 0 o'
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 -1 0 0
0 0 0 0 - 1 0
0 0 0 0 0 ij

-1a. =  a c .(21.5)
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A ro ta tion  of 90° abou t x3:
/
0 1 0 0 0 o'
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 - 1 0 > a

0 0 0 1 0 0
0 0 0 0 0 -1

- i =  a c . . (21.6)

A reflection in the  p lane perpendicular to  x3:

'l 0 0 0 0 o'
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 - 1 0 0
0 0 0 0 - 1  0

,0 0 0 0 0 lj

—ia =  a c (21.7)

a :
a. =  oic (21.8)

A cyclic interchange where x 2 replaces ± i , e tc .:
(The line m aking equal angles w ith xh x^, and x3 is a three-fold axis)

fo 0 1 0 0 o]
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0,

A cyclic interchange, where — x 3  replaces xh etc.:
(The line m aking equal angles w ith xh x2, and x 3  is a six-fold a x is ' of the 
second sort)

0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0

a = a  = a  1 =  oic (21.9)

A ro ta tion  of 90° ab o u t x3  com bined w ith a reflection in  the  .r3 plane:

0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 - 1 0 0
0 0 0 0 0 - 1

- ia  = a= a c .(21.10)
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A ro tation  of 60° about £3:

1 V 3
2

^¿1
2
0

5 °  
0 1

1
¿ 0 0 0 V 3 'l

4 4 2
3

l o 0 0 V 3
4 4 2
0 0 1 0 0 0

0 0 0
1 _  V 3 0
2 2

0 0 0 V  3 1
0

2 2
V 3  V s 0 0

1
4 4 2

To form a  1 substitu te  
— - \ / 2> for V s  in .a.

A ro tation  of 60° about x 3  combined w ith a reflection in x3:

. (2 1 .1 1 )

a =

1 V 3 0
2 2

V 3 1 0
2 2
0 0 - 1

a =

To form a. 1 substitu te  
— V S  for s / 3  in a.

A ro tation  of 120° about x3:

a

1 s /  3
2

V 3 -  -  0
2 2
0 0 1

To form a  1 substitu te  
— V s  for s / S  in a .

r 1
4 ?<*

0 0 V 3 ]
2

3
4 i °

0 0 \ / 3
2

0 0 1 0 0 0

0 0 0 1 s /  3
2 2

0

0 0 0

ICO 
ICM 

>
1

 1 1
2

0

V 3 s /S  0 
4 4

0 0
1
2j

' 1
4 1 “

0 0 V s )
2

3
4 5 °

0 0 V s
2

0 0 1 0 0 0

0 0 0
1
2

s /  3 
2

0

0 0 0 s /  3 
2

1
2

0

s /S
4

0
4

0 0
1

2 .

(2 1 .1 2 )

. .(21.13)



Inversion th rough the origin (a center of sym m etry)

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

A ro ta tion  of 180° abou t xx\

68 BELL S Y S T E M  TECHNICAL JOURNAL

a = a  = =  7.
- la = a c

.(21.14)

fl 0 0 0 0 o'
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 -1 0
0 0 0 0 0 -1

(21.15)

A reflection in xi plane:

a =

'1 0 0 0 0 o'
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

a
0 0 0 0 -1 0
0 0 0 0 0 -1

a = a c . .(21.16)

A reflection in the plane:
f
1 0 0 0 0 o'

0 ° \ 0 1 0 0 0 0
1

0
a = 0 0 1 0 0 0

0 1/ 0 0 0 -1 0 0
0 0 0 0 1 0
0 0 0 0 0 -1

a 1 =  a = a c. . (21.17)

In  com puting the electro-optic and m echanico-optic effects we need a 
transform ation th a t will restore to  d iagonality  a m atrix  th a t has very  small 
bu t sym m etrical off diagonal term s. T h is transform ation  we call a small 
transform ation. Such a transform ation has its m atrix  differing b u t slightly 
from an  idem factor.

If
( k\\ +  An A12 A31 N

A12 kl2 T A22 A23

A31 A23 £33 +  a33/
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we assume th a t it can be rediagonalized to the m atrix  ¿ ' by m eans of the

/1  5l2 5l3\
transform ation: k' =  8 k8 c where 5 =  1 621 1 2̂3 I

V>31 830 1 /

Since 5u 52i +  522 +  S13 523 =  0 we find th a t, to the first order of small
quantities 5,; =  —5,,.

Expanding 8 k8 r to the first order of small quantities and equating the non
diagonal term s to  zero we find th a t:

512 —
A12

8 2  3 —
A2.3

and 631 —
A3i

£ 1 1  —  £ 22 ’ £2 2  —  ¿3 3  ¿33  —  ¿ 1 1

Therefore, to the first order of small quantities A,-,-:

8  =
/ ¿ 1 1  +  A n A 12 A31 \ / ¿ n  +  A n 0

0  \
1 A12 ¿22 T- A22 A23 J 8C = 0 ¿22 +  A22

0
\  A31 a 2 3 ¿33 T "  A  33/ \  0 0 ¿33 “H A33/

where 5

1

-  A l 2

A12

¿ 1 1  —  

A31

¿ 1 1  —  ¿ 2 2  

1

—a 23
¿33 —  ¿11

—  A 31 

£33 — ¿11
A 2 3  __

¿2 2  —  ¿33 

1

is the  transform ation 
* ' =  *  (21.18)

The electro and piezo-optic effects of biaxial crystals can be handled by 
these infinitesimal transform ations, b u t uniaxial crystals and cubic crystals 
m ay require finite ro tations to re-diagonalize the ¿ m atrix. In  the

( k  0 0 \
case of cubic crystals we note th a t I 0 ¿ A m ay be diagonalized by  a

\0  A k

ro tation of 45° about xh giving

( k  0 As\
0 ¿ Ai 1 becomes

VA2 Ai ¿ /

(k  0 0 N
0 k +  A 0

Vo 0 k -  Ay

(  k 0 V a ?  +  A |\
0 ¿ 0

V V a F + T ?  0 k )

.(21.19)

upon rotation  
through angle



70 BELL  S Y S T E M  TECHNICAL JOURNAL

_ i A ,
t an abou t *3 and diaonalizes by then ro ta ting  through 45° abou t x2 

giving:

( k  +  V a ?  +  Af 0 0
k "  =  I 0 k 0

\  o k — V a ?  +  a
(21.20)

T he work can be handled  w ith single column m atrices K  instead of using 
the square m atrices k. If  k is a diagonal single column m atrix  (i.e., the 
single column m atrix  of a diagonal m atrix ), th an  the  alm ost diagonal 
m atrix  K  +  A is diagonalized by  the  transform ation :

1 0 0

0 1 0

0 0 1

0
- A 4 A4

>; to 1 * CO k 2 -

2 As 2A6
K x -  K 3 K 1 -  K 2 

2 A* — 2A6
0

K 2 -— Kz K \  — K 2

— 2A4 —2A5
Ä 2 — K z K \  — Kz

— Aö — A5

- A b

K ,  -  Kz  

— Aß

0

Aß

Ab Ab

ÄT ~  Kz K i  -  Kz  

A4
K i  — Kz K i  — K 2 

A5
[K i -  K 2 K i -  K 2

0

1

A4
K i  — Kz K 2 — Kz

f
K i  +  Ai

K 2  -f- A2 

Kz +  A3 

0 

0

K i  -  Kz  

1

K i  +  Ai

K i  +  A2 

K i  +  A3 

A4 

Ab 

Aß

. ( 21 .21)

J
0
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which transform s vectors as %' =  5.r where

A6

5 =

1

-A6

As

K i  -  A 2 
- A 6

^Ki — Kz

K i — K 2 

1

— A4 
K i -  Kz

K \  -  IU  
A4

K i  -  Kz 

1

(2 1 .22)

If Ki, Kz and K 3 are not all different the preceding analysis falls down as 
some term s become infinite; a finite transform ation is needed in this case. 
The difficulty can generally be doged by applying a 45° ro tation  about one 
of the axes. Sometimes the easiest solution is to ro ta te  through an  angle 
<t> about a coordinate axis then  solve for the value of 4> th a t will vanish 
certain  term s. As examples of these devices we give the  following:

(21.23)

Ax' K \
AT a 4 +  a 4
AT ro ta ted  45° about x\ becomes A i — A4
a4 0
0 0

|o 0

AT AT A  +  V A ? +  A§
A 4 ro ta ted  through Ax and ro A
Ax —l ^ itan  — about

AT ta ted  45° A  -  V A | +  Ai
a4 a 5 0 about Xi 0
a 5 x 3 is V A l +  A| is 0
0 0 lo J

(21.24)

D
E
k
K
a
a
X
e
e
s
c
H

=  electric induction 
=  electric field
=  dielectric constant m atrix  (square)
=  dielectric constant m atrix  (single column)
=  transform ation m atrix  for vectors
=  transform ation m atrix  for tensors (of stress tensor sort) 
=  stress m atrix  (single column)
=  strain  m atrix  (square)
=  strain  m atrix  (single column)
=  elastic m odulus m atrix  
=  elastic constant m atrix
=  tem perature change of elastic modulus m atrix
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h =  tem peratu re  change of elastic constan t m atrix  
T a =  tem peratu re  coefficient of elastic m odulus term s
T c =  tem peratu re  coefficient of elastic constan t term s
A  =  tem peratu re  expansion m atrix  
d  ■ =  piezo-electric constan t m atrix  
g =  inverse piezo effect m atrix  
G =  electro-striction m atrix
Z  =  electro-optic m atrix
7r =  stress optic m atrix
m  =  strain  optic m atrix
P  =  polarization  =  elec. mom. per u n it vol. =  surface charge per un it 

area
p

r] =  susceptib ility  =  —
E

Table of E quations T  ransform ations

D = ~  kE The form x y z
Air x' h mi ni

e = S X y' h  m 2 n2
X  = Ce z' 13 m 3 M3

s  =  c-> li I2 1 3
h = —C°HC° is the transformation a =  mu m 2 m 3
H =  -S °h S ° Ml m2 m3
Al = t A l +  TB IXIICl A ' =  ad a-1
e = gE D' =  aD
g = dc £ '  =  a£
K - 1 =  K - +  ZE k' — akac
K - 1 =  K~'° +  wX K ' =  «K
K -1 =  K-1° -(- me W' =  a l

k -  I e '  =  « 7 %
P -  . E  =  ttE4 tt C' =  aC ae

k — I 5 '  =  « 7 & - 1
/P =4tt if  =  a p l / a ^
ha = CijTCij
H a  =  5?#rsi#
d' = ada~l

References as to Crystal D ata

1. Symmetry class—Chemische Kristallographie, Vols. I-V  by Paul Groth.
2. Properties of Quartz—The Properties of Silica by R. B. Sosman.
3. Elastic and piezoelectric properties of quartz and rochelle salt—Electrical and Mechani

cal Wave Transducers by W. P. Mason.



T he M etallu rgy  of F ille t W iped  S o ld ered  Joints*

By E. E. SCHUMACHER, G. M. BOUTON, G. S. PH IP P S

H E  seriousness of the present tin  scarcity has stim ulated large con-
sumers of this v ita l m etal to develop drastic conservation measures in 

order to extend the available supplies to cover the emergency period. 
B y devising new soldering m ethods and alloys the Bell System  has contrib
u ted  a substan tia l share in the tin  conservation effort. F ortunately , the 
changes, as far as can now be determ ined, have not introduced weakness 
into the soldered joints. Some of the new procedures now used were already 
in the process of developm ent a t  the onset of the emergency, while others 
were devised under its stress. In  some instances, the newly developed 
solders were found to  be more difficult to use than  the alloys previously 
available, and would not have been introduced under norm al conditions. 
One m ajor change m ade th a t previously had been under consideration will 
result in large tin  savings. Unless service difficulties are encountered, this 
modification gives promise to  rem ain after the emergency has passed. The 
change involves a reduction in the am ount of solder placed on a wiped jo in t 
between the cable sheath and the sleeve. Instead  of the custom ary full 
size wiped jo in t a wipe of fillet proportions is formed. Through th is change, 
a solder saving of over 60%  per jo in t can be realized.

Plum bers and cable splicers have for m any years joined lead pipes and 
cable sheath by a soldering process called “ wiping.” The nam e is an ap t 
description of the operation. In  wiping a jo in t the sections to be united 
are heated by pouring m olten solder over their surfaces and m anipulating 
the resulting semi-liquid mass by wiping with cloth pads to a well rounded 
sym m etrical form  such as is shown in Fig. 1. T he operation requires con
siderable skill on the p a r t of the splicer and close control of the solder com
position. A t first consideration, the problem  of tightness in such joints 
seems simple b u t experience shows th a t even under the best conditions the 
fissures frequently found in the solder occasionally link to form a path  th a t 
allows leakage to occur. In  the case of telephone cables no t m aintained 
under gas pressure, such leaks perm it the entrance of w ater to wet the paper 
covered conductors, thereby impairing the insulation value and causing 
service interruptions. By going to an  extreme and wiping off all the solder 
in excess of a fillet, it has been found th a t m any causes of porosity  are elim
inated. Figures 2 and 3 show cross sections of jo in ts wiped the old and new

* Reprinted from Metals Technology, A.I.M .E., 1943.
73
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Fig. 1—A conventionally wiped joint between telephone cable and sleeve (third size).

Fig. 2—A section taken from a joint wiped conventionally (magnification 1J X)-

CABLE

Fig. 3—A section taken from a joint wiped using the fillet technique (magnification 1 | X).
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ways. The saving in solder and consequently in strategic tin  is evident. 
T he field splicing forces find th a t jo in ts are easier to m ake by the new 
method and are less a p t to  be porous.

Several interesting m etallurgical considerations which are responsible for 
the success of the fillet wipe will now be discussed briefly. M uch has been 
w ritten about the wiping process of soldering cable jo in ts and the m any re
quirem ents of a good wiping solder have been frequently  listed. The suc
cess of the procedure here described is dependent upon a few fundam ental 
characteristics of lead-tin alloys in the process of freezing which have sound 
m etallurgical explanations.

For an understanding of the defects possible in a soldered jo in t wiped in 
the  usual m anner, the simple solidification phenom ena of m etals m ay .be 
considered. As is well known, m olten m etal in a crucible when allowed to 
cool with free circulation of air will begin freezing near the walls of the vessel 
and with a few exceptions, will end w ith a concave surface due to solidifica
tion shrinkage. R estricting  the discussion to a  simple lead-tin wiping solder, 
solidification progresses as follows: a lead-tin solid solution commences to 
freeze and forms a ra the r porous cylinder touching the  crucible walls and 
extending to  a height corresponding to the volume of the m elt a t th a t tim e; 
on further cooling, dendrites of lead-tin solid solution grow inward toward 
the center of the  crucible and a t the  same tim e m any tiny  new crystals form  
throughout the  liquid. There are thus taking place sim ultaneously, shrink
age of m etal as it becomes solid, shrinkage of previously frozen solid as it 
cools, and shrinkage of the  rem aining liquid as the tem perature drops. The 
originally solidified outer cylinder, adhering to the crucible walls remains 
essentially a t its original height. The level of the semi-liquid portion nearer 
the center of the  crucible continuously falls until the p recipitated crystallites 
formed in the  body of the  m elt m ake a  loosely piled m ass extending from  
the upper surface to the  bo ttom  of the crucible. F u rthe r shrinkage of the 
liquid then leaves these prim ary crystallites a t approxim ately this level 
while the liquid recedes, leaving fissures between them. T his can be beauti
fully observed by m eans of a binocular microscope focussed on the surface 
of a soldifying crucible of wiping solder or, on the top surface of a solidifying 
wiped joint.

F urther insight into the  mechanism of wiping solder solidification m ay 
be gained by another simple illustration. If two solder strips are cast by 
pouring small quantities of m olten solder, one on a  cold iron surface, and 
the other on a cloth-covered board and both  are then ben t cold to  produce 
specimens as shown in Fig. 4, the  chill cast sample will exhibit fewer cracks 
resulting from shrinkage th an  the slowly cooled one. In  the slowly cooled 
sample prim ary crystallites form throughout the  solidifying m ass and  pack 
a t  a level above th a t which the  final volume of com pletely solid solder
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w arran ts. T he sam ple cast on the cold p la te  s ta rts  to freeze a t  its surface 
in contact w ith the iron p la te  and, because of the rap id  extraction  of heat 
by the cold iron, it continues to freeze in a rapidly  advancing sm ooth front 
un til the last liquid a t  the  top  is solid. Because of the steep tem perature 
gradient there is little  opportun ity  for nucléation and dendrite  form ation in 
the upper liquid. T he surface of th is m elt is therefore sm ooth and free 
from  the fissures th a t are caused by the shrinkage of the eutectic aw ay from

Fig. 4—Bent strips illustrating the effect of variations in cooling rate on the structure 
of wiping solders are here shown. The upper strip was chill cast and shows a sound 
ductile surface. The lower strip of the same solder was slowly cooled and upon bending 
exposes fissures between the crystallites a t the surface (magnification 3 X).

the  dendrites in the slowly cooled sample. Recession of the liquid in the 
slowly cooled sam ple leaves a m ultitude of shrinkage channels which, if 
they  occurred a t  the  critical portion  of a wiped jo in t, would cause leaks.

A nother illustration  m ay be useful in dem onstrating  the processes taking 
place in connection w ith jo in t wiping. Solder m ay be allowed to solidify 
in a crucible un til its surface is qu ite  firm to a probe. If, a t th is stage, the
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crucible is tilted  sideways to a position shown in Fig. 5 a portion  of the re
maining eutectic m ay be poured out leaving spongy regions. T his loss of 
eutectic is observed frequently  during the form ation of the old massive type 
joints which m ay lose several drops by  drainage after the splicer has com
pleted his shaping operations. I t  is also shown by  the greater num ber of 
pores in the top half of a jo in t com pared to the bottom  and the som ewhat 
grayer surface appearance of the top.

Fig. S—An ingot of wiping solder which had been tilted while in the crucible before 
completely solidified. The lower lip represents eutectic drainage from the partially 
solidified mass (magnification I f  X).

Although a solidification range in which quantities of liquid and solid 
m etal m ay exist a t  equilibrium  is an essential feature of a wiping solder, 
another factor of m ajor im portance is the nucleation ra te  of the alloy. W ip
ing solders having high nucleation rates will develop quickly a m yriad of 
points or nuclei throughout the m elt from which further crystallization will 
proceed, while an  alloy of low nucleation ra te  will develop relatively few of 
these points in the same tim e and consequently grow fewer and larger 
crystals. T he former alloy will have a tex ture similar to fine clay while 
the la tte r will behave like coarse sand and w ater when subjected to wiping
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tests. In  the  fine clay-like tex ture there are more solid particles present 
th an  in the  w ater-sand type of tex ture and therefore there is more surface 
available for the re ten tion  of the liquid in the  form er type of semi-solid 
mass. D rainage is thus greatly  re ta rded  w ith the resu lt th a t  porosity  is 
m ateria lly  lessened. T he type of tex ture determ ines in a large m easure the 
ease of shaping and  po ten tia l porosity  of a  wiping solder.

H aving examined elem entary form s of solidification, a tten tio n  m ay now 
be focussed on the setting  up  of the wiped jo in t itself. In  practice, the parts  
to be joined are cleaned and fluxed. C ircum ferential paper pasters are 
then  applied to  the  sheath  and  sleeve to  restric t the  spread of the  solder. 
T he splicer then  pours h o t solder from  a ladle over the prepared p a rts  and 
catches the  excess in  a  cloth held in  contact w ith the  bo ttom  of the joint. 
T he caught solder is repeatedly  pushed back around the  cable w ith a wiping 
m otion to aid “ tinn ing” or alloying and to  d istribu te  the  hea t. A fter a few 
such operations the prepared surfaces can be seen to  be thoroughly  w etted 
by  the  solder. A t th is stage a portion  of the  caught solder is m ixed in the 
ladle w ith more h o t solder and  the m ass which now has a  clay-like consist
ency is poured on the  jo in t and molded into place using cloth pads. W hen 
solidification has proceeded to  a  condition where the solder can support it
self in position, m anipulation is stopped. F rom  th is po in t on, loss of hea t 
takes place by  conduction aw ay from  the  jo in t by  the  sheath  and  sleeve, by 
radiation , and by  air convection currents a t  the surface of the solder. As 
a result of th is com bination of h ea t losses final solidification takes place in 
the  interior of the  solder m ass near the  im portan t sheath-sleeve junction. 
T he action  th a t causes pipes to  form  in castings draw s the  eutectic from  the 
critical area between the  sheath  and the  end of the  sleeve. If the  solder 
has the  proper characteristics there will be a shell of solder which does not 
have interconnecting shrinkage cavities, drainage cavities or fissures due to 
the wiping operation and  the finished jo in ts will be gas tigh t. I f  the  solder 
is unduly  coarse or has insufficient liquid eutectic a t  the tim e the m ass is 
too rigid to  m anipulate further, the  resulting jo in t m ay leak.

T he new fillet wiping technique is sim ilar to  the  old up  to  the  step where 
the  splicer molds the  m ass to  shape. A t th is po in t the  new technique con
sists in wiping the solder to  a small fillet similar to th a t shown in Fig. 3. 
T he resulting jo in t has m uch less solder and  therefore m uch less to ta l shrink
age and tendency to draw  eutectic from  the space betw een the sheath and 
sleeve. Also, a t  the tem peratu re  where wiping is discontinued there is in
sufficient volum e of solder left by  the fillet wiping technique to perm it d rain 
age drops to  accum ulate and  fall from  the bo ttom  of the jo in t. Therm al 
conduction along the sheath  and sleeve cause rapid solidification of the 
solder a t  the  jo in t, elim inating the  possibility of drainage. Experience has 
shown a consistently  high percentage of sound jo in ts when fillet wiping is
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rigidly practiced. D uring the developm ent period of the fillet wiping tech
nique exam ination of the few fillet type wiped jo in ts th a t were found to  leak 
showed quan tities of solder present much in excess of th a t required. U nder 
the microscope such jo in ts showed the tell-tale sponginess where the eutectic 
had been draw n aw ay from the junction  in the course of final solidification.

Physical tests on join ts m ade using the fillet wipe between sections of 
telephone cable and sleeving, have dem onstrated th a t fillet join ts similar 
in size to th a t shown in Fig. 2 m ade w ith 38%  tin, 0.1%  arsenic, balance 
lead wiping solder are stronger in tensile strength, creep and fatigue than  
the cable itself.

T he application of the  new technique has gone much further toward 
saving tin  th an  any  known permissible change in the composition of solder. 
Using the old technique, a  reduction of only one per cent in the nom inal 
tin  content of a lead-tin  wiping solder resulted in widespread occurrence of 
leaky joints, indicating th a t little  tin  could be saved by  a simple change in 
solder specification. T his observation was to be expected since m any 
studies had  been conducted over the years to reduce the tin  content in 
wiping solders to  the  m inim um  consistent w ith the production of satisfac
tory  joints. T in  has always been much more expensive than  lead and for 
large users of solder a reduction of one per cent in the tin  content m ight 
result in savings of m any thousands of dollars annually.

W hile the use of the fillet wipe results in large savings in tin  other avenues 
for conserving th is strategic m etal are available such as the substitu tion  of 
ternary  and quaternary  alloys containing less tin  than  th a t required by the 
b inary  lead-tin  wiping solders. A satisfactory alloy of th is type was de
veloped which contains 13%  tin , 23%  bism uth, 0 .1%  arsenic, balance lead. 
Though readily available a short tim e ago, b ism uth now has become too 
restricted to be used extensively in solders. A wiping solder is now being 
introduced into service in which, through the inclusion of a small quan tity  
of antim ony, it has been possible to reduce the tin  content. T his m aterial 
appears suitable for fillet wiping although it requires more skill to  use than  
the 38%  tin, 0.1%  arsenic, balance lead wiping solder. O ther compositions 
m ay be usable th a t contain less than  norm al tin, b u t on the whole, the 
savings accomplished by composition modifications will be small compared 
to those produced by  the new wiping technique th a t has been described.

I n  Sum m ation

B y v irtue of its small solder volum e the fillet wipe reduces tin  consum p
tion and produces jo in ts less liable to leakage th an  the conventional wiped 
joints. T he reasons for the success of th is type of jo in t are based on the 
sound m etallurgical principles herein described. T he use of the fillet wipe 
promises to survive the period of restricted tin  consum ption.
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M A T H E M A T IC A L  theory, suitable for appraising and controlling
directive properties of linear an ten n a  arrays, can be based upon a 

sim ple m odification of the  usual expression for the  rad ia tion  in tensity  of a 
system  of rad ia ting  sources. T he first step  in th is m odification is closely 
analogous to  the  passage from  the  represen tation  of instan taneous values 
of harm onically  varying quan tities by  real num bers to a symbolic repre
sen tation  of these quan tities by  complex num bers. T he second step con
sists in a  substitu tion  which identifies th e  rad ia tion  in tensity  w ith the 
norm 1 of a polynom ial in  a complex variable. T h e  complex variab le itself 
represents a typical direction in space. T h is m athem atical device perm its 
tapp ing  the resources of algebra and  leads to  a  pictorial represen tation  of 
the  rad ia tion  in tensity .

An antenna array is a spatial d istribu tion  of an tennas in which the in
div idual an tennas are geom etrically identical, sim ilarly oriented, and 
energized a t  sim ilarly situated  points. T he first and  the  last properties 
insure th a t  the  form  of the  cu rren t d is tribu tion  is the  sam e in all the  ele
m ents of the a rray  and  th a t consequently the a rray  is composed of antennas 
w ith the  same rad ia tion  p a tte rn s . T he difference betw een individual ele
m ents consists merely in the relative phases and intensities of their radiation  
fields. T he second p ro p erty  m eans th a t the  rad ia tion  p a tte rn s  of the 
individual elem ents are sim ilarly oriented and  th a t consequently  the  radia
tion pattern o f the array is the product of the radiation patterns o f its typical 
element and the “space f a c t o r T he space factor of an  a rray  is defined as 
th e  radiation pattern of a  sim ilar a rray  of non-directive elem ents. H ence in 
studying the  effect of spatial arrangem ent of antennas, we m ay confine 
ourselves to non-directive elem ents and thus m ateria lly  sim plify the analy
sis.

An array  is linear if points, sim ilarly s ituated  on the  elem ents, are colinear. 
In  th is paper we are concerned m ostly  w ith linear arrays of equispaced 
sources although in conclusion we shall have an  occasion to  say a few words 
ab o u t m ore general types.

1 The norm of a complex number is the square of its absolute value.
80
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R a d ia t io n  I n t e n s it y  a nd  F ie l d  St r e n g t h

Consider a linear array  of n  equispaced nondirective sources (Fig. 1). 
A part from  the inverse d istance factor, the instantaneous field strength  of 
the array  in the direction m aking an  angle 6  w ith the line of sources m ay be 
expressed as follows

\  $ ,  =  A  o cos (cot -F $ o) ~F A  i cos  (oj/ A  \j/ -F  $ j )  .1 2 cos (cot -F  2\p -F tF)

+  • • • -J- An- 2 COs(ut n —2 1P d n - 2) "F C0s(fi)t “F w—1 1p), (1)

x/c =  p t  COS 9  -  0 ,  P  =
A

intensity but differ in phase by (i( cos 8 where (  cos 8 is the projection of the distance 
between the sources upon the particular spatial direction under consideration. If 
the sources are unequal, an allowance must be made for the relative field inten
sities in proportion to magnitudes of the sources and the phases must be adjusted 
for the phase difference between the sources.

In  th is equation: A 0 , A i , ■ ■ ■ 4 n_ 1 =  1 are the relative am plitudes of the 
elements of the array ; & is a progressive phase delay, from  left to  right, be
tween the successive elements of the array ; # 1, $2 , ' ' '  $»-2 , #»-1 =  0 repre
sent the phase deviations from  the  above progressive phase delay; /3 =  2 ir /\  
is the phase constant, where X is th e  wavelength. The radiation intensity, 
th a t is the power rad ia ted  per un it solid angle, is proportional to the  square 
of the  am plitude of V d ti •

Form ing another expression similar to  (1) b u t w ith sines in  the place of 
cosines, m ultiplying the result by  i  =  a / — 1 and adding it to  (1), we have

V i i  =  [A0 eiS° +  A ^ +idl +  +  • • ■
    (2)

+  +  ein~1*\ eiat.

T he true  instantaneous value of the  field strength  is the real p a r t of (2).



Hence the am plitude -%/<! of the  field strength2 is the  absolute value of 
(2); thus3

== | ao +  cl\Z +  OiZ +  • • • +  an-zzn 2 +  zn 1 | , 

z =  e'*, p  =  p i  cos 6  — #, am =  A me dm.

In  th is  equation : a0 , f l i , a2 , ■ ■ ■ an- 2 , o„_i =  1 are complex num bers repre
senting th e  rela tive am plitudes of th e  elem ents of the  a rray  and  th e  phase 
deviations of these elem ents from  a given progressive phasing. T hus if 
all th e  coefficients are real and positive, th ey  represent the  rela tive am pli
tudes of the  elem ents of the  array . If  the  algebraic sign of a  particu lar 
coefficient is reversed, the  phase of the  corresponding elem ent is changed 
by  180°; if some coefficient is m ultip lied  by  i  or —i, th e  phase of the  cor
responding elem ent is respectively accelerated or delayed b y  90°; and in 
general the  phase acceleration is equivalent, in our scheme, to  a  m ultip lica
tion by  a u n it complex num ber e iS. Some coefficients m ay be equal to  zero 
and  the  corresponding elem ents of the  a rray  will be missing. In  view of 
th is possibility, we shall call I  the  “ ap p a ren t” separation  betw een the 
elem ents; i t  is the  g rea test com mon m easure of ac tua l separations. W hen 
the elem ents are equispaced the  apparen t separation  is the  ac tua l separation.

T hus we have th e  fundam ental
Theorem  I :  Every linear array with commensurable separations between 

the elements can be represented by a polynomial and every polynomial can be 
interpreted as a linear array . 11

T he to ta l length of the  array  is the  p roduct of th e  ap p aren t separation 
between the elem ents and the degree of the polynom ial. T he degree of the 
polynom ial is one less th a n  th e  “ ap p a ren t” num ber of elem ents. T he 
ac tua l num ber of elem ents is a t  m ost equal to  the  ap p a ren t num ber.

T he above analy tical represen tation  of arrays is accom plished w ith the 
aid of the  following transform ation

z =  e**, (4)

in  which p  = (31 cos d — d- is a  function  of the  angle 9 m ade b y  the line of 
sources w ith a typ ical direction in  space. 'Since p  is always real, the  ab 
solute value of z equals u n ity  and  z itself is always on the circumference of 
the un it circle (Fig. 2). As 8  increases from  0° (which is in a direction of the  
line of sources) to 180° (which is in th e  opposite direction), p  decreases and

2 For brevity’s sake, we shall call Vi> itself the “field strength.”
3 Equation (3) could be derived directly from the physics of the situation in the same 

manner as (1). The foregoing method of transition from (1) to (3) serves only the purpose 
of showing the relationship between a less familiar formula and a very well known one.

4 If the separations are not commensurable the arrays are represented by an algebraic
function with incommensurable exponents.
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Fig. 2—A typical direction in space is represented by a complex variable which is repre
sented in a complex plane by a point lying on the circumference of a circle of unit 
radius, having its center at the origin. As the angle 6 made by a typical direc
tion with the line of sources, increases from 0° to 180°, point z moves clockwise.

Fig. 3—(A) The active range of z, corresponding to # =  fil and one-quarter wave-length 
separation between the elements. (B) The active range of z, corresponding to 

=  |3i and I = f A.

z moves in the  clockwise direction. W hen 9 =  0, = p i  — and when
8  =  180°, \p =  —p i  — Hence the range \p described by  z is

i  =  2 PI. (5)

W hen the separation I  between the successive elements of the array  .is 
equal to one-half wavelength, the range of z =  2x and as 6  varies from  0° 
to 180°, z describes a complete cycle and returns to its  original position.
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In  th is case there is a one-to-one correspondence betw een the  po in ts of the 
circumference of the u n it circle and  conical surfaces coaxial w ith  the line 
of sources. Such conical surfaces, called rad ia tion  cones, are loci of direc
tions in which the rad ia tion  intensities are equal. If the separation  between 
the  elem ents <  X/2, the  range of z is sm aller th a n  2ir and  z describes only a 
portion  of the  u n it circle (Fig. 3A). F inally , if i  >  X/2, then  the  p a th  of z 
overlaps itself (Fig. 3B). Such a p a th , w inding upon itself, will be called a 
Riem ann circle. In  th is instance, one and the  same po in t on the circle m ay 
correspond to  several rad ia tion  cones; b u t if we regard different positions of 
z along its  p a th  as d istinct po in ts on th e  R iem ann circle, then  there will be 
a  one-to-one correspondence between the  po in ts on the  circle and  the 
rad ia tion  cones.

Since the rad ia tion  in tensity  is a periodic function of \f/, th e  space factor 
of a given array  will repeat itself if the  separation betw een the  elements 
is greater th a n  one-half w avelength.

Co m p o s it io n  o f  Sp a c e  F a c to r s

Since the  p roduct of two polynom ials is a polynom ial, we ob ta in  the  fol
lowing corollary to  T heorem  I

Theorem  I I :  There exists a linear array with a space factor equal to the 
product of the space factors of any two linear arrays.

In  other words, there is a linear array  such th a t its  rad ia tion  in tensity  
in any  given direction is the  p roduct of the  rad ia tion  intensities in  th is direc
tion of any  two given arrays. T hus we have

V Ü  =  | a0 +  aiz +  a2z2 +  • ■ • +  a ^ iz 71“ 1 |,

V ’Fî =  | ho +  biz +  biz" +  • • • +  &m_izm_1 [,
/ -  / -  (6) 

V $1 V $2 =  | («0 +  aiz +  h an-iZn- 1 )(b 0 +  b& +  F bm- iz m~1) |

=  | ao&o T" (a0bi -f- afbf)z +  (ao&2 T" a-Jbi +  a^b^z -f- • • • | .

T he coefficients of the  expanded p roduct represent the  am plitudes and  the 
phases of the derived array .

N atu ra lly  the  process m ay be repeated  and  a  linear a rray  can be con
structed  w ith its space factor equal to  the  p roduct of the  space factors of 
any  num ber of linear arrays or to  any  power of the  space factor of any  array .

F or example, le t us s ta r t w ith a pair of equal sources, represented by

V i  =  | 1 +  2 I, (7)

and construct a  linear a rray  w ith th e  space factor equal to  the  square of 
(7). T h e  field streng th  of th e  required  array  will be

V i  = | 1 + s |2 = I 1 + 2z + z2 |. (8)
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T his array  consists of three elements w ith am plitudes proportional to 1, 
2, 1. If the elements of the original couplet are one-quarter wavelength 
ap a rt and 90° ou t of phase, the couplet is “ unidirectional” . T he space 
factor of such a couplet is depicted by  Curve A in Fig. 4. T he space 
factor of the trip le t represented by (8) is shown by  Curve B. In  the 
directions in which the couplet radiates half as much or a th ird  as much 
power as in the principal direction, the trip le t radiates correspondingly 
only a quarte r or a n in th  of the power rad ia ted  in the principal direction.

T he above considerations suggest a simple m ethod for suppressing 
subsidiary radiation  lobes. I t  is well known th a t in a uniform linear array5

Fig. 4—Space Factors—Curve A is the space factor of a unidirectional couplet in which 
I  =  X/4. Curve (B) represents the space factor of an array with amplitudes pro
portional to 1, 2, 1.

the difference in levels of the principal maxim um  of radiation  and the first 
subsidiary is substantially  independent of the num ber of elements, pro
vided this num ber is sufficiently large. T hus in the lim it, the  first sub
ordinate m axim um  is 13.5 decibels below the principal maximum. Con
sequently for the a rray  w ith its space factor equal to the  square of the 
space factor of the uniform  array , the lim iting difference in levels m ust 
be 26.9 decibels.

Since the uniform  array  is represented by

V i  =  I 1 +  z +  z2 +  h s’1“ 1 |, (9)

6 A “uniform” array is an array made up of sources of equal strength with a uniform 
progressive phase delay.



the  o ther a rray  is given by

=  | 1 +  z + ------ b z"-1 |2

=  | 1 +  2z +  3z2 +  b rcz"-1 +  (n -  l)z"

+  • ■ • +  2z2" -3 +  z2" -2
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(10)

T hus the  am plitudes of the  individual sources are proportional to  1, 2, 3, 
• • • n  — 1, n, n  — 1, • • • 3, 2, 1. F igure 5 depicts the effect of such 

“ triangu lar” am plitude distribution .
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Fig. 5—Space Factors—(A) is for a uniform array and (B) for an array with “ triangular” 
amplitude distribution.

E viden tly  we could raise (9) to  any  given power 

V #  =  | 1 +  z +  z2 +  ■ • • +  zn~ ( I D

T his process does no t change the  num ber of separate rad ia tion  lobes. The 
so-called “ binom ial” d is tribu tion  of am plitudes was first suggested by 
John  Stone Stone.6 H is scheme is a  special case of (11) if we le t n  =  2. 
F or the  effect of the  binom ial am plitude d istribu tion  see Fig. 5.

T he rela tive m erits of two form s for the  rad ia tion  in tensity  as given by 
(1) and  (3) can now be appraised  in the  ligh t of th e  foregoing examples. 
Using (1), we have for the  instan taneous rad ia tion  in tensity  of the uni
directional couplet

6U. S. Patents 1,643,323 and 1,715,433.
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\/i> ,- =  COS u t  +  COS t̂oi +  ^  cos 0 — ^  

=  cos «7 +  sinawi +  ^  cos 0^ .

( 1 2 )

By ju s t inspecting th is equation, we find no evidence for existence of a 
linear array  w ith a  space factor equal to  the  square of the space factor of 
the couplet. Still less obvious is the  m ethod of obtaining proper am plitude 
ratios.

Ar r a y s  o f  A rr a y s

T he foregoing m ethod of com position of space factors is in  reality  an 
analytical expression of geom etric construction of “ arrays of arrays” . 
Consider, for instance, a pair of equiphase sources of equal strengths

(A) (B)

(C)
Fig. 6

(Fig. 6A). T ake tw o such pairs as elements of an  array  of the same type
(Fig. 6B). T he middle sources add  up  to  a single source of strength  two.
If the  operation is repeated by  taking (B) as elem ents of (A) or by  taking 
(A) as elem ents of (B), then  (C) is obtained; the  am plitudes of (C) are 
proportional to  1, 3, 3, 1.

Each shift of a source to  the right through distance I  is represented 
analytically as m ultiplication by  2. An algebraic iden tity

(do +  fliz +  =  aoz +  Uiz2 +  «2Z3 (13)

is an  expression of an  obvious fact th a t each elem ent of an  array  is shifted 
through the same distance as the entire array . Similarly a  given change 
in the strength and the phase of the array  is achieved by  m aking the same 
change in all its  elements; this fac t is expressed by  the  iden tity

b(a0 +  aiz +  ajz2) =  ba0 +  baiZ +  b a (14)



In  general, if an  a rray  represented by

/(z )  =  a 0 +  0iz +  a2z2 +  • • • +  ffn-iz”-1 (15)

is taken  as the  elem ent of an  a rray  given by

F(z) =  b o  +  b \ Z  +  b 2z 2 +  • • • +  b m_ i z m~ l , (16)

then  the  resulting array  of arrays is represented by

/(z)F (z) =  b0f( z )  +  bizf(z) +  b2z2f ( z ) +  • • • +  bm- i z m~ 1f( z ) .  (17)

D e c o m p o s it io n  T h e o r e m

Consider now a pair of non-directive sources w ith strengths proportional 
to 1, —t] then

\/<f> =  | z — 1 1. (18)

Geom etrically, the  complex num ber z — t is represented by  a line draw n
from  po in t t to  po in t z (Fig. 7A). Accordingly, th e  radiation intensity
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(A) (B)

Fig. 7—The radiation intensity of a linear array is represented by the square of the product 
of the lines joining the null points of Vi> to a point z on the unit circle.

of the  pair of sources is represented by the distance between t arid z. If Vd* 
vanishes for some particu lar direction in space, i t  vanishes for all direc
tions m aking the same angle w ith the line of sources; these directions form 
a  cone of silence of the rad ia tion  system . Obviously, a  rad ia ting  couplet 
has a cone of silence if and only if the null po in t of y / ^  is in the range of z; 
in  particu lar, there can be no cone of silence unless the  null is on the un it 
circle.

B y the  fundam ental theorem  of algebra a polynom ial of degree {n — 1) 
has (n — 1) zeros (some of which m ay be m ultip le zeros) and  can be fac
tored in to  in  — 1) binom ials; thus

V<I> =  | (Z — tl){z  — t2) • • • (z tr-l)  |. (19)
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Each binom ial represents the  directive p a tte rn  of a pair of elements sepa
rated  by distance I. Hence

Theorem  I I I :  The space factor of a linear array of n apparent elements 
is the product of the space factors of (n — 1) virtual couplets with their null 
points at the zeros of \Z $ :  h , h  , • • • tn- 1 ■

Accordingly the radiation  in tensity  of an array  is equal to the square 
of the product of the distances from the null points of the  array  to th a t 
point 2 on the un it circle which corresponds to the chosen direction (Fig. 
7B). To each null point lying in the range of z, there corresponds one 
and only one cone of silence provided each null po in t is counted as m any 
tim es as z happens to pass it in describing the complete range.

Z = I

Fig. 8—The null points of a uniform linear array and the point z =  1 representing the 
direction of the greatest radiation divide the unit circle into equal parts. The 
hollow circles represent the null points and the solid circles the points of maximum 
radiation.

By summing the geom etric progression (9) the radiation  in tensity  of 
a uniform array  can be represented as follows

\/<î> =
zn -  1 
2 -  1

(20)

Hence the null points of such an array  are the n-th  roots of unity , ex
cluding z = l .  Since 2 is a unit complex num ber,7 any power of it is also 
a un it complex num ber. M oreover, each m ultiplication by z =  e*  rep
resents a displacem ent through an  arc of f  radians. Hence the n-th  roots

7 A unit complex number is a complex number whose absolute value is equal to unity.
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of u n ity  divide th e  circle in to  n  equal p a rts  (Fig. 8). A naly tically  we' 
have

2rmri
z — 1 =  0, tm =  e n , m  =  1, 2, 3, • • • n  — 1, 

, 2 imr $  2 rmr
* m ~  ’ c o : m ~  a i  ~

(2 1 )

W hen z — 1, V T  is evidently  a  principal m axim um . O ther maxima 
of sm aller m agnitude, the  so-called subordinate or subsidiary maxima,, 
occur approxim ately  half w ay between the  null points. T h e  general

Fig. 9—The field strength as a function of p  for n =  S. The principal maximum is 
reduced to unity.

behavior of the field strength  can readily  be understood if we follow z 
around the un it circle. W hen p lo tted  against p, 's/'t* has the  shape shown 
in Fig. 9. T h is is a  universal rad ia tion  characteristic which can be inter
preted  for any  particu lar spacing and phasing between the elem ents with 
the  aid of the curve for p  +  $  =  (}C cos 6  (Fig. 10).

I t  is easy to estim ate the relative level of the first subordinate m aximum. 
For a fairly large num ber of elem ents, the  difference in levels is deter
mined largely by  the distances of the m axim um  points from the nearest 
null points. T he distances are approxim ately equal to  the circular arcs 
joining the corresponding points. Since the arcs joining the  first sub
ord inate m axim um  w ith the  nearest null po ints are nearly  half as long as
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those for th e  principal m aximum, the  first subordinate m axim um  of the 
field strength  is abou t one-quarter of the principal m aximum. In  other 
words, the  subordinate m axim um  is approxim ately 12 decibels below the 
principal maximum.

A m ore accurate value for th is difference in levels can be obtained by  
first rew riting (20) in th e  form

n-ip
. /  íT S i l l

V i  = 2
7.: 2  —  9. 2

z* — ¡r* ■ ^
sm  2 

3ir

(22)

and then substitu ting  successively \p =  0 and \p =  —  , one for the principal
n

maximum and the  o ther for the  first subordinate. Accordingly we obtain

(23)
V<ï>(0) . 3x v =  n  sm —-

'3 t \  2n
n )

3 37i
If n  is large sin V  approxim ately equal to  —  and the field strength  

2 u  2 ft

ratio  becomes — =  4.71. This ratio  corresponds to the difference in

levels equal to  13.5 decibels.
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D i r e c t i v i t y  o f  A r r a y s

T he “ decom position theorem ” of the preceding section throw s consider
able light on d irective properties of arrays. T he num ber of elem ents in the 
a rray  is one greater th a n  the  num ber of v irtu a l couplets. H ence to  secure 
the  greatest possible d irec tiv ity  w ith  a given num ber of elem ents, the  v irtual 
couplets m ust be properly combined.

M
Fig. 11—The null points of several three-element arrays. The spacing between the 

elements is X/4 and the progressive phase delay is T / 4 (T equals period).

Fig. 12—Comparison of directivity of several three-element arrays. The spacing between 
the elements is X/4; the direction of principal radiation is 6 = 0°. Curve (A) 
refers to the uniform array, (B) to an array with nulls a t P  and B (see Fig. 11), 
and Curve (C) refers to an array with its nulls a t B and M.

For example, the  null po in ts of a  uniform  array  of three elem ents, one- 
q uarte r w avelength ap a rt, are a t  P  and  Q (Fig. 11). If d  =  -tt/2 ,  th e  range 
of z consists of the lower half of the  un it circle and principal rad ia tion  takes 
p lace in the  direction 6 = 0 .  E v idently , the v irtua l couplet w ith its  null
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a t Q is com paratively nondirective. Substitu ting  for this couplet another 
couplet w ith a null a t B  should im prove the d irectiv ity  of the array . T his 
is indeed the  case: In  Fig. 12, Curve A depicts directive properties of the 
uniform array  and Curve B depicts those of an  array  with its nulls a t  P  and 
B. T he field strength  of the second array  is

2 7ri I I 2 7ri 2iri i
V/(F =  I (z — e 3 )(z +  1) | =  I z +  (1 — e 3 )z — e 3 |

I ir  iT I (24)
=  [ 1 +  z a /3  e 6 +  z2e 3 | , z =  ^  (cos 0 — 1);

hence the am plitudes of the elements are proportional to 1, a/ 3, 1 and the 
to ta l progressive phase delay in  the direction of m axim um  ra d ia tio n 'is
7T , 7T 2t  ..
o +  t  =  -5- radians.
2 0 6

T he m inor lobe of the  second array  is substantially  smaller th an  th a t of 
the first array . T he m ajor lobes, however, are equally “ wide”8 although 
one lobe is som ewhat sharper than  the other. T he w idth of the m ajor lobe 
can be reduced a t the expense of increasing the  minor lobe by moving the 
null from P  to M  (Fig. 11). T he effect of th is change is shown by Curve 
C (Fig. 12). T he corresponding field strength  is9

a / $  =  | (z +  i){z +  1) | =  | z2 +  (1 +  i)z  +  i  |

I _1I  _ i l  (25)
=  | 1 — ¿(1 +  i)z  — iz  | =  | 1 +  \ / 2  e 4 z +  e 2 z |;

hence the am plitudes are proportional to 1, s / l ,  1 and the to ta l progressive

phase delay is ^  ^  ^  .

For arrays of six elements, one-quarter w avelength ap a rt and w ith $ =  
7t/ 2, we have Fig. 13. Curve A represents th e  directive characteristic of a 
uniform array, w ith its nulls as shown in Fig. 14A, and Curve B shows the 
directive properties of an  array  w ith its nulls equispaced on the lower half 
of the un it circle as shown in Fig. 14B.

If the spacing between the elem ents is i  =  A/8 and if the phase delay ft — 
x /2 , then the effect of d istribution  of the null points is even more pronounced 
(Figs. 15 and 16). T his tim e z is confined to the fourth  q uad ran t of the 
un it circle. In  Fig. 15, n  =  3; Curve A corresponds to an  array  w ith equal 
am plitudes in which case the nulls are equispaced on the com plete un it 
circle (Fig. 17A) and Curve B corresponds to  an  array  w ith its nulls equi-

8 If the “width” of a lobe is measured by the angle of the cone of silence enclosing the 
lobe. _

9 When transforming the expressions for h  is well to remember that the absolute 
value of a complex quantity does not change if this quantity is multiplied by a unit complex 
number.
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spaced w ith in  th e  range of z (Fig. 17B). In  Fig. 16, n  =  6; C urve A repre
sents an  a rray  w ith nulls d istribu ted  evenly on th e  com plete circle and 
C urve B represents an  a rray  w ith nulls evenly spaced in  th e  range of z.

\
\

* z ‘ |  -  I f j f l
I

\
\
\

B: -
( z - e T X z - e "  s ) ...........( z  + i )

V \ f  - H L \ /  2TTI \
Vi - e  5 A i - e "  5 ) ...............2

\
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\
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\ \

\
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\
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- \  
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e

Fig. 13—Directive properties of 2 six-element arrays with I  =  X/4. Curve (A) refers to 
a uniform array and Curve (B) refers to an array with its nulls equispaced in 
the range of z.

(A) (B)

Fig. 14—Disposition of null points for the arrays with directive characteristics as shown in 
Fig. 13.

If the  to ta l length  of an  array  is k ep t constan t b u t th e  num ber of ele
m ents is increased, th e  a rray  m aj' be m ade m ore directive; F igure 18 illus
tra te s  th is  po in t. T h is increase in d irec tiv ity  can be secured only if the  null 
po in ts of th e  a rray  are  properly  d istribu ted  w ithin th e  range of z; in Fig. 18



Fig. 15—Directive properties of three-element linear arrays with I  =  X/8. Curve (A) 
refers to a uniform array and Curve (B) to an array with its nulls equispaced 
in the range of s.

\ > A: VÏ" “ 6 I ' + Z + z2+ Z3 + + zs I
\\\ a = (Z- e-S ) f z - e ^ ) . . .  ( z - e ^ )

\\\ \
\\\

s

\ B\
\ a

\
i\\\ \

\\ \
\\ \

\\
” -----

Fig. 16—Directive properties of six-element linear arrays with (  =  X/8. Curve (A) 
refers to a u n i f o r m  array and Curve (B) to an array with its nulls equispaced 
in the range of s.

(A) (B)
Fig. 17—Disposition of nulls for the arrays whose directive properties are shown in Fig. 15.

95
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the null po in ts are evenly spaced in the  range of z, appropriate  to  each sep- 
ara tion  between the elements.

If th e  elem ents of the  a rray  are directive, the  null po ints should be dis
tr ib u ted  w ith due reference to  the  d irective p a tte rn  of the  elem ents in order 
th a t a  fu rthe r increase in d irec tiv ity  could be secured.

Fig. 18—Directive properties of linear arrays with total length equal to A/4. (A), n — 2,
I  =  A/4; (B), n = 3 , t  = A/8; (C), n = 5, t  =  A/16.

M u l t i - D i m e n s i o n a l  A r r a y s

T he sim plest m ethod of constructing m ulti-dim ensional arrays is to  take a 
linear array  as an  elem ent of another linear array . T h e  axis of the  second 
array  m ay be chosen to  m ake any  angle w ith  the  axis of th e  first array. 
In  th is w ay only a special class of m ulti-dim ensional arrays can be formed. 
A nalytical expressions for the  rad ia tion  intensities of m ore general arrays 
can be form ulated in term s of two or m ore complex variables. These 
variables, however, will no t be independent and a  given direction in space 
will be represented by  a group of rela ted  points, one po in t on each circle 
representing the particu lar complex variable. A t th is tim e we shall not be 
concerned w ith any  developm ents applicable to  such general m ulti-dim en
sional arrays.

A r r a y s  w i t h  P r e s c r i b e d  S p a c e  F a c t o r s

If the m inim um  separation between the elem ents does not exceed A/2, 
it is theoretically  possible to design a linear a rray  w ith a space factor given 
by an  a rb itra ry  function  f(\p) or F(0)  of direction of radiation . N atu ra lly  
the  num ber of required  elem ents will be usually  infinite; w ith a finite num ber 
of elem ents the space factor m ay only be approxim ate.
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Consider an  array  w ith an odd num ber of elements n  =  2m  +  1. Since 
the m odulus of z is un ity  the polynom ial (3) can be divided by  zm w ithout 
affecting s j <i>; thus

V 'f ’ =  I a0z~m +  aiz~ ”,+1 +  a2Z_m+2 +  • • •
(26)

+  O-rn +  Qm+lZ +  ' - +  (hmZm |.
L et us now assum e th a t the coefficients equid istan t from  the  ends of the 
polynomial are conjugate complex; then  the  polynom ial is real and we can 
drop the bars. T h u s setting

Om ~ A 0 , Om+k — A k iB k , k 0, — Qm-tk , (27)

where the .4 ’s and B ’s are real; we have

am+kzk +  am-kZ~k =  (Ak — +  (A k +  iB ^ e r* *
(28)

=  2Ak cos kip +  2Bk sin k\p.

Consequently, (26) becomes

m
V  $  =  2D tk{Ak cos k\p +  B k sin k\p), (29)

fc=0

where tk is the N eum ann num ber .10
If now we wish - s / t  to be a prescribed function f(\p) of the variable \p, 

we need only expand this function in a Fourier series

oo
\ / $  = f  (iff) =  2D ek(pk cos k\p +  qk sin kip), (30)

A r= 0

and approxim ate it w ith  any desired accuracy by  m eans of a finite series 
(29). Once the .4 ’s and B ’s are known, we calculate the a ’s from (27).

I t  m ust be rem em bered th a t the real independent variable is no t \p b u t 
6  and the directive p a tte rn  is to  be assigned as a function of 6 . Besides 
being dependent on d, ip is a function of the distance I  between the succes
sive elements of the array . Since d varies from  0° to 180°, the  range of tp 
is ip =  2/3/. T he function f(ip) is prescribed w ithin this range. On the 
other hand  the period of the expressions (29) and (30) is 27t. T his means 
th a t ilip >  2ir, th a t is if I  >  A/2, it is impossible to  obtain  the  desired direc
tive p a tte rn  w ith our scheme, because the p a tte rn  repeats itself autom atically  
asip increases or decreases by  2tt. B u t if i  <  A/2, we have a  considerable 
la titude in the design; outside the range of ip, we can s u p p le m e n t/^ )  by  an  
arb itra ry  function of ip. I t  is only when I  =  A/2 th a t there is a  unique class 
of linear arrays th a t will produce a directive p a tte rn  given by  the first 

io ej =  1, «  =  2 when k ^  0.
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(m  +  1) term s of (30). D r. T . C. F ry  of these L aboratories has suggested 
th a t  leaving I  undeterm ined and  fixing the num ber of elem ents, an  a rray  
could be designed which would have the best fit to  the prescribed p a tte rn . 
In  th is connection, the  “ b est f it” m eans the least m ean square deviation 
of the approxim ating p a tte rn  from  the  given p a tte rn .

If a / #  is given as a  function  F(9) of 6 , then  by  v irtu e  of th e  definition of 
we can w rite

F ( 6 ) =  F ( c o s - ' t + J ^ j  =  / ( * ) .  (31)

L e t us now consider a  simple exam ple for th e  sake of illustrating  the 
m ethod. Let/W O be defined by

/WO = 0, 0 < i  < 7T,

=  1, 7T <  \p <  2lT.

W e shall assum e th a t  the separation  betw een the  elem ents is one-half 
w avelength. T h is  m akes the  range of equal to  2n. I t  is also seen th a t 
regarded as a  function of 6 , /WO reta ins its  essential characteristic: being 
equal to  zero over one-half of the  range and  to  u n ity  over the  remaining 
half.

Expanding (32) in to  a  Fourier series we have

1 2 yp  sin (2 k — 1)^
IKY) =

Consequently

- - 1 ^ : 7 . (33)I  7r fc=i Ik  — 1

A q =  I ,  Ak =  0 if k  5̂  0;

Bk =  0, if k is even; (34)

Bk =  — , if k is odd.
KTT

Figure 19 shows several approxim ations to/W O by  m eans of a  finite num 
ber of elem ents. T h e  curve S m corresponds to  an  approxim ation by  the
finite series (29). I f  Sg is deem ed to  be a sufficiently good approxim ation
to  the  given directive p a tte rn , then
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T he to ta l length of th is array  is (n -  1) ^  =  2m  ^  =  9X. All elem ents
z z

except the  three central ones are separated  by one w avelength since the odd 
powers of z except z9 are missing.

E nd-O n  A r r a y s  w it h  E q u is p a c e d  N u l l  P o in ts

W e now pass to  a  m ore detailed  analysis of end-on arrays w ith null points 
equispaced on a  given circular arc.

For an  end-on array  $  =  ¡3Ü and

z =  el*, ip =  cos 6  — 1). (36)

The range of z begins a t  z =  1 and  extends clockwise to  a  po in t determ ined 
by  'P = —2(31. L e t n  — 1 null po ints be equispaced on an  arc of length \p 
as shown in Fig. 20; the  field streng th  is then

V i»  =  | (2 -  t)(z  -  ?) ■ ■ ■ (z -  tn x) | , 

T h is can be expressed as

t =  e (37)

V i »  =  2 7 , - 1 inKf + »V )

x s!n K* +%̂ a )" ■s!n \ if +
(38)
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T he angle of the  cone of silence enclosing the m ajor rad ia tion  lobe is 
determ ined from

/3i(cos 0i — 1) =  — ; (39)
n  — I

thus

1 “  c o s =  5 T = T p ' sin I  (»  -  l)<8<' (40)

If the arc f/ is equal to  the  range of z, then  (40) becomes

2 0i 1
1 -  cos 01 =   sin -  =  . . (41)

M 1 2 -y/ w — 1

In  th is case, the size of the first cone of silence is determ ined solely by the 
number of elements. On the  other hand, if f  =  2tr —lir /n , the nulls are 
equispaced on the u n it circle and we have an  ordinary uniform  array ; then

* _ 27r X . 0 i  /  X ,
1  _ cos s m  ( 4 2 )

T his tim e the size of the first cone of silence depends upon the  to ta l length 
L  = (n — V)( of the array  m easured in wavelengths.

W hen the num ber of elements in the  first case and  the to ta l length of the 
array  in the second are large, then  we have approxim ately

»" =  2 \  ± - r  (43)
y /  n  — 1

For a large n  the ratio  of the two cone angles is approxim ately

e[ . i l l (44)

For example, if i=  X/8, the angle of the m ajor lobe in the first case is one-half 
of th a t in the second case or one-quarter if we are to compare the solid angles.

Equispacing the null po ints in the range of z no t only m akes the m ajor 
lobe narrower b u t it also m akes it sharper. T hus a t  the po in t lying halfway 
between the po in t of m axim um  rad ia tion  and the first null point, the field 
strength  relative to  the principal m axim um  is
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For a q uarte r w avelength separation  between the  elem ents \p = it and  th is 
ra tio  is equal to

1 (46)
V 2  (n -  1)

so th a t  the  drop  in the  rad ia tion  in tensity  becomes [10 Logio (« — 1) +  3] 
decibels. On the  o ther hand, for a  long uniform  a rray  the corresponding 
drop is independent of n  and is equal to  4 decibels.

A nother consequence of equispacing the  null po in ts in the  range of z 
consists in  substan tia l suppression of subsidiary rad ia tion  lobes. T h e  first 
subordinate m axim um  is s ituated  approxim ately halfw ay betw een the first

o T
two null po ints where \p =  ——------ —- ; thus th e  field strength  there, relative

2{n — 1)
to  the  principal m axim um , is

\p . \p . 3\p . (2 n  — 5)\p
s in -77-------^sin ——-—- s i n - — t t  • • • sin v '

4 (n  -  1) 4 Q  -  1) 4(n  -  1)_________4 (n  -  1)
A 'P ■ 2\p 3\p . (n — 1 )\p

sin  7-n sin n  sm  —  ——r • • • sin  2 1
2  (n — 1) 2 (w — 1) 2 (n  — 1) 2 (n — 1)

F or a  q uarte r w avelength separation  th is field streng th  becomes

(47)

2 71—3
2 sm

v =   4(w -  1)
^  2n-

/Ö7 9—^  • (2w -  3 ) ’r

(48)
sin

4 (n — 1)

nr; rv • 2 ( n  — 3) n
-  1 )  s m

W hen n  is sufficiently large, we have approxim ately

X 4(w -  1) V 2  (n -  1) ^

and  the subsidiary m axim um  is [30 Logio {n — 1) +  5] decibels below the 
principal m axim um . E ach  tim e the  num ber of elem ents is doubled, the 
level of the subsidiary m axim um  is dim inished by  abou t 9 decibels. T hus 
an  a rray  of the type (37) w ith ip =  2(3t has very  sharp  d irective properties.
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In  order to find the relative am plitudes and phase deviations of the ele
m ents of the  array  represented by (37), we expand •%/<i> into a single poly
nomial as follows11

y / $  =  | (1 — t *z)(l — t 2z) • • • (1 — t n+Iz) |

(1 -  r " +1)(i -  Tn+2) • ■ ■1 + Z (-)*
fc=l

( i  -  r n+*) -
I

A(Ä+1)

( l  -  r ' ) ( i  -  r 2) . . .  ( l  -  r * )

n—1
(i“ T  -

n —1

n ~ )
n—k n—k

i + Z (—); _i i
4=1 (t 2 -  ¿2) ( r x -  t)

it 2 -  t 2 ) JEL ,A--------------------’ i 2 J_k
o r *

(50)

. (w — l)!/'
- 1 Sln  TSi 2(w — 1)

sin

1+Z (-)
k=l

(n  — k)\p
2  (n — 1) ikn* .
—   e 2 ( » - l )  k

sm

2(n  -  1)

2 (n -  1) 2 (n  -  1)

ase delay from  one an tenna 

and the  am plitudes are in the ratio

Hence the progressive phase delay from  one an tenna to the  next is equal to 
nip

. (n  — V)p ■ (n  — l)ip . in  — 2)\p
sm (A -ri sm ¿7-------A  sm

2 {n -  1) 2 in  -  1) 2 {n -  1)

sm
2 {n -  1)

sm

sin

sm sin 2*

in
2  {n -  1)

ip

2  {n -  1) 2 {n -  1)

1)^ . in  — 2)ip . {n — 3)ip
— sm ''-7 ( -  sm —--------

2 in  — 1) 2 in  — 1)
2 ip 3 ^

1.

(51)

■ Ü

2 (« -  1) Sm 2(»  -  1) “ “  2(» -  1)
sm

T he am plitudes of the elements equid istan t from  the ends of the a rray  are 
equal. In  the special case of an  end-on array  w ith nulls equispaced in the 
range of z, ip =  2/37 and  1) =  /37; hence the progressive phase delay from one

ae
antenna to  the  next is 7r —

n  — 1
While (50) serves well for finding the am plitude and phase d istribution in 

the individual elem ents of the array , another form  is m ore general for cal
culating the  directive properties. In  order to ob ta in  this form  we set

11 Chrystal’s Algebra, Vol. 2. p. 340, (1926).
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. (n  — \ ) p  . (n  — k)p
sm — 44 • • • sin v , r

h  =  i ,  -  * ,  i ,  =  — ł »  r D  2<”  T  D

S m 2 ( ^ I )  s l n 2 ( ^ T )  <52)

T “  *+ \  +  2 ( ^ 1 )  +

i  ( n —1) <p

divide th e  la st expression in  (50) by  e 2 and  com bine the  term s equi
d is tan t from  the  ends. T hus we ob ta in

V /<f> =  2 cos ^  +  2 p i cos
^ z

(53)
, 0 , (« — 5)<p

+  2 p 2 c o s  2^ -  +  • • • ,

where the  la st te rm  is 2p n _  cos ^  if w is even and  p n - i  if n  is odd.
2 Z 2

L et D  be the m axim um  value of \ / $ ;  th en  the  gain of the a rray  over a
single source is given by

n  1 AT  4ttZ>2 4 i \  ~r 2 D 2
G — 10 Logio — -------- =  10 Logio —--------------- decibels, (54)

J f  $dQ J 4> sisin 6  d6

where i2 is the solid angle and the in tegration  is extended over a  un it sphere- 
F or an  end-on array  w ith nulls equispaced in the  range of z, the maximum
rad ia tion  is in the  direction \p =  0. T h u s we shall have

D =  2 cos ~  1)<Po +  2p 1  cos ~  3)<p0 
^ 2

i r\. (n — 5)<po ,
+  2/»2 cos 1 ^— +  • •

where

(55)

<Po — fi t  +  - ^  . +  it. (56)«  — 1 '  '

A convenient expression for the  rad ia tion  in tensity  can be obtained from 
(50) by  tak ing  its norm

$  =  [ p a  +  p i e *  +  p 2e 2 i *  +  ■ ■ ■ +  ¿ « - t f « * - » * ]

• [pa +  Pie-"» +  • • ■ +  pn- ler-«»-«»-].
(57)



Since the set of coefficients p o , p i , p 2 • ■ ■ pn-i is sym m etric abou t the cen
ter, we find

4> =  2 p l  cos (re — \)tp - f  2 (papi +  pipo) cos (re — 2 )<p 

+  2 (pop2 +  pipi +  p 2po) cos (re — 3)<p 

+  2(pop3 +  P1 P2 +  P2P1  +  pspo) cos (re -  4)<p +  • • • (58)

+  2  ( p o p n —2 +  p l p n —3 +  p 2 p n - \  +  ’ '  ’ +  p n - 2 p 0 )  COS <p 

- f  (p O p n —1 +  p l p n —2 +  p 2 p n - 3 +  ' ‘ ' +  p n - l p o )  ■

Since
rT 1 r v°
I <f> sin 6  d9 = —p I $  dtp,

J0 p t  J
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(59)

2/>o sin (re — l)<p , 2 {pgp\ +  j ’l^o) sin (re — 2 )<p 
n  — 1 n  — 2

(60)

we can write

i tsin O d e - L

+  • • • +  (popn-l +  Plpn - 2  +  • • • +  Pn-lpo)<P I •
J<Pl

For an end-on array  w ith nulls equispaced in the range of z, (60) becomes

[ T s i n M .  -  2 p ( - Q j , i n ( „  -

J0 $ l\_  n  — 1 n  — 1

+  2( — )n~2(popi +  Pi Pa) sin (w _  2)jW cos (» ~  2)/K  +  . . .  (61)
n  — 2  n  — l

+  {.Popn-l +  Pi Pn-2 +  ' • ' +  /» n -l^ o W j •

Substituting in (54), we shall obtain  the gain of the array .
Similar expressions can be obtained for an  end-on array  in which the 

am plitudes of the individual elem ents are equal. T hus we have

$  =  i  +  ei('n~m  +  ■ ■ ■ +  +  1]
r e 2

. [1 +  e- >  +  e- « » +  . . .  +
(62)

=  — [2 cos (re — 1)^ +  4 cos (re — 2)p  
re2

+  6 cos (re — 3)^  +  • • • +  2 (re — 1) cos p  +  re],
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Fig. 21—The directive gain in decibels of a pair of sources with equal amplitudes. (A), 
the phase delay between the sources is 2uT/X; (B), the phase delay between the 
sources is ir — 2irI/\.

Fig. 22—The gain as a function of separation in wavelengths: n is the number of elements.
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where (cos 0 — 1). In  th is case D  =  1 and

sin 2(n — l)/3i . 2 sin 2 (n — 2)/3l 
— 1 n  — 2

(63)
, 3 sin 2(w — 3)/S^ . 

• ••  +     5— +  (« — !) sin 2/3i

W hen the  separation  between the elements is exactly an  integral num ber 
of quarte r wavelengths, (63) becomes

Figure 21 contrasts the  directive gain of a pair of sources of equal strength  
w ith the phase delay 2 ir t / \  (Curve A) w ith a directive gain of another pair 
of sources of equal strength b u t w ith the phase delay ir — 2 ir t / \  (Curve B). 
In  one case the directive gain diminishes w ith separation between the ele
m ents and in the other it increases. Figure 22 shows the directive gain of 
three-elem ent and four-elem ent end-on arrays w ith nulls equispaced in the 
range of z.

As the separation between the elements decreases, the directive gain of an 
end-on array  w ith nulls equispaced in the range of z increases b u t the rad ia
tion in tensity  per am pere-m eter decreases. T his circum stance would be of 
no im portance if we had perfect conductors a t  our disposal to make tran s
m itting and receiving an tennas; b u t in reality  parasitic losses in themselves 
cannot be removed and the efficiency of an  array  decreases, therefore, w ith 
the separation between the elements. T his decrease in efficiency will 
impose an  upper lim it on the overall gain th a t can be obtained w ith small 
an tenna arrays in spite of the fact th a t the directive gain could be made very 
large.

Likewise the band w idth diminishes as the distance between the elements 
decreases. T h is imposes another lim itation on arrays of this type.

(64)

and consequently the gain is

G =  10 Logio n. (65)



M em oria l to th e  C lassica l S ta tis tic s

By KARL K. DARROW

/ ^ \ N E  of the m ost elusive and  perplexing, hazy and  confusing of the parts  
of theoretical physics is th a t  which bears the nam e of “ statistical 

m echanics” .* On the principle th a t  a tree is to  be judged by  its fruits, th is 
m ust be ranked as high as the  tree which bore the golden apples of the 
Hesperides; for am ong its fru its are the M axwell-Boltzm ann distribution- 
law, the black-body rad iation  law, the  value of the chemical constant, the 
Ferm i distribution-law  for the electrons in m etals, the  a lternating  intensities 
in band-spectra—and indeed the tree m ight lay a  valid  claim  to the whole of 
quantum -theory . The singular thing is th a t such wonderful fru its should 
have grown from, or should have been grafted  upon, so badly-rooted a  tree. 
To change the m etaphor, one frequently  feels th a t  the superstructure is 
sustaining the foundations, and the prem ises are flowing from  the con
sequences, ra the r th an  the o ther way about. P erhaps anyone who feels 
th is way should be disqualified from w riting abou t the subject; b u t on the 
present occasion, the a ttem p t is going to be made.

S tatistical mechanics—hereinafter to  be called “ S .M .” a t  tim es for short— 
did n o t of course arise from  any desire to solve the problem s suggested above, 
which came late. I t  seems to  have sprung from  a ttem p ts  to  answer older 
questions, of which the  following m ay serve as an  example. Consider a  gas 
in a box, w ith an electric fan or som ething of the so rt fitted  inside to stir 
it up. The gas having been stirred  up, the fan is stopped, leaving it in a 
s ta te  of surging and whirling abou t w ithin the confines of the box. Very 
shortly, however, the  surging and  the whirling cease, the gas having passed 
of itself in to  a s ta te  of tranqu illity  and  uniformity-—uniform  density, uni
form pressure, uniform  tem perature. F rom  th is s ta te  it never departs, un
less stirred  up afresh. There is a  tendency of the gas to go of itself from the 
sta te  of surging into the sta te  of uniform ity, and  no tendency a t  all for it to 
go from  the  s ta te  of uniform ity back in to  the  s ta te  of surging. T his is very 
unlike the behavior of a  pendulum , which having fallen from one end of the 
arc of its sweep to  the m iddle thereof, m oves on to the opposite end, re
traces its p a th  and  returns to its first situation. W hy should the gas behave 
th a t  o ther way?

* I  acknowledge with gratitude the incentive given me by Smith College to explore 
this subject, by offering me the opportunity of giving a course on statistical and chemi
cal physics in the spring semester of 1942.
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F or an  answer to this question and others of the kind, S.M . offers the 
following sta tem ent:

B a s ic  T h e o r e m  o f  S t a t is t ic a l  M e c h a n ic s

.4 system  is more likely to be fou nd in  a state of greater probability than 
in  a state of lesser probability

I t  m ay be th a t no reader of these lines has ever seen the  basic theorem  of 
S.M. set fo rth  w ith such merciless candor, though in m any a  sober treatise 
there is an  elaborate sta tem en t which when analyzed tu rns ou t to  be ju st 
th is and nothing more. Of course it is a tautological statem ent, and has no 
value except insofar as i t  m ay help to  drive some contradictory  notion out 
of the studen t’s m ind or to  prepare th a t  m ind for some m eaning or other 
which is not y e t in the sta tem ent b u t m ay be added to  it later. Actually it 
can serve b o th  these offices.

To be expelled from  the m ind of the student is first of all the idea th a t 
S.M. is going to give him  a description of the way in which the gas proceeds 
from the  surging s ta te  to  the  uniform. F rom  an  astronom er he m ay 
learn the orbit of the moon from apogee to perigee. F rom  an  au thority  
on ballistics he m ay find the trajectory  of the bullet from the muzzle of the 
gun to  the  bu ll’s eye on the  target. F rom  a  railroad office he m ay get a 
tim etable showing the passage of the train  from mile to mile over the rails 
from Boston to  Chicago. All th is sort of thing is out of the range of 
statistical mechanics! If a railroad acted like a surging gas and its tim e
table were devised in  the  sp irit of S.M ., one would go to  the  office and be 
to ld  th a t  the trains were enormously more likely to  be in Boston th an  in 
Chicago or anywhere in  between. F rom  th is one would be expected to infer 
th a t a t  any  m om ent chosen a t  random  the chance of finding a tra in  anywhere 
along the line except in  Boston would be practically nil—unless indeed one 
got a tra in  and p u t it on the  rails a t  Springfield, and even this would be of 
little  use for getting  to Chicago, since a t every subsequent instan t the 
tra in  would alm ost certainly be in Boston. N o t a  very useful tim etable, 
and  no t a  very useful railroad!

S.M. thus s ta rts  off w ith a renunciation. I t  renounces the prospect of 
telling ju s t how the gas proceeds from the surging s ta te  to the uniform state. 
To th a t sm ooth unbroken sequence of tim es and places whereby the moon 
finds its w ay through the heavens and the bullet through the air and the 
tra in  along the  rails, there is no counterpart presented.

This of course is a serious m atter, for the smooth unbroken sequence is 
inseparably linked— or alm ost inseparably linked—with the notion of cause- 
and-effect, the notion of na tu ra l law, the notion of m an as a being who can 
foretell the future. M echanics harmonizes w ith these notions; for mech
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anics is the science which professes th a t, given the positions and  m om enta 
and the forces in a system  of particles a t 10 A .M . sharp, it can pred ic t the 
positions and m om enta of all the particles a t  11 A .M . and  every instan t in 
between and all through the endless future. S tatistical mechanics, for all 
the  im plications of its name, is nowhere nearly  so audacious.

Suppose the electric fan, or w hatever stirring-gjidget was employed, was 
stopped an  in stan t before 10 A.M . sharp. S.M. lim its itself to affirming 
th a t a t  11 A .M . the m ost probable s ta te  for the gas in  the container— the 
im m ensely m ost probable state , the alm ost-certain  s ta te— is the uniform 
state . I t  also says the same thing exactly for 10:15 A .M ., and for 10:01 
A .M ., and  even for 10 A .M . sharp. If a t  10 A.M . sharp the gas is in a state 
of wild and furious surging, S.M . does no t deny the fact, b u t sees no reason 
for revising its own affirmation. If a t  10:01 A .M . the gas is settling down 
b u t has no t yet quite reached the uniform  state , th a t again does no t deter 
S.M . from standing by its assertion. W henever a freak of chance or ac t of 
m an m ay have produced one of the sta tes which it calls im probable, S.M. 
ju st says “w ait, and you shall have the s ta te  which I  am  going to ta lk  abou t.” 
To further questions it can only say “ I  know m y lim its”— and th a t is w hat 
its basic theorem  says for it.

If now the negative aspect of the basic theorem  is sufficiently clear, we may 
address Ourselves to  the  task  of giving the theorem  a  positive m eaning. For 
th is there is b u t one w ay: the word “p robability” m ust be replaced with 
some word or phrase or m athem atical expression which does have a meaning. 
A fter th is is done we can of course restore the  w ord “p robability” as an 
equivalent for th a t other w ord or expression. The basic theorem  will then 
be tautological upon the surface only, for actually  it will have the  meaning 
conferred upon it by  the definition of its key-word.

Various m eanings have been offered for the key-word, by  various people 
who have been successful in getting useful results ou t of sta tistica l mechanics. 
U ntil 1924 the dom inant meaning was th a t imposed by  Gibbs and Boltz
m ann. F rom  this m eaning arises the form of S.M . which is called “ the classi
cal sta tistics” . (The word “ sta tistics” , by the  way, is a bad  b u t common 
abbreviation for “ statistical m echanics” .) This is the topic of the present 
article. In  1924 there was proposed a novel m eaning for the key-word, 
which led to results sometim es agreeing w ith, sometim es differing from, those 
a tta ined  by the classical statistics. W here the results of the two agreed, 
they agreed w ith experim ent also; where the results of the two disagreed, 
experim ent sustained the new one. T his event has left the classical sta tis
tics in a strange situation, in which one cannot exclude the possibility th a t 
all of its rem arkable achievem ent is due to  a  happy b u t deceptive chance. 
T he classical sta tistics m ay indeed be only a p ast episode in the h istory of 
scientific thought, and  it is for th is reason th a t  I  have given to the article the



MEMORIAL TO CLASSICAL STATISTICS 111

strange and sombre title  “ M emorial to the Classical S tatistics” . Y et even 
as a past episode, it is w orthy of rem em brance; its didactic value m ay y e t be 
great; and perhaps the hum an m ind m ay some day stretch  its powers to  the 
point of conceiving the classical and  the new sta tistics as aspects of a single 
whole, as it has lately  stretched itself to  the extent of uniting the wave- 
picture and the  corpuscular p icture of m atte r and of light.

T he M axw ell  Statistics

Since the m ain concern of S.M . is w ith the ‘‘m ost probable s ta te” , one 
sees th a t its  principal content m ust be m ade up  of assertions about th a t m ost 
probable sta te . M axwell m ade such an  assertion. H e w rote down a for
m ula for the  distribution-in-velocity of the  molecules of a gas. I t  is the 
form ula now called “the M axwell-Boltzmann distribution-law ” , which is so 
well known to the readers of th is journal th a t I  will no t bother to w rite it down 
until there is actual need for having it on the page. M axwell m ight have 
said b lun tly : “ This is the distribution  which I  will assume for the m ost 
probable s ta te” ; and having said so, left i t  a t  th a t. H e did no t leave it a t 
tha t, and presum ably he would have been dissatisfied so to  leave it, as most 
of us would be. Instead, he postu lated  a pair of a ttr ib u tes  for the m ost 
probable sta te , and showed th a t if these are the a ttr ib u tes , then  the d istri
bu tion  is according to th a t formula.

The a ttr ib u tes  which Maxwell postu lated  are “ isotropy” and “ independ
ence” .

The former is easy enough. One assumes th a t in the  m ost probable state , 
the distribution of velocities of the molecules is isotropic. N othing can 
usefully be added to  th is simple statem ent.

The la tte r is a little  harder to  grasp. Perhaps it can best be exhibited by 
describing a  couple of imagined cases for which i t  would no t be valid. Sup
pose for instance th a t all of the  molecules have the same speed—the same 
m agnitude of velocity, though their velocity-vectors be pointed in all 
directions. L e t th is common value of speed be denoted by  Tr, and let any 
direction chosen a t  random  be m ade the  axis of x  in an  ordinary coordinate- 
frame. If a molecule happened to  be travelling w ith such a velocity th a t 
the com ponent thereof along the  .v-axis, vx let us call it, was ju st equal to  V, 
then it would be a certain ty  th a t and v , , the y  and - com ponents of the 
velocity, were bo th  of them  zero. If  a molecule happened to  be travelling 
in such a w av th a t r- was zero, then either r s or v, or both  of them  would have 
to  be different from zero, and the square root of the sum of the squares of 
vy and v, would have to  be equal to  V. There would consequently be a 
correlation between the values of the three com ponents, and the  probable— 
nay  even th e  possible—values of any one of them  would be affected b y  those 
of the o ther two. If the molecules had  a uniform  distribution  of speeds up
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to a m axim um  value of V, there would still be a correlation of a similar 
sort, though no t so m arked a one: the higher the velocity-com ponent in the 
^-direction, the lower would the y  and the z com ponents be likely to be. 
One could imagine d istributions for which the higher the velocity-com ponent 
in the ^-direction, the higher would the y  and the 2 com ponents be likely 
to  be.

T he “assum ption of independence” is, th a t  in the m ost probable state 
there is no correlation a t  all. W hether the  x-com ponent of the velocity of a 
molecule is high or low is a detail which has no influence w hatever on the 
possible or the probable values of the  y  and the 2 com ponents. Low values 
of vy go ju s t as well and ju s t as abundan tly  w ith low values of vx as w ith high, 
and  reversely.

T he M axwell-Boltzm ann law, as I  said, is the distribution-law  which 
conforms to  bo th  the assum ption of iso tropy and the  assum ption of inde
pendence. So the question arises: do those two assum ptions have the 
quality  of p lausibility  and of convincingness, which m ake the average per
son say “ Surely these m ust be the  a ttr ib u tes  of the  m ost probable sta te  of a 
gas!” I  do no t know w hat result a  referendum  on th is question would give, 
b u t it is m y guess th a t m ost physicists would feel more satisfied w ith these 
th a n  they  would w ith the  M axwell-Boltzm ann distribu tion-law  if it were 
tossed out to  them  w ith the bare affirm ation “T his is assum ed to be the 
a t tr ib u te  of the  m ost probable s ta te” . Clearly th is is how M axwell felt, and 
there is no b e tte r guide th an  the in tu ition  of a  Maxwell.

The foregoing question is som ething else th an  the  question w hether the 
assum ptions, and the M axwell-Boltzm ann distribution-law  which follows 
from  them , are tru ly  the a ttr ib u tes  of the  m ost probable sta te . I t  is a strange 
historical fact th a t no t for m any years afte r the  prom ulgation  of th is famous 
law, and  no t till after bo th  of its sponsors were dead, was there any proper 
te s t of it. T he derivations of the law were exercises in ab s trac t and un
renum erated  thought. N evertheless experim ent— applied to therm ionic 
electrons, to  molecules of ordinary  gases, to therm al neutrons— came a t long 
last to  justify  M axwell. To any who m ay feel th a t the  assum ption of 
independence is in itself too reasonable to require any proof, I  disclose th a t 
in other forms of sta tistics th is assum ption is declared to be false, except as 
an  approxim ation.

T he “ M axwell s ta tis tic s” therefore consists in the m ain of the s ta tem en t:
The most probable state of a gas is that in  which isotropy and independence 

prevail among the velocity-vectors of the molecules.
W e now require some term inology and  some notation .
I  take for g ran ted  an  understanding  of the term s “ velocity-vector” and 

“ d istribution-in-velocity” , these being learned by physicists ou t of kinetic 
theory  if no t ou t of S.M . A velocity-vector m ay  be replaced by a po in t
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which serves ju st as well for all of its purposes and even be tte r for some. L et 
the velocity-components vx ,vy , and v2 be laid ou t along the axes of a C artesian 
coordinate-frame, and the vector for any  molecule be draw n from the origin: 
the point a t  its tip  is the po in t in question. P oin t and coordinate-fram e are 
said to be “ in velocity-space” . S tatistical mechanics prefers as a rule to 
deal wdth the m om enta of the molecules ra ther than  their velocities. This 
is for valid and powerful reasons, one of which is tha t the transition to the 
case of photons becomes much easier.1 In  the case of m aterial gases it 
makes no practical difference, since the m om entum  of a molecule is its 
velocity-vector multiplied by the mass of the molecule which is practically a 
constant, and every sta tem ent about the distribution-in-velocity can with 
the utm ost ease be translated  into a sta tem ent about the distribution-in- 
momentum and vice versa. The m om entum -vector m ay be replaced by  the 
point a t  its tip , having coordinates px , p y and pz in a coordinate-frame in 
“ momentum-space” . If we consider together with these the three co
ordinates x, y , z of the molecule in ordinary space, we m ay say th a t we are 
locating the molecule in six-dimensional space. I  have yet to meet someone 
who claims th a t he can visualize a six-dimensional space, and yet there is no 
doubt th a t the phrase fulfills a psychological need and has a practical value. 
The six-dimensional space of these particular six variables is called “ the 
/¿-space” .

I t  seems odd to bring in the /¿-space before considering by itself the three- 
dimensional “ ordinary” or “coordinate-space” in which the gas is located. 
Is there nothing to be said about the m ost probable d istribution of the 
molecules in the coordinate-space? Well, “ every schoolboy knows” th a t 
the sta te  to which a gas tends and in which it  remains is a  sta te  of uniform 
density. Maxwell, I  think, accepted this as one of the facts behind which 
one cannot, or does not, go. F or a complete sta tem ent of the Maxwell 
statistics I  therefore offer the following:

A gas is very much more likely to be in  its “most probable state” than in  any 
other. The most probable state is that in  which isotropy and independence pre
vail among the momentum-vectors, while the distribution in  coordinate-space is 
uniform.

So in the Maxwell statistics the distribution-in-m om entum  of the mole
cules is derived from assum ptions ostensibly more basic, while the distri- 
bution-in-ordinary-space is simply affirmed. If a theory could be devised in 
which both were derived from assum ptions apparently  more basic, one would 
be likely to feel th a t something had  been gained. Now this is a char
acteristic, and one of the principal virtues, of Boltzm ann’s theory known as 
the “Boltzm ann S tatistics” or as the “ Classical S tatistics” .

1 Another reason has to do with “Liouville’s theorem,” for which unfortunately I 
cannot make room without overloading this article.
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T h e  B o l t z m a n n  S t a t is t ic s

B oltzm ann invented  a w ay of appraising the  probab ility  of any  imagined 
s ta te  of a  gas, which has the  following very  rem arkable features:

(a) I t  gives so sharp a  definition to  th e  key-word “p robab ility” , th a t  no t 
only can the  s ta te  of m axim um  probability  be identified, b u t the  ratio  of 
th e  probabilities of any  two sta tes can be com puted.

(b) F or the  distribution-in-m om entum  of the molecules in the m ost 
probable sta te , i t  derives a  form ula identical w ith  th a t  which springs from 
th e  M axwell statistics. T his of course is w hy the form ula is know n as the 
M axw ell-Boltzm ann law.

(c) F or the  distribution-in-space of the  molecules in the  m ost probable 
sta te , i t  derives the  uniform  d istribu tion .

All th is does no t entail th a t  the B oltzm ann sta tis tics is necessarily right. 
I t  does, however, lead to  consequences, which it  is the  privilege and  the 
affair of experim ental physics to  verify  or to  reject.

I  can now w rite down a  phrase in to  which the B oltzm ann statistics, and 
equally well those which came la ter, can be fitted :

The probability o f a state is the number o f different ways in  which the state can 
be realized.

T his is ano ther of those oracular sayings which acquire a m eaning only 
afte r some m eaning is given to  the  key-word, which is th is case is ways. I  
could now rew rite the basic theorem  w ithout the w ord “p robab ility” , and 
so can the reader; b u t the only effect would be to  transfer the m ystery ou t of 
the  w ord “probab ility” and  in to  the  w ord “ w ay” . B oltzm ann, however, 
assigned a  m eaning to  the  la tte r  word. I t  is th is  m eaning which we now 
m ust strive to  realize.

F or th is purpose I  propose a gam e of which th e  outfit consists of a sack, 
an  enormous num ber N  of balls, and  a sm aller num ber M  of baskets. The 
gam e is p layed by  reaching in to  th e  sack, draw ing ou t th e  balls one after 
another, and  tossing them  in to  the  baskets. All of th e  balls feel precisely 
alike to the hand, so th a t  there is never the  least inclination to p u t one aside 
and pick up another as one’s hand  gropes around  in the sack. N evertheless 
when one looks a t  the  balls afte r they  have fallen in to  th e  baskets, one sees 
th a t  they  are nicely adorned w ith  the  in teger num bers running from  1 to  N . 
Incidentally  the  baskets also are num bered. I t  is th is num bering which 
gives p o in t to  the  game.

Someone or o ther—someone who m ight be designated as the  caller, after 
the  m an who calls the figures of a  square-dance—has prescribed a  sequence 
of M  num bers N i and AT2 and  M3 and so on to  N M, all of them  positive 
integers and to talling  up  to  N .  A  single inning of the gam e consists in 
draw ing all of the  balls ou t of th e  sack one afte r another, and  dropping the 
first N i  which come ou t in to  the  basket I, the  next M2 which emerge in to  the
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basket I I , and so on until every one of the balls is reposing in one or another 
basket. Now along comes the um pire w ith pencil and pen, and he w rites 
down on one sheet of his pad  of paper the num bers of all the balls which are 
in basket I, and on a second sheet the  num bers of all which are in I I , and so 
on until he has got an inventory of the contents of all of the baskets. The 
inventory does not state the order in  which the balls in  any basket were dropped 
into that basket. T h a t order is b lo tted  ou t and forgotten. The inventory 
states which balls are in  which baskets, and lets it go a t tha t.

This does not seem a very entertaining game, b u t en tertainm ent is not 
what it is for. The present question is: how m any different inventories can 
there be, consistent w ith th a t sequence of figures A7i , A72 , A73 , ■ ■ ■ N .v which 
the caller prescribed a t the start?

The answer is obtained in w hat m ust seem, to anyone m eeting for the 
first tim e such a question, a strangely devious way.

F irst we evaluate the whole num ber of different orders in which the balls 
can be drawn from the sack. This is ¿V-factorial or IV!; for the first ball to 
emerge m ay be any one of the N ,  and  the next m ay then be any one of the 
{N — 1) remaining, and the next m ay then be any one of the (A7 —2) rem ain
ing, and so on to the end.

If each order corresponded to a different inventory, N l  would be our 
answer. Clearly this is so, if and only if there are as m any baskets as balls 
and one ball in every basket. In  all other cases A7! is larger, and often 
colossally larger, than  the num ber which we seek. I t  is necessary' now to see 
th a t this great m ultitude of N ! different orders falls into groups composed of 
X  orders apiece, all of those in a  single group corresponding to  a single 
inventory—necessary to see this, and to  calculate X ; whereupon we shall 
find th a t X ,  the “ num ber of orders per inventory” , is the same for all of the 
inventories—so th a t the  num ber which we seek is N \  divided by this common 
value of X .

I t  seems to be helpful to th ink  of some one inventory, and of some one 
order which leads to th a t inventory. By a certain am ount of m ental effort, 
which varies from person to person, it can be seen th a t th is particular order 
is bu t one among iVi! A72! N 3l • • ■ N Ml different orders all leading to the 
very same inventory. F or th ink  of the N i  num bered balls which lie in the 
first of the baskets: there are A7!! different orders in which they could have 
come out of the  sack, and every one of these corresponds to the very same 
inventory. T hink next of the N 2 num bered balls which rest in the second 
basket: they m ight have come out of the sack in  N 2l different orders, w ithout 
changing the inventory. T hink  now of the contents of b o th  of these baskets 
a t once. E ach of the A72! orders in which the second basketful m ay come 
out of the sack m ay follow on any one of the A7!! orders in which it is possible 
for the first basketful to emerge. The product A î! A7‘2! is therefore the to ta l
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num ber of ways in which the first (N x +  N 2) of the balls m ight have come 
ou t of the sack w ithout changing the inventory.

The process of proof need no t be carried further. X  has been evaluated. 
I t  bears no earm ark of w hatever particu lar inventory  the studen t m ay have 
chosen to adop t a t  the beginning. I t  depends only upon the sequence of 
num bers N i , N 2 , ■ ■ ■ , N  M fixed by the caller, which sequence I  will hereafter 
term  a “ d istribu tion” .

T he num ber of inventories— or “ com plexions” , to use a  com m oner word— 
for the  d istribu tion  N \ ,  ■ • -, N M is therefore given by  the form ula,

W  = N \ / N x\ N 2\ ■■■ N m\ =  N \ / I I N i I  (1)

The theorem  to which we are advancing affirms th a t  th is num ber has its 
m axim um  value for the uniform  distribu tion— the d istribu tion  in which the 
caller assigns the same num ber of balls, N /M ,  to  each of th e  baskets.

The usual argum ent for th is s ta tem en t m ay be p u t as follows: L et us 
assum e the uniform  distribution , w ith A =  ( N / M )  balls in  each basket, and 
com pare its value of W  w ith th a t  of one of the  neighboring d istributions 
such as the  one in which there are (A  +  1) balls in  the  first of the  baskets, 
(A  — 1) in the second and  A  in each of the  rest. I t  is no t even necessary 
to get ou t a  pencil and  paper to  see th a t W  for the la tte r  is less th an  W  for 
the former, being in fac t ju s t A /( A  +  1) tim es as great. T he same is 
evidently true for disarrangem ents of the  uniform  d istribu tion  which involve 
more th an  two baskets and more th an  one ball per basket. T he conclusion 
is clinched by  the obvious fac t th a t  when all of the balls are in any  one bas
ket, W  has its least possible value, viz. un ity . (To un ite  th is  form ally with 
the previous statem ents, one m ust follow the m athem aticians’ practice of 
using a symbol 0! or “zero-factorial” and giving it the value un ity ).

W e shall have to play  this no t so very  en tertain ing gam e on several oc
casions in S.M ., altering the m eaning of the balls and the m eaning of the 
baskets from  one occasion to the  next. T he reader has probably  guessed 
th a t the  balls stand  for the molecules. The guess is righ t in  the  classical 
statistics, wrong in the newer forms. To get a t  the m eaning of the  baskets, 
suppose the  gas contained in a box of volum e V, the  in terio r of which is 
divided up  by  im palpable coordinate-planes in to  com partm ents or cells all 
of the same volum e Vo ■ The baskets stand  for the  cells.

Now we have the theorem  th a t  W  is greatest for the  uniform  distribu tion  
of the  balls in the  baskets, and the assertion th a t  the  m ost probable sta te  
of a gas is the s ta te  of uniform  density , all ready to be fitted  together. The 
process of fitting-together is of the  sim plest. W  is christened the  “prob
ab ility ” of the s ta te  described by  the  “ d istribu tion” N x , N 2 , • ■ • N M , the 
quan tities N i  now standing for the num bers of molecules in the various cells. 
N o t only is the s ta te  of uniform ity the m ost probable one by  th is definition,
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b u t so long as the number of molecules N  is m any times as great as the number of 
compartments M —a condition easy to realize— those d istributions which are 
markedly far from uniform have probabilities which are fantastically  smaller 
than  the value of W  for the uniform  state.

The Boltzm ann statistics manages thus to derive the assertion aforesaid— 
the assertion th a t the uniform distribution in ordinary space is of all the 
m ost probable—from a principle which (a t least in appearance) is more fun
dam ental. I t  has indeed a couple of bothersom e points—more than  a couple 
perhaps, bu t there are two in particu lar which the newer statistics will a t 
tem pt to assuage. One of these is the size to be assigned to the cells V 0 ; bu t 
we are borrowing trouble to th ink  too much of th a t now, since whatever 
choice be m ade so long as N / M  be large will no t affect the achievement ju st 
cited. The other is, th a t one would much rather th ink  of the molecules of a 
gas (of a single chemical kind) as being alike absolutely, than  as being dis
tinguished one from another by a m ysterious som ething-or-other represented 
in this theory by num bers pain ted  on balls. In  the Boltzm ann statistics, 
however, the num bers m ust stay  on the balls.

We go over into the m omentum-space, setting up a coordinate-frame and 
representing the molecules by dots, the coordinates of which are the momen- 
tum-components px, py, pz of the molecules in question. To each position of 
a dot corresponds an energy-value, equal to (1 /2m) (pi +  p i +  pi)', we will 
call it E. E  vanishes a t  the origin, and has a constant value over any spheri
cal surface centered a t the origin. To any distribution  of the dots will cor
respond a specific value for the to ta l energy of the gas. F or th is we need a 
symbol different from £ ;  and as we shall have a good deal to do w ith therm o
dynamics later on, I  choose the therm odynam ical symbol U. The average 
energy of the molecules of the gas will then be U /N , to be denoted by U.

The entry  of E  and U into the situation is of the first importance. I t  is in 
fact all th a t will save us from the highly unw anted conclusion th a t the most 
probable distribution in the m omentum-space is the uniform one, ju st as it 
was in the coordinate-space. To see why it  makes so great a difference is 
not altogether easy. I  th ink  th a t the reflections which follow m ay give an 
inkling of the reason.

The momentum-space m ust be taken either as infinite or as finite. If we 
take it as infinite and dem and a d istribution of uniform  density, then the 
density goes to zero and a t the same tim e the energies of the molecules go to 
infinity, producing an  impossible situation. L et us then take it  as finite, 
blocking off all of the p arts  of it which lie beyond a certain sphere centered 
a t the origin. Assume a uniform distribution  w ithin the sphere. This will 
correspond to a certain value of U. (The student m ay suppose, if it makes 
him happier, th a t the [/-value was preassigned and the radius of the “ certain 
sphere” chosen accordingly.) The TT-value of this d istribu tion  will surely
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be greater th an  th a t  for any non-uniform  distribution, w hether of the  same 
U  or of a different U, confined w ithin the  sphere. However, by  blocking off 
the  whole of the  m om entum -space beyond the  sphere, we have b arred  a 
whole lo t of d istribu tions corresponding to  the  same U and  having some of 
the ir do ts beyond the  sphere. By no m eans have we proved th a t  the  W - 
value for the  uniform  d istribu tion  w ithin the  sphere is greater th an  th a t  for 
any  and  all of the barred  distributions. Now if we can agree th a t the block
ing-off of p a r t  of the m om entum -space is a silly th ing  to  do and unacceptable 
to  N atu re , the  argum ent for the uniform  d istribu tion  is spoiled, and we have 
to  look for a  new idea.

A t th is po in t i t  seems best to go through the m athem atical process for 
finding the d istribu tion  of greatest W  in the  coordinate-space and the 
m om entum -space, ju s t as th a t process is presented in the  textbooks.

W e re tu rn  to  equation  (1) and  m ake it  a  m anageable one by  having re
course to  th a t godsend of s ta tistica l mechanics, th e  “ Stirling approxim a
tio n ” , which m ay be w ritten  thus:

In N \ =  A  In A  — A  +  In V ^ x A  (2)

T his is valid  only for large values of A , though w riters on S.M . never seem 
to rem em ber how large the  values m ust be. F or still larger values of A  we 
can drop off the last two term s, arriving a t  a  sort of super-Stirling approxim a
tion  which however itself is com monly called the S tirling approxim ation:

In A ! =  A  In A  (3)

P u ttin g  (3) into (1), we find:

In W  =  A  In A  — 2  N> In A* (4)

Defining some quantities Wi by  the  equations A7, =  N w i , we m ake th is over 
in to :

In W  =  — A  2  Wi In wt- (5)

having availed ourselves of the  obvious fac t th a t  2w £ is equal to  un ity .
W e m ight now convert th is in to  an  equation  for W , b u t th is would be a 

w aste of tim e and  energy, since whenever W  has a  m axim um  so also will
In W . W ith  In W , therefore, we operate from  now on. M aking small varia
tions in the quan tities A ,-, and  m aking therefore sm all variations— call them  
8 wt— in the quan tities te>£, we find in  first approxim ation for the ensuing 
change in In W ,

8  In W  =  — A  2  (1 +  In wt)  8  (6)



MEMORIAL TO CLASSICAL STATISTICS 119

Now we are restricting ourselves to  variations in the quantities N t which 
leave unchanged the to ta l num ber of molecules in the cells, or of balls in the 
baskets—to variations, therefore, for which

2  N i =  N  =  constant, 2  8  =  0  (7)

This restriction being introduced into (6), 5 In W  proceeds to vanish i f  and only 
i f  Wi has the same value for all o f the cells. Now, the vanishm ent of 5 In W  is 
a necessary condition for having a maximum of W  a t the situation in ques
tion. I  do not refer to it as a  sufficient condition, because it adm its of a 
minimum or of w hat is technically known as a “ sta tionary” value of W  in the 
situation in question. However it has already been shown, w ithout the aid 
of the Stirling approxim ation, th a t the expression to which we are approxi
mating is greater for the uniform  distribution  th an  for the neighboring non- 
uniform ones. I t  m ay therefore be accepted th a t here we have a m axim um  
of W  for the uniform  distribution, and have reached the old result in a new 
way; an achievement nearly useless, were it  no t a prelude to the perform ance 
in momentum-space.

I  continue to use the symbols W  and N  and Ni and wt , b u t now w ith ref
erence to the d istribution of the representative dots in momentum-space. 
A new symbol, E ; , shall signify the energy of a molecule in the ¿th cell of the 
momentum-space. W e wish a t all costs to avoid the conclusion th a t the 
stable distribution in the m om entum -space is the uniform one. Boltzm ann 
managed to avoid it, and his was the following way:

L et us write, for the num ber of molecules in the ¿th cell, the expression:

Nwi = NA exp {—B E ,)  (8)

and insert it into (6). W e shall find:

5 In W =  — N  2  (1 +  ]nA -  BE,) Sws . (9)

Of the three term s on the right, two vanish for all variations in which the 
to ta l num ber of molecules remains the same. The th ird  does no t—b u t it 
will vanish for a restricted class of these variations, to wit, those and those 
only for which the to ta l energy of all the molecules remains the same; for 
NSWiEt is precisely th a t to ta l energy.

Some writers a t  this po in t ask the studen t to  imagine a  gas in a container 
being completely cut off from energy-interchange w ith the container-walls 
and w ith the whole of the outside world, and therefore being lim ited to the 
particular ¿/-value w ith which it s ta rted  out. O thers im port the word “ tem 
perature” which I  am desperately (and vainly) try ing to keep out un til I  am 
ready to bring it formally into the discourse, and aver th a t the gas is nearly 
or quite so lim ited if the walls of the container have the same tem perature as 
the gas itself. The student m ay take his choice, b u t m ust suppose th a t
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under such conditions N a tu re  rejects th a t d istribution  which so to  speak is 
“ stable aga inst” every conceivable variation, and elects th a t peculiar d istri
b u tion  w hich is stable no t against any conceivable varia tion  b u t only against 
the  possible ones. P erhaps th is is because the  uniform  d istribu tion  would 
entail the consequences m entioned on page 117, or perhaps there is no sense 
in saying th a t i t  is “ because” of th is or “because” of th a t. Anyhow, the 
peculiar d istribu tion  is the  one which the  d a ta  sustain.

However I  have no t really defined the peculiar d istribu tion  as yet, having 
merely throw n the symbols A  and B  into equation  (8) as though they  stood 
for com pletely disposable constants. I t  can readily  be seen th a t  a t  the 
m ost there can be b u t one disposable constan t, for A  and  B  in terlinked by 
the  obvious eq u a tio n :

2  Wi =  A  2  exp ( —B E i) =  1 (10)

B u t even B  is n o t disposable, if the  to ta l energy U  and  the  average energy 
per molecule U  are preassigned; for there is ano ther obvious equation:

U =  2  EiWi =  A  2  lyexp  (— B E i )  (11)

W h a t w ith  equations (10) and  (11), there is no longer any th ing  disposable 
abou t the constan ts A  and  B. T he peculiar d istribu tion  in the m om entum - 
space is com pletely defined. I t  is the  M axw ell-Boltzm ann distribution-law  
obtained from the M axwell statistics, and som etim es know n as the “ canoni
cal”  d istribution.

To sum m arize now the  B oltzm ann sta tistics as on page 113 the  Maxwell 
sta tistics was sum m arized:

A  gas is more likely to be found  in  its most probable state than in  any other. 
The probability o f a state is found  by im agining it as a distribution of numbered 
molecules among cells, in  the coordinate-space and in  the momentum-space. 
That of any distribution is measured by the number o f inventories compatible 
therewith. B y  this criterion the most probable distribution in  coordinate-space 
is the uniform  one, and by this criterion carefully hedged about, the most probable 
distribution in  momentum-space is the M axwell-Boltzmann or canonical one. 
I t  is necessary to liken molecules of a single kind to numbered balls, differing in  
no way except the numbering.

T his po in t was reached by sta tistica l m echanics abou t fifty years ago. 
H ad  it  not been for P lanck’s wish and tenacious will to  explain the  black- 
body radiation-law , it m ight have been the  stopping-point.

A H e l p f u l  a n d  T r o u b l e s o m e  C o in c id e n c e  b e t w e e n  T w o  

D i f f e r e n t  Q u a n t i t i e s

L et us re tu rn  to the gam e w ith the sack, the balls and the basket, played 
in the m anner which led to  good results when applied to  the  molecules in  the 
coordinate-space.
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The m ost probable d istribution is the one evoked by the caller, when he 
calls for an  equal num ber of balls in every basket. If there are N  balls and 
M  baskets, this m eans N /M  balls to each basket, and a maxim um  num ber of 
inventories which I  will call ITmax- Looking back to equation (1), we see 
th a t W max is a fraction the num erator of which is TV-factorial, while the. de
nom inator is ( N /M )-factorial raised to the power M . T aking logarithm s 
and using the super-Stirling approxim ation, we find:

In ITmax =  N  In M  (12)

The logarithm  of the probability  of the m ost probable d istribution (of num 
bered balls in num bered baskets, or molecules in equal cells of coordinate- 
space) is equal to the logarithm  of the num ber of baskets (cells), multiplied 
by the num ber of balls (molecules).

N ext suppose the caller, in a fit of uncontrollable zest for the game, calling 
in succession every one of the conceivable distributions. W hat is the to ta l 
number of inventories com patible w ith all of them  together? To sum over 
every conceivable expression of the type of (1) seems a hopeless assignment, 
bu t there is a short-cut to  the result.

Fix a particular order for the drawing of the balls from the sacks— it m ay 
as well be the very order of their numbering. The first of the balls to be 
drawn m ay be tossed into any one of the baskets, giving M  d istinct “possibil
ities” . The second m ay be tossed into any one of the baskets, the same or 
another, giving in conjunction w ith the fate of the first M 2 different possibil
ities. The th ird  m ay be tossed—b u t we leap to the conclusion. There 
are M N possibilities altogether, and these are the inventories. Thus the to ta l 
number of inventories consistent w ith all of the distributions, which I  will 
call W tot , is a num ber whereof the logarithm  is,

In Wtot =  N  In M  (13)

B ut this is the same as the expression for In fTmax!
The meaning of this strange coincidence can only be, th a t when N  and 

N /M  are both so great th a t the super-Stirling approxim ation is a good one, 
then the logarithm of the num ber of inventories belonging to the m ost prob
able distribution is nearly as great as the logarithm of the to ta l num ber of 
inventories belonging to all of the distributions p u t together—so nearly as 
great, th a t either logarithm is a good approxim ation to the other.

In  the foregoing very im portant paragraph, I  have italicized the word 
“logarithm ” because if it were left out the sta tem ent would become a false 
one. The sta tem ent is not true if applied to the num bers themselves. Wtot 
is manyfold greater than  TTmax, and the ratio  between the two actually in
creases w ith rising N . So does the difference between ln IT tot and In IFmax 
increase w ith risingN ,b u t  not so fast as either by  itself; wherefore the tru th



of the sta tem en t. The studen t m ay convince himself of th is by  applying 
the  second-degree Stirling approxim ation (equation 2)2.

1 have called th is bo th  a helpful and a troublesom e coincidence. I t  m ay 
be deemed a helpful one, because the expression for the to ta l num ber of in
ventories is easier to derive and easier to rem em ber th an  the expression for 
the num ber of inventories belonging to the m ost probable distribution . If 
therefore one has good ground for believing (as here is the case) th a t the 
logarithm s of the two are approxim ately equal, one m ay serenely remember 
and use In W tot instead of In ITmax . T he troublesom e feature is, th a t some 
expositors speak of In W tot th roughout and  never allude to In TFmax , thus 
confusing the studen t to an  ex tent which (if m y experience is typical) m ay 
well be serious. I  shall la ter dwell on the fac t th a t In W  for any distribution 
is regarded as a  m easure of the entropy of th a t distribution , and In IFmax 
therefore as a m easure of the en tropy  of the m ost probable distribution. 
Some people imply th a t In W t01 is the true m easure of the  entropy of the gas, 
instead of being an approxim ation to it. They com m it no num erical error 
in so doing, b u t they blo t ou t the m ost rem arkable quality  of the Boltzm ann 
statistics, to  wit, the clear distinction which it m akes between the m ost prob
able d istribution  and those of lesser probability . T h is m istake is more 
commonly m ade in trea ting  the newer statistics. H ere I  am  no t so sure 
th a t  it is a  m istake, b u t I  th in k  so.

M ea n in g s  o f  t h e  W ord “ St a t e ”

T he word “ s ta te” , which tu rns up continually in this essay, is one of those 
words of which a proper definition is hard ly  less than  a full description of the 
theory which employs it. W hen the theory changes so also does the meaning 
of the word. In  the w elter of sta tistica l theories, the  word “ s ta te ” has 
several different meanings. In  therm odynam ics also it has more th an  one 
meaning, b u t one is preem inent.

Therm odynam ics usually concerns itself w ith gases (not to speak of li
quids and solids) which are in w hat I earlier called a “ uniform ” sta te : uniform 
density, uniform  pressure, uniform  tem perature. F or a gas of a single kind 
(“k ind” being a word which it is the business of chem istry to define) it is a 
fac t of experience th a t any two of these three variables suffice to define the 
th ird  and also all of the o ther variables which therm odynam ics cares about. 
Of these others there are two in particu la r which I m ention a t  this point, the

2 Actually if one goes from the “most probable state” IV; =  const. = N /M  to the 
“next most probable” in which one ball is taken out of one of the baskets and put into 
another, the change in W  is in the ratio of (N/M)  to ( N/M)  +  1, which is practically 
no change at all when N / M  is so high as is commonly taken. This shows that the state
ment could not be true if it were made about the numbers lTmax and lTtot rather than 
about the logarithms thereof. I t  certainly looks as though the statement could not be 
true even when made of the logarithms, but this is evidently one of the cases where 
“intuition” is a fallible guide.
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energy and the entropy. T his m akes five altogether, and any two of the 
five suffice to determ ine the state ,— T H E  STA TE, the uniform  state , the 
only one about which therm odynam ics really knows or cares. W hen asked 
about w hat I  earlier called “ a  surging s ta te ” , therm odynam ics m utters 
something to the effect th a t the entropy of such a sta te  is smaller than  th a t 
of T H E  STATE, and then pu ts an  end to the conversation by refusing to 
commit itself further. Therm odynam ics takes no cognizance of the molecu
lar structure of m atte r. A gas m ight be a continuum , for all th a t  it knows 
or cares.

Statistical mechanics talks about a m ental image of the gas, in the form of 
a flock of dots in the coordinate-space and another flock of dots in the mo- 
mentum-space, or one m ay call them  a single flock of dots in the ¿¿-space. In  
Boltzmann statistics, the “ s ta te ” of this image is w hat I  have been calling 
the “d istribution” . The m ost probable s ta te  of the image— to wit, the  one 
with the greatest num ber of inventories or complexions— is identified w ith 
TH E STATE of therm odynam ics. All of the rest belong to the category of 
which therm odynam ics would say, th a t the entropy is smaller th an  it is for 
TH E STATE. B u t since according to S.M. they belong to a category for 
which the probability  is smaller than  it is for T H E  STA TE, one sees a  con
nection between entropy of the gas and probability  of the image beginning 
to take shape.

Now it is tim e to m ake a formal introduction of the concepts of entropy 
and tem perature— the la tte r word having already sneaked into th is article 
two or three tim es in spite of all m y efforts to keep it out.

F o r m a l  E n t r a n c e  o f  E n t r o p y  a n d  T e m p e r a t u r e

For a substance, m eaning now a gas, of a single kind, entropy and tem pera
ture are defined by  the equation,

dU  =  T dS  -  P d V  (14)

P  stands for pressure, V  for volume, and 5  for entropy. For energy I  use 
the symbol U  already em ployed in th a t sense—b u t notice th a t formerly it 
stood for the kinetic energy of the molecules! To use the same symbol in 
both senses implies th a t the energy of the gas is entirely the kinetic energy 
(of translatory  m otion) of the molecules. This identification turns ou t to  be 
valid for the “m onatom ic” gases, which are luckily num erous and well- 
studied. To these we confine ourselves throughout this article. T  stands 
for the tem perature called absolute; th is being the only kind of tem perature 
which will ever figure in th is article, the adjective henceforth is discarded. 
D ensity was the fifth variable in my list given above, b u t volume is usually 
preferred to it. To m ake them  equally useful, the quan tity  of gas m ust be 
sta ted ; here it will be taken as one gramme-molecule.
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I t  is evident th a t  th e  equation  is a com parison betw een tw o states. Do 
n o t go as tray  by  supposing th a t these are like tw o of the  s ta tes  which we 
have been considering, having the sam e U  and  V  and  d i f f e r i n g  in  th e  num ber 
of inventories ! These on the  con trary  are two examples of T H E  STA TE— 
of the  therm odynam ic sta te , of th e  m ost probable s ta te— of a  gas, differing 
in  th e  values of some a t  least am ong the  five variables. T he quantities dU  
and  d S  and  d V  are the  differences betw een th e  L -values and  th e  .S-values and 
th e  F-values of the two sta tes, while P  and  T  m ay  be taken  as referring to 
either, th e  smallness of the  difference betw een th e  two sta tes— implied by  
the  differential no ta tion—perm itting  of this.

I t  is also evident from  m y  wording th a t  the  one equation  is being used 
to  define the  two q u an titie s  5  an d  T . T h is is unluckily  no verbal slip, 
nor is it a tem porary  shortcu t to  be replaced by  a royal road as the a r
gum ent proceeds. The m eanings of en tropy  and  tem perature are so 
coiled up  together in  therm odynam ics, th a t  i t  is impossible to  tak e  them  
ap a rt unm utilated . One cannot seize either by  storm  an d  th en  invest the 
other, a t  least n o t w ithou t the  aid of s ta tistica l theory : one has to  surround 
them  b o th  in a single cam paign. As E ddington  has vigorously w ritten , this 
is a  com mon th ing  in physics. E lectric force is defined as th a t  which acts on 
electric charge, electric charge as th a t  w hich is ac ted  upon by  electric force, 
and so on. . . . Com mon as it m ay be, it is p robab ly  nowhere else so h ar
assing as in therm odynam ics. There are th ree w ays of in trud ing  upon the 
vicious circle.

First, to  apprehend bo th  concepts in a single m en ta l ac t. T his is the 
counsel of perfection.

Second, to  use a  tem porary  definition of tem perature , w ith  th e  prom ise of 
confirming or correcting it  la ter. T he ideal-gas therm om eter is the  device 
used for this purpose in therm odynam ics. A nyone trained  in th is way is 
likely to th ink  for the rest of his life of tem perature as the p rim ary  concept, 
en tropy  as a derived one— as indeed was the  case, when therm odynam ics 
started .

Third, to  produce a  theory which m akes a pronouncem ent as to  the  nature 
of entropy.

T h is last is the  m ajor office of sta tistica l m echanics. To those who accept 
it, en tropy  becomes the  primary- concept and  tem peratu re  th e  derived one, 
and  b o th  are visualized by  th e  aid  of th e  key-word “p ro b ab ility ”  of the basic 
theorem , in te rp re ted  in some p articu la r way.

O l d  S t a t i s t i c a l  T h e o r y  o p  E n t r o p y

1n the classical statistics, the entropy o f a distribution is  considered to be the 
logarithm of the number o f inventories or complexions compatible with that dis-
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tributian, multiplied by a constant (always denoted by k) which is adjusted to 
bring about agreement with experiment'.

entropy S  =  k In W . (15)

To illustrate this doctrine and to evaluate k, I  now take the student back 
to the coordinate-space, where a box of volume V  populated with N  mole
cules is divided m entally into M  equal cells of volume V 0 , and the m ost 
probable d istribution is characterized by the value N  In M  for the logarithm  
of the probability. The entropy— or no, no t the entire entropy of the gas, 
bu t merely w hat I  will call “ the contribution of the volum e of the en tropy” 
and denote by  S c—is then supposed to be kN  In M , or:

S c =  k N  In V  -  k N  In V 0 (16)

Reverting to the equation (14) in which the  definitions of entropy and 
tem perature were tangled up together, and rearranging it, we get:

T dS  =  dU  +  p d V  (17)

Now, an “ ideal gas” is defined by  two a ttribu tes . F irst, there exists between 
its pressure and its volume and its tem perature the relation P  =  a T /V ,  
wherein a stands for a constant. Second, its energy U depends upon the 
tem perature only, and  not upon any o ther variable, in particu lar no t upon 
the volume. Therefore we m ay w rite:

T dS  = Cvd T  +  (a T /V )d V  (18)

C„ here standing for som ething of which we need only know th a t i t  is a 
function of T  alone. In tegrating , we find:

5  =  R  In V  +  (Junction o f temperature) +  constant (19)

and lo ! it is seen th a t the  dependence of entropy on volum e is precisely of 
the sort which the theory is fitted  to explain.

The next step is to ad ju st the value of the constan t k. The constan t a 
aforesaid is proportional to  the  am ount of gas in the box, proportional there
fore to N :  it is the constant ratio  of a to N  to which k m ust be equated. For 
the am ount of gas let us choose one gramme-molecule. Then a assumes the 
value always symbolized by  R  and called the “gas-constant” , and N  assumes 
the value usually symbolized by A7o and called the “Avogadro num ber” . 
Both of these are known from experiment, and k is fixed by  the equation

k = R / N 0 (20)

The constant k  is nam ed in B oltzm ann’s honor, though in his tim e its value 
was not known because the value of N 0 was only vaguely apprehended.

Now we have settled w hat I  called “ the contribution of volum e to en
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tro p y ” . I t  rem ains to  in te rp re t the rest of the right-hand m em ber of (19), 
which I will call “ the contribu tion  of tem perature to en tro p y ” . To do this 
we m ust re-enter the  m om entum -space.

F rom  (15) and  (5) and  (8) we get, for the  en tropy  Sm of the  flock of dots 
in the  m om entum -space:

S m =  — k \ n W  =  — k N  Hwi In w»

=  - k N A  2  (In A  -  BE i)e~BEi (21)

Refreshing our m em ory from  (10), we see th a t the first term  of this expres
sion reduces to  — k N  In A .  Refreshing our m em ory from  (11), we see th a t 
the second term  reduces to +  k N B U  or kB U . R eferring now to one 
gramm e-molecule of gas, I  p u t R  for N k , and  find:

S m = - R l n A  +  kB U  (22)

S m is hereby given as a function of U,  b u t a  m ore com plicated function than 
appears on the surface, since A  depends upon B  (equation  10) and B  upon V  
(equation 11). Y et when we differentiate S m w ith  respect to  U,  and  in so 
doing take account of these com plications, it tu rn s  ou t th a t we m ight as well 
have been oblivious of them ! for the result is the same as though A  and B  
were constants:

d S j d U  =  kB  (23)

Now the  tem perature, which has so often slipped in to  th is argum ent in 
ways more or less surreptitious, is abou t to m ake its form al and ceremonious 
en try  in to  the  sta tistica l picture. W e tu rn  back to  equation  (17), and 
deduce:

d S /d U  =  1 I T  (24)

The derivative here standing on the left is the derivative of entropy with 
respect to energy under the condition of constan t volum e: a therm odynam i- 
cist would w rite it (d S /d U )v . I t  is therefore properly  to  be identified w ith 
th e  derivative in (23), and  we m ake the  two identical by  p u ttin g :

B  = 1 /k T  (25)

Now tak ing  the en tropy  S  to be the  sum  of S c and  S m , we find:

S  =  S c +  S m =  — R  In A  +  U /T  +  R  In V  — R  In V 0 (26)

and  th is is to  be com pared w ith (19), the  therm odynam ic expression for 
entropy, which I  repeat to m ake the com parison easier:

S  =  f  (Cv/T ) d T  +  R ln V  +  constan t (27)
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Com paring these, we see first of all th a t R l n V  appears in bo th , as was already 
stated. I t  also seems a t  first glance th a t (—R l n A  +  U / T )  is to be identi
fied w ith the  integral in (27), and th a t — R l n  E 0is to be identified w ith the 
constant in (27). This however is not necessarily the case, for ( —R  In A  +  
U/ T )  m ay prove to  include constant term s. Indeed they do; and we m ust 
proceed to evaluate bo th  A  and U in term s of T  in order to round off the 
task.

I  recall equation (10) and  w rite it thus:

\ / A  =  2  exp ( —E i/k T ) (28)

This is a sum m ation, to which each cell contributes one term  having the 
value of E  appropriate to  th a t cell— E i  for the z'th cell. Of the volumes of 
these cells I  have thus far said nothing, except th a t all are equal. I  con
tinue to say nothing further, b u t I  give to their common volume the symbol 
H o . L et us now form the integral:

J  J I  exp (—E / k T ) d p jp y d p z, E  =  (1 /2m) (p i +  p i +  pi) (29)

the range of integration extending over the whole of momentum-space. 
This integral m ay be described as follows. L et the m omentum-space be 
divided into cells of u n it volume. Each of these cells of u n it volume m akes a 
contribution

exp (—E / k T )

to the integral, E  standing now for the average value of E  in the cell in ques
tion. The integral is the sum of all of these contributions. Now let us in
quire how much of a  contribution is m ade by  this same cell of un it volume to 
the summ ation (28). This second contribution is m ade up of 1 / H 0 terms, 
one for each of the c e ls  of volume H 0 which occupy the cell of un it volume. 
The values Ei corresponding to  these cells will no t be exactly equal to the 
value E  corresponding to the entire cell of un it volume; b u t to the degree of 
approxim ation which is now being used, the difference m ay be neglected. 
The sum m ation (28) is then equal to 1 / H 0 tim es the integral (25). Now the 
value of the integral (29) is given in all tables of definite integrals, and in 
term s of our symbols i t  am ounts to

(27w ik T )312

so we come to the conclusion:

In A =  — In (27rm kT Ÿ '2 +  In 77o

=  — \ In T  — In (2-irmkŸ12 +  In H 0 (30)
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Now we have a tten d ed  to every term  in (26) except the  term  U / T .  N early 
every reader will rem em ber th a t the average kinetic energy of an atom  of a 
m onatom ic gas a t  tem perature T  is \ kT.  I  therefore leave ou t the deriva
tion of th is result, except for showing the studen t how to begin on it:  the 
first step is to go back to equation (11) where an  expression was given for U,  
and  in th a t expression to replace the  sum m ation 2  E z exp (—B E i) by

(1/H o) tim es the integral J J J E  exp ( —B E )d p x dpy dpz . I t  follows th a t

U / T  is (3/2) Nk ,  which for one gramm e-molecule of gas is (3/2)1?, which I 
write as R  In e n .

The pic ture of en tropy  for a m onatom ic gas lim ned by the Boltzm ann s ta 
tistics, is now com pleted. E n tropy  is the function which follows:

S  =  1 R l n T  +  R ] n V  +  R ] n  ^ mke^  ' (31)
2 Vo Ho

T he dependence on volum e is correct, i.e., ju s t the same as in the  therm ody
nam ic formula. The dependence on tem perature is correct, for (3 /2 )R  is 
the value of the specific hea t a t  constan t volum e per gramm e-molecule of a 
gas, the q u an tity  C v of equation (18). The additive constan t, as to  the 
value of which therm odynam ics says nothing, is fixed w hen the  volumes 
Vo and  H 0 of the elem entary cells in the ord inary  space and the  m om entum - 
space are fixed.

M i x t u r e s  o f  G a s e s

Now we will go through the m ental operation which is called “ considering 
a m ix ture” of two different m onatom ic gases, N ' atom s of the one and N "  
atom s of the other, in the same box and (necessarily) in the same m om entum - 
space. L et me denote by U ' and U "  , respectively, the energies of these 
two gases; and by  N \  =  N ’w\ and N '/  =  N w ", respectively, the num bers of 
atom s of the two kinds in the i th  cell of m om entum -space.

If  we seek the m ost probable d istribu tion  of the  first gas in the m om entum - 
space, m aking the stipulation th a t  we will adm it only such varia tions of the 
quantities w; as leave N ' and  U' unchanged—well, of course, we get the same 
result as before, the  d istribu tion  (8), w ith  N ' in place of N  and  (let m e say) 
A '  in place of A  and B ' in place of B . A ' will depend upon B ' and B ' will 
depend upon U' / N' .  If we do the  like w ith the  second gas, we get anew to 
the  d istribu tion  (8) w ith N " , A "  and B "  in place of N ', A '  and B '. A "  will 
n o t be the same as A ' nor will B "  be the same as B ', unless it happens th a t 
U " /N "  is equal to U ' / N ' . There is no cause for surprise in this. In  acting 
this w ay we are only trea ting  each gas b y  itself, and have as y e t done nothing 
which can be regarded as “ considering a  m ix ture” .

L et us however seek the m ost probable d istribu tion  of the  two gases, m ak
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ing the  stipulation  th a t we will adm it only such variations of the quantities 
Wi and u>i as leave N ' and N "  and the sum of the energies V  and V "-—not how
ever the individual energies V  and U "—unchanged. In  acting this way 
we are doing som ething which m ay be regarded as “ considering a m ixture” , 
since we are allowing for the possibility th a t energy m ay pass from the one 
gas to the o ther and the o ther to the one. Equally  well are we considering 
the case of two gases separated by a partition  through which energy m ay 
pass, b u t no t the atom s. Since in such a case we really ought to take into 
account the atom s and  the energy of the partition  also, we m ust appease the 
critics by providing th a t the partition  shall be very thin.

Choose any set of values of the quantities N i , which is to say, any particu
lar d istribution of the first gas; and choose any set of values of the quantities 
N i , which is to say, any particu lar d istribution of the second gas. Go back 
to equation (1) and p u t primes on all the symbols N , N i , N%, • • • on the 
right-hand side of th a t equation. The resulting expression gives the to ta l 
num ber of inventories or complexions of the first gas. Take off the prim es 
and affix double prim es to each of these symbols. The resulting expression 
gives the to ta l num ber of inventories or complexions of the second gas. 
Every complexion of either m ay coexist w ith any complexion of the other. 
Therefore the to ta l num ber of complexions of the pair of gases is the product 
of the two expressions. I t  is this product which is IE for the p air of gases, be 
they mixed or side-by-side.

W ith -use of the Stirling approxim ation, the logarithm  of W  for the p a ir 
is the sum of two such expressions as we have seen in (5):

In W  = -N 'Z w 'i  In w\ -  N " 2 w .7 In w "  (32)

and its variation  is:

5 In IE =  - iV '2 ( l  +  In Wi)Sw{ -  2V"2(1 +  In w ")8w '/ (33)

Let us now give a tria l to the ten ta tive  distribution,

w ' = A ' exp ( - B 'E i ) ,  w " = A "  exp ( - B " E i) (34)

On substitu ting  this into (33) we find th a t if B ' is unequal to B " ,  the dis
tribution has a  sta tionary  value of IE w ith respect only to such variations 
as leave the energies of the two gases separately unchanged— the result 
which we had before. If however B ’ and B ” are the same, then IE is 
stationary with respect to variations which leave the sum of the energies 
unchanged, either being allowed to gain or lose so long as the o ther loses or 
gains by an equal am ount. Since each B  is controlled by the corresponding 
U / N ,  the distribution  (33) has a sta tionary  value of IE for variations of the 
type in question if and only if the average energy of the atom s of each gas 
is the same. Since each B  controls the corresponding A , this condition of
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equal average energy m akes the distributions of the two gases ju s t the 
same.

W e have already seen th a t  k B  is the reciprocal of the  tem perature: for 
i t  is the reciprocal of (d U / d S ) v in our sta tistica l picture, and the definition 
of absolute tem perature T  is precisely th a t T  is th is derivative. The s ta te 
m ent to which we have come is, th a t the most probable state of the m ixture is 
the one in  which T  is the same fo r  both components. I t  is often expressed in 
th is w ay: classical sta tistics shows th a t for two (or more) gases in equilibrium 
w ith each other, the tem perature m ust be the same. I t  is indeed a fact of 
experience, and a m ost im portan t one, th a t when two system s (be they gases 
or be they not) are in therm al equilibrium , their tem peratures are the same. 
This has no t h itherto  been m entioned, and  y e t we seem to have derived it. 
Q uite a  rabb it for the magician of the classical sta tistics to have pulled out 
of the hat!

However, skeptical people who see a rabb it pulled ou t of a h a t are inclined 
suspect th a t either the  rabb it was in  the h a t beforehand, or else there is no 
rabb it. L e t us inquire into the contents of the h a t and  see w hether we can 
find the rabb it there.

The first (and the last) question to be asked is: w hat is  th e  difference be
tween “ different” kinds of gas in the sta tistica l p icture?

To the physicist or the chemist, different kinds of gas will be (for example) 
m ercury and helium. These differ in their spectra, boiling-points, chemical 
properties, and quantities of o ther features. N one of these features however 
appears in the theory, and  therefore none of them  can contribu te to  the 
result. The atom s also differ in mass, and for a m om ent this seems to be a 
difference of which the sta tistica l p ic ture takes account, since the  le tte r  m 
appears in some of our equations. However, it appears only in the u ltim ate 
equations, those such as (29) in which the  d istribution-in-m om entum  is 
expressed. I t  does no t appear in the original form  of the M axwell-Boltz- 
m ann distribution-in-energy, the form  shown in equation  (8). I t  appears in 
particu lar in the last term  of equation (31), b u t no t elsewhere. A part from 
th is it m ay be said th a t in  the classical statistics, all gases are the same gas.

This is a paradox, b u t only one of two. T he o ther paradox is, th a t in  
the classical statistics two parts of the same gas are different gases. T his second 
paradox arises from the num bering of the molecules, which is an  essential 
feature of the classical statistics.

Therefore in the sta tistica l p ic ture a m ixture of N '  atom s of m ercury and 
N "  atom s of helium  is distinguished by the fact th a t the m ercury atom s bear 
one set of integer num bers (say those from  1 to  N ')  and  the  helium  atom s 
ano ther set (say those from  N '  +  1 to  N ' +  N" ) .  B u t if the atom s were all 
helium  atom s or all m ercury atom s, they would also be divisible in m any
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different ways into a set of N '  atom s bearing one set of num bers and a set 
of N "  atom s bearing another set of num bers. Each set would obviously 
have to have the same distribution, w ith the same A  and the same B,  as any 
other set or as the to ta lity  of all the atom s. This conclusion, which is self- 
evident in the case in which all the atom s are called “ m ercury” , rem ains true 
when some of the atom s are called “m ercury” and others are called “helium ” . 
We have done nothing bu t change the nam es of some of the atom s; we have 
not im ported into our theory anything which differentiates one kind of 
atom  from another kind. No wonder we have arrived a t the conclusion th a t 
all kinds have the same distribution-in-energy, the same A , the same B  and 
the same tem perature! The rabb it was indeed in the h a t, b u t it does no t 
look like so m uch of a rabbit.

The classical statistics therefore doesn’t recognize any of the real dif
ferences between atom s of different kinds, except for alterations in the last 
term  of (31); b u t it does m ake an  artificial difference which creates the 
astonishing result, th a t any two samples of the same gas are different gases! 
At this point we m ay begin to wonder w hether th is peculiarity, which has 
led to so apparently  brilliant a result in respect of the equality  of tem pera
tures in therm al equilibrium, m ight elsewhere lead us astray . I t  does; and 
here appears the  rift in the lute of classical statistics.

T h e  R i f t  i n  t h e  L u t e

L et us imagine two boxes of equal size separated by a common partition , 
each containing a gas consisting of N  atom s, bo th  gases a t the same tem pera
ture. We will baptize one gas “m ercury” and the other gas “helium ” . 
L et an  opening be m ade through the partition . I t  is known th a t in such a 
situation in N ature, the two gases diffuse into one another, the final and 
perm anent condition being th a t in which the m ercury and the helium  are 
equally distributed  between the two boxes. The process of diffusion is an 
example of w hat in therm odynam ics is called an  “ irreversible” process. The 
sta te  of uniform  mixing ought to correspond to the m ost probable sta te  in 
the statistical picture. B ut w hat does the statistical theory say?

The statistical theory says nothing about diffusion and nothing about 
mixing. The statistical theory takes account of nothing b u t the facts th a t 
the m ercury had  a t  its disposal the volume V  before and the volume 2V  
after the breaking of the partition , and d itto  for the helium. The value V  
contains M  cells ( M = V/Vo)  and the volume 2 V  contains 2M  cells. The 
(approxim ate) probabilities of the uniform distribution are M N before and 
(2M ) N after. The la tte r  is greater than  the former; the entropy goes up by 
N k  In 2 for each gas, by  2 N k  In 2 for the two of them, when the p rivate pre
serve of each is throw n open to the other. This gain is w hat is called the
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“ entropy of m ixing” though as we have seen it is really the  “ en tropy  of 
expansion” . I t  is the a ltera tion  in the second term  of the righ thand  m em ber 
of (31).

B u t now suppose bo th  of the boxes hold helium. One m ay indeed con
tinue to suppose th a t when the p a rtitio n  is opened each one of the two 
samples of helium  undergoes an  expansion, doubling its  volume. The 
entropy would then go up by  2 N k  In 2. However th is looks so silly a  thing 
to say th a t  no one, I  feel alm ost secure in affirming, has ever said it. The 
na tu ra l thing to  say is, th a t the 2 N  atom s of helium  d istribu ted  through 
the two boxes a t  uniform  tem perature and uniform  pressure have ju s t the 
same entropy-value w hether or no t the p a rtitio n  is broken.

W hat does the classical sta tistics say abou t th is situation? I ts  answer can 
be foretold. Since the two samples of helium  are different by  v irtue  of the 
different num berings of the two sets of atom s, the classical sta tistics insists 
th a t the entropy increase by  2 Nk  In 2 when the partitio n  is broken, even 
though the gases are the same. This is indeed, if I  m ay pervert the poem, 
“ the little  rift w ithin the lute, which m akes the classical sta tistics m ute .” 
T he achievem ent of predicting the  uniform  d istribu tion  in ordinary  space, 
the  achievem ent of predicting the M axwell-Boltzm ann distribution-law  in 
mom entum -space, the achievem ent of providing the proper relation between 
tem perature and  m ean kinetic energy— all of these are unsettled  by  this 
calam ity.

W ere I  w riting a  stric tly  logical article I  should qu it a t  th is point. N o
thing fu rther can apparen tly  be done, except to  tam per w ith  the classical 
sta tistics in an effort to rem ove the unw anted result which has sprung forth 
to plague us. To violate the logic of the classical sta tistics in  order to 
banish the undesired while keeping the desired results is a very  questionable 
act. In  theoretical physics, i t  is no t adm issible th a t the end justifies any 
and  all means. N evertheless so successful a feat of tam pering has been 
done, th a t  I  cannot refrain from  m entioning it  as I  close.

L e t me first express in a slightly different w ay the  n a tu re  of the “ r if t” . 
Com pare two samples of the  same gas a t  the same tem perature, one con
sisting of N  atom s in  a volum e V,  the o ther consisting of x N  atom s in a 
volum e xV.  T h a t which is called en tropy  in therm odynam ics— and there
fore th a t which is entropy, since it is the privilege of therm odynam ics to 
give the definition of entropy— is x  tim es as great for the la tte r  as for the 
former. B u t th a t which the classical sta tistics calls entropy— or, as we m ust 
adm it, m iscalls entropy— is no t * tim es as great for the la tte r  as for the 
former. I t  would be, if there were x  tim es as m any atom s b u t ju s t the same 
num ber of cells. However, there are x  tim es as m any atom s b u t also x  
tim es as m any cells into which to  p u t them . The num ber of complexions is 
approxim ately M N in the  form er case and ( x M) xN in the la tte r, M  standing



for the num ber of cells in the former box. The thing miscalled entropy is 
kN \nM  in the first case and (kxN lnM  +  kxN \nx)  in the second case. I t  is 
the term  kxN inx  which is the rift.

Clearly we could abolish this term  by allowing the volume of the cells to 
swell in the ratio  x '.l  when going from the former case to the la tte r. This 
is the same as m aking I I 0 proportional to the num ber of atom s in the sample 
of gas which happens to be under study. Since in equation (31) the volumes 
To and IT0 (of the elem entary cells in ordinary space and 'in  m omentum- 
space) are indissolubly bound together in the  product VJI r , , this is the same 
as making V 0H o equal to some constant m ultiplied by the num ber of atom s 
under study.

Such, if I  in terpret correctly, was the idea proposed by Sackur in 1912. 
While it does the task  required, it is an “ad hoc” assum ption of the most 
barefaced character. If the gas under study is a t  first divided into two 
parts by a partition  and the partition  is then abolished, the cells m ust be 
supposed to swell up a t the m om ent when the partition  vanishes.

We can also abolish the fata l term  by going back to equation (1) for the 
num ber of complexions, and removing the factor iV! in the num erator and 
replacing it by  unity . W e then  have un ity  divided by the original de
nominator, which in the (most probable) case of the uniform distribution is 
(N / M ) \  raised to the power M,  as I rem arked on page 121. Using the 
super-Stirling approxim ation, we find th a t the logarithm  of one fraction is 
(N lnM  — N\ nN) .  The factor Nl  which we formerly had in the num erator 
killed off the term  ( —N \x\N), b u t now th a t we have taken it out, this term  
survives. If now we say th a t k tim es the logarithm  of W / N l  shall be the 
picture of entropy in the classical statistics, then the term  ( — ¿AdniV) 
comes over into the right-hand member of (31). I t  m ay be am algam ated 
with the last term  already standing there; and when this is done, we find 
V0H 0 m ultiplied by N  exactly as Sackur p u t it there, and w ith the same 
wished-for result.

This, if I  in te rp re t correctly, is the idea proposed in 1913 by Tetrode. I t  
does the task  required of it, b u t its draw back is th a t the removal of the 
factor N l from the right-hand member of (1), a drastic piece of surgery as 
it were, violates the system of the classical statistics.3

I  was not, however, thinking m erely of th is achievem ent when on Page 
132 I  spoke of “ a rem arkably successful feat of tam pering.” To show the

3 This may seem too strong a statement. We are, after all, only asked to accept k In 
(W/IV!) as our picture of entropy, instead of &lnW;  why be reluctant? But in effect, as I 
see it, we are asked first to accept k\nW f as our picture of entropy, /  being an arbitrary 
function of N ; and then we are asked so to choose /,  that the dependence of k In W f on N 
shall conform to the actual behavior of entropy. This is different from and much less 
impressive than our original procedure, which consisted in first realizing that W  is the 
number of complexions, and then discovering that k In W  depends on volume and on 
temperature in just the right ways for entropy.
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m agnitude of the achievem ent, I  will rew rite equation  (31) w ith  two altera
tions. T he first consists in replacing R  w ith  N k ,  so th a t the  expression shall 
refer no t to  a gramm e-molecule of gas b u t to  any  num ber N  of atom s. The 
second consists in  following T etrode b y  affirming th a t  the  en tropy  is no t 
k In W , b u t k  tim es the  logarithm  of W / N \  I  follow him  still fu rthe r by 
using, n o t th e  super-Stirling approxim ation in  which N  In N  is w ritten  for 
In A !, b u t the  b e tte r  approxim ation in  which ( N  lniV — N )  or (AfinA7 — Afine) 
is w ritten  for In Afi T he resu lt is:

5  =  (3 /2 )N k  In T  +  N k  In V  -  N k  In N

+  N k  In [(2Trmk3l2e5l2/V o H 0] (35)

T his q u an tity  newly chosen as the p ic ture of “ en tropy” depends on volume 
and  on tem perature in  the  righ t way, as d id  th e  other. T he dependence on 
N  th e  num ber of atom s is now correct, and  no wonder, for the  new quan tity  
was chosen w ith th a t  purpose. T here is a  fourth  te rm  in the  right-hand 
m em ber which is p roportional to  Afi and  its  value is com pletely determ ined 
if the value of VoH0 is fixed. "The value which it takes when N  is m ade equal 
to Afi)may be called “ the chemical co n s tan t” ;b u t  th is nam e has been spoiled 
through being used w ith several different m eanings, and  should probably  be 
abandoned.

W hen to  V qB o , the  volum e of the  elem entary cell in  six-dimensional space, 
there is given the value Id— the cube of P lanck’s constan t— the resulting 
value of the fourth  term  is excellently confirmed by  experim ents on all of the 
noble gases, and (with less precision) by  experim ents on m any of the mona- 
tomic vapors of m etallic elements. T his is the achievem ent known as “ the 
verification of the  Sackur-Tetrode form ula” and  it  is indeed a  grand one.

Anyone versed in therm odynam ics will probably  regard th is no t as a grand 
result, b u t as an  incom prehensible one! Are we n o t ta u g h t in  therm ody
nam ics th a t nothing is ever m easured abou t en tropy  except the  differences 
between its values under different conditions, so an  additive constan t like 
the one in question m ust drop ou t of every verifiable equation, and its 
value can never be found? How then  can it  m ake sense to speak of con
firming the  value of the  fourth  term  on the righ t-hand  side of (35)?

WTell, actually  it is  a difference which is m easured: the  difference between 
the en tropy  of the gas a t  any  convenient tem peratu re  and  volum e and  the 
entropy of its solidified crystalline form  a t  the absolute zero. T his dif
ference is found to be such, th a t if for the  entropy of the gas one p u ts  the 
value (35) w ith Id substitu ted  for VoH0 , then  for the entropy of the crystal
line solid a t  the  absolute zero one finds the  value: zero. T his result— this 
conclusion th a t the en tropy  of a  crystal is zero a t  the absolute zero— is in 
itself so desirable and welcome th a t  i t  is taken as the  confirm ation of the
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Sackur-Tetrode form ula. By “desirable and welcome” I m ean th a t it is 
harm onious w ith the idea th a t entropy is a measure of disorder, an idea 
plausible in itself and fruitful in its applications. A chemical elem ent per
fectly crystallized a t the absolute zero is supposed to be the exemplar of 
supreme order, and therefore its entropy ought to be nil. B u t this is an 
enormous subject requiring a t least one other article, and I  am glad th a t m y 
a ttem p t a t w riting such an  article stands already in p rin t in the June( 1942) 
issue of this Journal.

Here then is the astonishing history  of the Classical S tatistics. By a 
strangely artificial device, the num bering of atom s deemed identical, it 
arrived a t the proper distributions— th a t is, the distributions ratified by 
experiment— in ordinary space and in momentum-space. I t  then proposed 
a picture of entropy partially  right, y e t wrong in its dependence on the 
number of atom s, and therefore fatally  wrong. W ith another artificial and 
dubious device, it corrected itself by adopting a new picture of entropy, this 
time depending in the right way upon the num ber of atom s. W ith  a th ird  
artificial device (the introduction of P lanck’s constant in a peculiar way) it 
completed the formula for entropy in a m anner leading to the consequence 
th a t the entropies of solidified crystallized elements are zero a t absolute zero. 
All of these feats and more were subsequently achieved by  the New Statistics, 
in a m anner which I  hope to explore on a la ter occasion.



A b stracts of T ech n ica l A rtic les b y  B e ll S y s te m  A uthors

Poles and Pole Treatment.1 R e g i n a l d  H. C o l l e y . Studies m ade of 
pole use and drainage on the  southern  pine forest have brought ou t th a t if 
the  dem and for poles 35-feet and  longer were to continue a t  the presen t rate , 
a situation  would soon develop in which these poles would be a t  a  prem ium . 
I t  would seem wise to use as m any circumference classes as possible and to 
broaden the use of poles of other species whenever it is practicable to do so. 
Successful full length trea tm en t of red pine, lodgepole pine, w estern cedar 
and  Douglas fir poles will help to broaden th is use.

T here has been a definite trend  tow ard greater m echanization in pole 
production. M achine shaving sm ooths the  pole surface and  accelerates 
drying. Poles w ith square cu t roofs and slab gains are all-purpose poles, 
one design taking the place of four. New types of preservative trea tm en t—  
greensalt, creosote-petroleum -pentachlorphenol and salt-creosote— are of 
prom ise and  m ust be considered, when current restrictions are removed, in 
those cases where clean poles are m andatory .

In teresting  breaking te s t d a ta  are reported  which show th a t  the modulus 
of rup tu re  of pole top sections average 90 per cent of the m odulus of the 
poles as a whole, and  th a t pole tops are sufficiently strong to m eet their 
specified class breaking loads. T h is is of considerable im portance where 
poles are guyed.

C urren t groundline trea tm en t m ethods, it is pointed  out, should be applied 
to un trea ted  poles in line th a t are w orth saving a t  the tim e of inspection, as 
a p a r t of the regular inspection procedure.

Hearing, the Determining Factor fo r  High-Fidelity T  ransmission.- H a r v e y  

F l e t c h e r . T his paper gives the requirem ents for ideal system s for the 
transm ission of speech and music. These requirem ents are based on: 1. 
M easurem ents of the threshold and  frequency lim its of the hearing of more 
th an  500,000 people a t  the New Y ork and  San Francisco W orld’s Fairs; 
2. m easurem ents of the discom fort level of sound; 3. m easurem ents of room 
noise in a  wide varie ty  of locations; and  4. m easurem ents of the frequency 
lim its and  the m axim um  and m inim um  levels of speech, orchestral music, 
and  various instrum ents of the orchestra.

F rom  this inform ation and  from  judgm ent tests i t  is concluded th a t 
substan tia lly  com plete fidelity in the  transm ission of orchestral music is

1 Elec’l. Engg., Transactions Section, September 1942.
2Proc. I. R. E., June 1942.
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obtained by  use of a system  having a volume range of 65 decibels and a 
frequency range from  60 to  8000 cycles per second. Substantially  complete 
fidelity for the transm ission of speech is obtained by a system  having a 
frequency range from  100 to 7000 cycles per second and a volume range of 
40 decibels.

Prelim inary experim ents comparing a single-channel system  and a two- 
channel stereophonic (auditory perspective) system  showed th a t stereo
phonic transm ission w ith an upper frequency lim it of 5000 cycles per second 
was preferred to single-channel transm ission w ith an  upper lim it of 15,000 
cycles per second. A definite im provem ent was obtained in the stereo
phonic system  by  using three channels instead of two.

A New Direct Crystal-Controlled Oscillator for Ultra-Short-Wave Fre
quencies? W. P . M ason and I. E . F a ir . An ultra-high-frequency crystal 
oscillator is described which utilizes a mechanical harm onic of an AT or B T  
crystal. W ith the oscillator frequencies as high as 197 megacycles, hormon- 
ics as high as the 23rd have been excited. T aking the second electrical 
harmonic of the oscillator, frequencies as high as 300 megacycles, or 1 m eter 
have been obtained. Since a mechanical harm onic is used, the crystal can be 
of a practical size to handle and adjust. The harm onic v ibration of the AT 
and B T  crystals have as low a tem perature coefficient as the fundam ental 
mode, and tem perature coefficients of less than  two parts  per million per 
degree centigrade are easily obtained. S tability  curves for this type of 
oscillator are shown and the results indicate th a t a t 120 megacycles stabilities 
in the same order of m agnitude as for ordinary crystal oscillators can be 
obtained. W ithout tem perature or voltage control it appears likely th a t 
the frequency should rem ain constant to ±  0.0025 per cent.

Some m easurem ents have been m ade of the properties of harm onic crystals 
a t  high frequencies. I t  was found th a t the Q of a crystal is independent of 
the frequency b u t in general increases w ith harm onic order. The ratio  of 
capacitances r of a crystal increases as the square of the harm onic order. I t  
is shown th a t in order to obtain a positive reactance in the crystal Q >  2r. 
This relation will only be satisfied for harmonics of AT crystals less than  the 
7th. As a result oscillator circuits such as the Pierce circuit cannot be used 
to drive crystals a t  high harm onic frequencies. A discussion of oscillator 
circuits is given and it is shown th a t a capacitance-bridge oscillator circuit 
w ith the crystal in one arm  is the best type to use for high-frequency har
monic crystals.

W ar Activities of the Bell Telephone System ? K e it h  S. M cH u g h . The 
scope of the Bell System ’s nation-wide s.ervice is, even in peace, difficult to

3 Proc. I. R. E., October 1942.
4 Bell Telephone Magazine, November 1942.
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visualize in  its en tirety . In  war, w hen practically  every phase of the  na
tional effort to overthrow  the Axis aggressors depends in some p a r t on swift 
com m unication, bo th  the ex ten t and the im portance of the  S ystem ’s con
tribu tions to the winning of the conflict are beyond sum m arizing. In  the 
p as t two years, num erous articles in the Bell Telephone Magazine (listed a t 
the end of th is article), and  in the em ployee publications of the  Associated 
Companies, have described m any aspects of the System ’s cooperation w ith 
the arm ed forces, w ith  industry , and w ith the  civilian population. Now, 
nearly  a year afte r Pearl H arbor, i t  seems appropriate  to review both  the 
System ’s preparations for the national em ergency and  the steps which it  has 
taken  since w ar becam e no longer a th rea t b u t a fact. To the  ex ten t th a t 
i t  is possible in lim ited space, th is article rounds ou t the  previous frag
m entary  p a rts  of the whole picture.

The Number of Two-Terminal Series-Parallel Networks . 5  J o h n  R i o r d a n  

and  C. E. S h a n n o n .  T his paper is concerned w ith the  num ber of ways 
n  ab s trac t (electrical) elem ents m ay be connected in series-parallel arrange
m ents and  in particu lar w ith the  w ay the num ber behaves for n  large. After 
a proof of a generating iden tity  for the num bers given w ithout proof by  P. 
A. M acM ahon in  1892, the paper gives recurrences and  schemes of com puta
tion  by  m eans of which M acM ahon’s table for the num bers is extended from 
n  =  10 to n  =  30. T he behaviour for n  large is shown to  be of the form

A  \ n n~3'2

with A  a fixed constan t and X a  real num ber between 2 - f  y / l  =  3.414 
and  4 and closer to  the  form er than  the la tte r; indeed an  approxim ating 
function for which X is abou t 3.56 agrees w ith the num bers w ith in  3 %  over 
the range 7 to  20. T hese results are used to show th a t  alm ost all switching 
functions of n  variables require a t  least

2"
(1 -  0  * >  0 log2w

switching elem ents (m ake or b reak contacts) in  series-parallel realization.

The Electrical Oscillations of a Perfectly Conducting Prolate Spheroid ,6 
R o b e r t  M . R y d e r . T he forced oscillations of a  perfectly-conducting pro
late spheroid of eccentricity  nearly  u n ity  are shown to be decom posable into 
“ harm onics” corresponding to different m odes of v ibration , each harm onic 
being q u an tita tiv e ly  connected w ith a  certain  portion  of the impressed elec
tric  field which drives the an tenna. T he harm onics contribu te additively  
to the  cu rren t and  field of the  spheroid; each offers a characteristic imped-

5 Jour. Mathematics and Physics, August 1942.
6 Jour. Applied Physics, May 1942.
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ance to the driving field, and the properties of the an tenna are a composite 
depending upon the proportions of the various harm onics present. The 
behavior of the harm onics w ith frequency is discussed qualitatively ; ana ly ti
cal expressions obtained are useful chiefly a t  the resonant frequencies of the 
antenna, where the m ost im portan t harm onic becomes sinusoidal in char
acter.

On Radiation from  Antennas.1 S . A. S c h e l k u n o e f  and C. B. F e l d m a n . 

This paper presents some theoretical rem arks and experim ental d a ta  relating 
to applications of the transm ission-line theory  to antennas. I t  is em pha
sized th a t the voltage, the current, and the charge are affected by radiation 
in different ways, a fac t which should be considered in any adap ta tion  of 
line equations to antennas.

I t  is shown experim entally and theoretically th a t in an  an tenna of length 
equal to an  integral num ber of half wave-lengths, which is energized a t  a 
current antinode, the effect of rad iation  on the curren t and the charge 
(but no t on the voltage) can roughly be represented by  adding to the resist
ance of the wires another fairly simple term .

The Use of Secondary Electron Em ission to Obtain Trigger or Relay Action .8 
A. M. S k e l l e t t . T he use of secondary electrons to  obtain  trigger action 
similar to th a t of a th y ra tron  is described. An experim ental tube and the 
necessary circuits by which this action is achieved are discussed. This 
combination gives the features of a triode w ith a relay or on and off feature, 
resulting in an  amplifier, oscillator, m odulator, or other vacuum  tube device 
which m ay be turned on or off ab rup tly  a t  high or low frequencies. In  
addition, it can be used to replace thy ratrons in m any of their circuits where 
very low impedance is not necessary and is capable of much greater speeds 
of operation in such applications.

A New Frequency-Modulation Broadcasting Transmitter,9 A. A. S k e n e  

and N. C. O l m s t e a d .  A new frequency-m odulation transm itter is de
scribed which uses a novel amplifier circuit perm itting  an unusually simple 
mechanical design and an  economical vacuum -tube complement.

The choice and design of circuit com ponents, governed by  both mechani
cal and electrical considerations, are discussed in detail.

A Secondary Frequency Standard Using Regenerative Frequency-Dividing 
Circuits , 1 0  F. R. S t a n s e l .  A secondary frequency standard  is described

7 Proc. I. R. E., November 1942.
8 Jour. Applied Physics, August 1942.
9 Proc. I. R. E., July 1942.
10 Proc. I . R. E., April 1942.
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in which standard  frequencies are derived from  a 5-megacycle oscillator by 
a series of frequency dividers. T he advantage of obtain ing standard  fre
quencies by  frequency division ra th e r than  by  frequency m ultiplication is 
pointed  ou t and the characteristics of the regenerative frequency dividers 
used are discussed.

Some Mechanical Aspects of Telephone A pparatus .n  J. D . T eb o  and H. 
G. M e h l h o u s e . Part I .  I t  is seldom realized th a t the vastness of the 
Bell System  requires such an  enorm ous am ount of equipm ent and wires for 
handling the  100,000,000 calls per day  m ade by  the people in the United 
S tates. A to ta l of 44,000 kinds of ap p ara tu s  involving 170,000 different 
p a rts  are required. T he crossbar switch, described in th is article, is the 
specific telephone sw itching m echanism  used in the la tes t dial telephone 
system.

Of particu lar in terest in the crossbar switch is the design of contact springs. 
These springs are essentially th in , m etal beam s of a rectangular cross section 
b u t of varying cross sectional area along their length. T h ey  are clamped 
a t  one end and are subject to  bending as com pound cantilevers. Since 
the clamping is necessarily between relatively soft insulating m aterials, 
the determ ination  of the effective length of the spring in determ ining its 
true deflection curve required the use of unique m ethods. Likewise, since 
the  springs are punched ou t of sheet stock a t  an  angle to the grain direction 
of the m aterial, the m odulus of elasticity  does no t rem ain the  same for equal 
cross sections of the same m aterial. Consideration of these points was 
necessary in determ ining the strength  of the m agnets for operating  the con
ta c t springs, as well as to insure th a t the stresses introduced in the springs 
would no t be excessive.

To s tudy  the m otions of the various p a rts  of the switch, bo th  high speed 
m otion p ictures and the “ rap id  record” oscillograph were used. T he oscil
lograph was provided w ith m eans for obtaining “ shadow gram s” of the actual 
m ovem ent of p a rts  sim ultaneously w ith the changes in the electrical charac
teristics of the  m agnets and contacts. T he use of bo th  the cam era and 
oscillograph provided valuable d a ta  for m aking im provem ents, both in 
design and  operating  characteristics.

Part I I . T he m anufacture of crossbar ap p a ra tu s  is accom plished on a 
p roduct basis; th a t  is, the entire range of m anufacturing operations is segre
gated in to  one division, and  p ractically  all operations from  raw m aterial 
to  the com pleted p roduct are perform ed in  th is division. M ore th an  150 
kinds of p a rts  to ta ling  an  annual dem and of 200,000,000 individual pieces 
are required  to  produce the crossbar switches.

T o  produce these p a rts  requires a num ber of special m achines, tools, and

11 Mech. Engg., May 1942 and June 1942.
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operations. Of particu lar in terest are the use of special progressive punch 
and die tools, coil winding, contact welding and conveyorized assembly and 
adjustm ent.

The use of heavy presses with large progressive punches and dies was 
necessitated by  the degree of accuracy required for this grade of equipm ent. 
For example, the  vertical u n it base, weighing only f  lb., is produced by  a
75.000 lb. press, using a 3,500 lb. tool. Again, since 40,000,000 contact 
springs are required annually, each of which m ust be attached  to insulators, 
autom atic presses, conveyor belts and handling devices are required. W eld
ing two contacts on each spring is accomplished by  special welding presses 
using rolls of contact m etal tape, each contact being cut off ju s t prior to 
the welding process. A quality  of less than  one defective contact ou t of
20.000 is m aintained.

The coils are wound in special machines in “ sticks” of 5 to 7 coils w ith 
.0007 inch thick cellulose acetate  between each layer. A wire of a gage size 
halfway between # 37  and # 3 8  B & S is used on m ost of the coils because 
of critical capability  conditions— the annual am ount of wire of this size 
being 125,000 lbs.

Assembly and adjustm ent of the switches proceeds on conveyor belts 
from one end of a  large room to the other— the procedure being set up in  
such a way as to create a continuous flow of com pleted p arts  for wiring into 
the large frames ready for installation in telephone exchanges.

Regulated Rectifiers in  Telephone Offices}2 D . E. T r u c k s e s s . For m any 
years rectifiers of the garage type were used in converting alternating  cur
rent to direct current for charging batteries used for com munication pur
poses. These batteries furnish power for relay operation, for talking, and 
filament and p la te  supplies for repeaters. The rectifiers were of the manual- 
control type where the operator selected the charging current by means of 
tap  switches or rheostats.

W ith the developm ent of the thy ratron  type of tube, a rectifying means 
was made available in which the grid of the rectifier tube could be used to 
control its own o u tp u t current by an  electronic circuit. Rectifier circuits 
were designed to m aintain a  constant ou tp u t voltage. If a regulated recti
fier is connected to a b a tte ry  and the constant rectifier voltage is 2.15 volts 
per cell, the load current will autom atically  come from the rectifier and not 
from the battery . Also the b a tte ry  will draw  from the rectifier sufficient 
additional current to m aintain  its charge. If the circuit voltage is held 
within lim its of less than  plus or minus one per cent, the m aintenance of 
the b a tte ry  is reduced and its life is extended.

The th y ra tron  tube differs from the vacuum  tube in th a t the grid does

12 Elec’l. Engg., Transactions Section, August 1942.



n o t have a continuous control of the p la te  current. W hen a positive po ten 
tia l is applied to the p late, cu rren t does no t flow un til the m agnitude of the 
negative grid voltage is reduced to the critical value, a t  which tim e the plate 
cu rren t flows, and the m agnitude of the p la te  cu rren t depends upon the 
voltages and  im pedances in the  circuit. T he grid has no fu rthe r control, 
and  p la te  cu rren t flows un til it is stopped by  reducing the p la te  voltage 
to zero.

T h y ra tro n  tubes use various gases and m ixtures of gases. T he earliest 
type used m ercury vapor, b u t th is type of tube is quite sensitive to tem pera
tu re  changes. T he grid characteristics are shifted m ateria lly  by  changes 
in the room tem perature in which it is operated , and  in low tem peratures 
i t  is alm ost a  vacuum  tube. T h y ra tro n  tubes using argon gas are not 
affected by  tem perature changes, b u t high-pressure argon tubes have a low 
inverse voltage which lim its their application  to  low-voltage rectifiers. 
T ubes using low-pressure argon have a higher inverse voltage, b u t are ac
com panied by a high arc drop which m akes their efficiency low. A m ixture 
of m ercury vapor and  argon has been found which provides the  tem perature- 
stab le grid characteristic of the argon tube and  the low arc drop of the  mer- 
cury-vapor tube. T his type of tube has been very  successful w ith certain  
regulating circuits, particu larly  a t  voltages less th a n  60 volts.

F ive kinds of regulating circuits are used in telephone offices to  hold the 
ou tp u t voltage of rectifiers constant. T he selection of the  circuit to be used 
depends upon the m agnitude of the  current, d-c voltage, and  type of recti
fying m eans to be used. Two form s of regulating circuits using th y ra tron  
tubes and one using two-elem ent high-pressure tubes were developed. A 
fourth  circuit using all vacuum  tubes was adap ted  for telephone use. The 
fifth k ind uses a  negative resistance.

In  th is paper a table shows the  voltage and  cu rren t ou tp u t, type of control 
of the rectifiers, and  the rectifying m eans th a t have found w idespread use 
in  the Bell System.

T he regulated rectifier finds its  applications in  telephone offices where 
constan t voltage, independent of load and a-c line-voltage variations, is 
required to  supply filam ent grid bias and  p la te  voltage to telephone re
peaters. C ertain  m easuring circuits require a regulated  rectifier to  supply 
a, stabilized voltage. R egulated rectifiers also find applications where con
s ta n t voltage is of secondary im portance b u t an  au tom atic  power p lan t is 
desired for m aintain ing storage batteries in a fully charged condition to  be 
ready to supply the  power for telephone offices if the  a-c power fails. A 
fu rth e r com pensation of regulating the  voltage is the increase in life ob
ta ined  from  storage batteries if they  are no t continually  being charged and 
discharged b u t are fully floated.
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