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Effect of Feedback on Im pedance  

By R. B. BLACKMAN

THE impedance of a network is defined as the complex ratio of the alter
nating potential difference maintained across its terminals by an ex

ternal source of electromotive force, to the resulting current flowing into 
these terminals. If the network contains active elements such as vacuum 
tubes, the resulting current (or potential difference if the input current is 
taken as the independent variable) may be due in part to the excitation of 
the active elements. The definition of impedance does not discriminate 
between the part of the current (or potential difference) due directly to the 
external source of electromotive force and the part due to the excitation of 
the active elements by the external source. Hence the impedance will in 
general depend upon the degree of activity of the active elements.

These observations were made early in the development of feedback 
amplifiers by H. S. Black1 who made two important uses of the effect of 
feedback on impedance. In the first place it afforded a method of measur
ing feedback which has some advantages over the method which involves 
opening the feedback loop, providing proper terminations for it and meas
uring the transmission around it. In  the second place the effect of feedback 
on impedance was used to control the impedances presented by a feedback 
amplifier to the external circuits connected to it.

Relations between impedance and feedback were derived by Black and 
others for a number of specific feedback amplifier configurations. In  some 
cases these relations turned out to be very simple. For the most part, how
ever, these relations wete so complicated tha t they defied reduction to a 
common form.2 The difficulty seems to have been due, in part a t least, to 
the attem pt to formulate the relationship, in each case, in terms of the nor
mal feedback of the amplifier. In  some cases the difficulty seems to have 
been due partly also to the valid, but, as it turns out, irrelevant observation 
tha t the feedback is affected by the impedance of the measuring circuit as

1 H. S. Black, “Stabilized Feedback Amplifiers” , B .S .T .J ., January, 1934.
2 Shortly after the general relationship between feedback and impedance was derived, 

it was independently established by H. W. Bode and J. M. West by examination of a 
variety of feedback amplifier designs. The generality of the relationship was also in
dependently proved for amplifiers with a single feedback path  by J. G. Kreer and by C. 
H. Elmendorf.
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well as by the removal of any impedance elements or circuits which are 
normally connected to the amplifier.

These difficulties are avoided by the method of derivation adopted in this 
paper. Illustrative examples are then given of some of the uses to which the 
general relationship between feedback and impedance may be put.

D e r iv a t io n

The derivation of the general relationship between feedback and im
pedance will be made here with reference to the diagram shown in Fig. 1.

One of the vacuum tubes in the network, namely th a t one to which the 
feedback is to be referred, is shown explicitly a t the top of the box in the 
diagram. The grid lead to this tube is broken a t terminals 2, 2'. In  prac
tice, the break in the grid lead would leave the grid still coupled to some

degree to the other electrodes of the tube through parasitic interelectrode 
admittance. For analytical purposes, however, it may be assumed tha t the 
parasitic admittances between the grid and the other electrodes of the tubes 
are connected not directly to the grid within the tube bu t to some point 
farther out along the grid lead. Under this assumption the break in the 
grid lead not only removes the feedback to the tube completely, bu t also 
leaves the parasitic admittances connected in the network in such a way 
th a t their contribution to the feedback is implicitly taken into account. 
Furthermore, the impedance looking into the grid of the tube is now infinite 
so tha t if a voltage is applied to the grid no current will be drawn from the 
source of the voltage.

At the left-hand side of the box in the diagram, terminals 1, 1' are brought 
out. These are the terminals to which the impedance is to be referred. In
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the normal condition of the network these terminals may be connected 
through ah  external impedance branch. This is the case, for example, when 
terminals 1, 1' are the input terminals of a feedback amplifier whose input 
impedance is under investigation. However, this external impedance may 
also be zero or infinite according as terminals 1, V  are “mesh-terminals” 
obtained by breaking open a mesh of the network, or “junction-terminals” 
obtained by bringing out two junctions of the network.

I t  is assumed tha t the network, including all of the vacuum tubes, is a 
linear system in which, therefore, the Superposition Principle holds. Hence, 
if an e.m.f. E i  is applied in series with terminals 1, 1' and a second e.m.f. 
Ei  is applied between the grid and the cathode of the tube, the potential 
difference V\  developed across the input terminals 1, 1' and the potential 
difference V 2 developed between the terminal 2 and the cathode of the tube 
will be linearly related to E 1 and E 2. If the source of Ei has internal im
pedance the coefficients in these relations will depend upon this impedance. 
However, if the input current I i  is used as an independent variable in place 
of the e.m.f. Ei  the coefficients will not depend upon the impedance of the 
source of the current h .  I t  is also convenient to consider the potential 
difference E 2 — V 2 developed across the terminals 2, 2' as one of the de
pendent variables in place of V 2. Therefore,

Vi  =  A h  +  B E 2 

E 2 -  V2 = C h  +  D E i

where the coefficients are independent of Z. 
From these equations we obtain

(1)

= A D  -  B C  

e 2=y 2 D

A

A D  -  B C

Hence

©
( h )  =
\ / l /e2= 0

( E i  -  FA  
\  E 2 )  vi=o

( 5 ç Z » )  . D
\  Ei / i l=o

/ F , \  /F A



272 B E L L  S Y S T E M  TE C H N IC A L  J O U R N A L

This equation expresses the relationship between feedback and impedance. 
To make this more apparent the physical significance of each of the factors 
in t his equation will be examined and suitable symbols will be substituted 
for them.

In  equations (1) £2 and 11 were regarded as independent variables. How

ever, the ratio (-7^ )  implies th a t £2 is adjusted to be equal to V 2. 
\ I i / e 2=V2

This means th a t £2 is dependent upon I\.  The reason for the imposition 
of this dependence is th a t with £2 equal to V 2 the terminals 2, 2' may be 
connected together and the source of £ 2 may be removed without affecting, 
in particular, the potential difference V \  across terminals 1, and the cur
rent 1 1 into these terminals.

Obviously, therefore, the ratio ( ^  ) is the impedance which will be
\ 1 i / e 2= v 2

seen a t the terminals 1, V  when terminals 2, 2 ' are connected together and 
the only source of e.m.f. acting on the network is the external circuit con
nected to the terminals 1, 1'. This ratio will be symbolized by Z A.

The ratio ( —  ) implies th a t no voltage is applied between the grid 
\ / i / k2- o

and the cathode of the tube. However, it is immaterial whether or not a 
voltage is applied to the grid of the tube if the amplification of the tube is 
nullified. Obviously, therefore, this ratio is the impedance which will be 
seen a t the terminals 1, 1' when terminals 2, 2' are connected together and 
the amplification of the tube is nullified. This ratio  will be symbolized by 
ZP.

( V t \  / f a
Finally, the ratios I y r  I and I y r  ) are readily recognized from 

V -c ^ /r^  \ E 2 j Il=o
the definition of feedback to be the feedback to the vacuum tube w ith the 
terminals 1, 1'  connected together in the first case, and left open in the sec
ond. These ratios will be symbolized by FSh and F0p respectively.

Hence, equation (2) may be written in the more significant form

ZA   1 Fsh
Z~P “  f ^ £ 7 P w

D e t e r m in a t io n  o f  F e e d b a c k

One of the uses to which the relationship (3) m ay be pu t is in the deter
mination of feedback by impedance measurement. However, since this 
relationship involves two feedbacks, only one of which may be identified 
with the feedback to be determined, one of these feedbacks m ust be known. 

In  the most common types of feedback amplifiers it is possible to choose
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terminals 1, 1' so tha t either FSh or FoP is zero. If F0p =  0 and FSh =  Fn 
where FN is the normal feedback, then

Fn =  1 -  (4)
Zp

On the other hand, if Fst, = 0 and F0p =  FN then

Fig. 2 shows a feedback amplifier in which the ¿¿-circuit and the / 3 - n e t w o r k  

are connected in series a t one end and in parallel a t the other end. At 
terminals 1, 1' in this figure the conditions for formula (4) are obviously 
fulfilled. Hence, if the impedance measurements are made a t these ter-

u - C IR C U IT

Zi

1 r

(5 - N ET W O R K

F ig . 2—Feedback amplifier with series feedback a t  one end and shunt feedback a t  the
other end.

minals, the feedback is given by formula (4). On the other hand, a t ter
minals 2, 2' in Fig. 2 the conditions for formula (5) are obviously fulfilled. 
Hence, if the impedance measurements are made a t these terminals, the 
feedback is given by formula (5).

If the grid-plate parasitic admittance of a tube in a feedback amplifier 
is not negligible it is not possible to open any physical mesh in the amplifier 
so tha t F0p = 0 for tha t tube. In such a case, therefore, (4) is not ap
plicable. However, if the impedance measurements are made between the 
grid and the cathode of tha t tube the conditions for formula (5) are ob
viously fulfilled, and the feedback is given by formula (5). Hence, of the 
two particular forms (4) and (5) of the general relationship (3), only (5) 
enjoys complete generality in the determination of feedback by impedance 
measurements.
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F e e d b a c k  d u r in g  I m p e d a n c e  M e a s u r e m e n t s

While the feedback computed from impedance measurements by formula 
(4) or (5) is the normal feedback, the feedback during the impedance meas
urements may be quite different, due to the impedance of the impedance 
measuring circuit. Referring to Fig. 1 we see tha t the feedback during 
measurement is by definition

where Z  is the impedance of the impedance measuring circuit. By equa
tions (1) this is easily reduced to

I t  is clear therefore th a t even if FN satisfies N yquist’s Stability Criterion, 
Z  may be of such a character th a t Fz violates th a t criterion. In  th a t case 
it will be impossible to make the impedance measurements.

Contrariwise, if FN violates N yquist’s Stability Criterion, it is possible 
to choose Z  so tha t Fz satisfies that criterion and make it possible to meas
ure the impedance. Substituting (4) into (7) we find th a t a sufficient but 
not necessary condition in order th a t \FZ\<  1 is tha t

Similar observations may be made with respect to (8) as were made with 
respect to (7). Substituting (5) into (8) we find th a t a sufficient but not 
necessary condition in order tha t |F Z|<  1 is that

(6)

(7)

\ Z  \ > \ Z A \ +  2 \ Z P \ 

Under the conditions to which formula (5) applies

(8)

I ¿ I \ ¿ A \  \ ¿ p [

F e e d b a c k  C o n t r o l  o f  I m p e d a n c e

The application of the relationship (3) to the feedback control of im
pedance may be illustrated by a few concrete examples.
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Let us assume that we are interested in the impedance faced by the line 
impedance Z\ in Fig. 2. If the terminals 1, 1' in Fig. 3 are left open the 
feedback is obviously zero. Let the feedback when the terminals are 
shorted together be denoted by F®. If the impedances of the ¿¿-circuit 
and the /3-network are denoted by Z^ and Zp, respectively, then

Z a =  Z P( 1 -  F sh) (9)

where

Z P =  Z„ +  z $

This shows the now well-known fact tha t series feedback may be used to 
magnify impedance.

F ig . 3—Impedance faced by the line a t the series feedback end of a feedback amplifier.

However, it should be noted that the feedback FSh involved in (9) is not 
now equal to the normal feedback F N as it was when the terminals 1 ,1 ' were 
taken as in Fig. 2. The relation between F N and FSh may be obtained from 
(6) by identifying F N with Fz,  and Z i  with Z. Hence

F n  =  (10)

1+^
From (9) and (10) it follows that even with a very modest amount of normal 
feedback the magnification of the impedance may be very large. For 
example, if Z P = 1000 ohms, Z \  =  1 megohm and F Sh = — 1000, then Z A 
is better than 1000 times as large as Z P although F,v is not quite unity in 
magnitude.

Similarly, the impedance faced by the line impedance Z 2 in Fig. 2, as 
shown in Fig. 4, is
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Z A =
1 -  F,O p

(11)

where

z ,  +  Zß

This shows the now well-known fact th a t shunt feedback may be used to 
reduce impedance.

The relation between the normal feedback F.v and the feedback F 0p in
volved in (11) is, by (6)

Fop
F n =

‘ + 1
( 1 2 )

From (11) and (12) it follows tha t even with a very modest am ount of nor
mal feedback the reduction in impedance may be very large. For example,
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if Z;> =  100,000 ohms, Z2 =  100 ohms and FnP =  —1000, then Z A is less 
than 100 ohms although FN is not quite unity in magnitude.

The two examples given above illustrate the use of feedback to magnify 
or to reduce the impedance of a network. This impedance, however, will 
be correspondingly sensitive to changes in the characteristics of the vacuum 
lubes. A third example of the use of the relationship (3) will show that 
feedback may also be used to make the impedance of a network less sensitive 
to changes in the characteristics of the vacuum tubes.

In the case of the bridge-type feedback network shown in Fig. 5 we have, 
with respect to the terminals 1, 1'

ZP =  R (\  +  Q)

2 R +  3Rf] n

Iah A 1 +  Q

Fop = A ^1 +  - 

where A  is the feedback designed for the condition R v =  R, and

(RP - R) (R + Rp)
Q =

Then, by (3)
(R  +  R P)(2R +  Rp) +  2RR?

Hence, if the feedback F0v is very large the effect of bridge unbalance on 
the impedance presented to the line will be very small. If, for example, the 
design feedback is 40 db the output impedance cannot change more than 
1 per cent however severely the bridge might be unbalanced by R v being 
larger than R.

The feedback when the line impedance R L is connected may be obtained 
by identifying Ri, with Z in formula (6). I t  is

2R +  3Rp n

1  +  RR  +  R l

whence
d log F  _  RRr, Q 
d log Ri, R  +  Ri, R l +  Zp

The effect of bridge unbalance is to make the feedback sensitive to changes 
in I he line impedance R l.



Design of Two-Terminal Balancing Networks
By K. G. VanWYNEN

This paper describes a simple graphical m ethod for designing a two-termi
nal network, which will simulate a given line impedance to such a degree th a t 
return losses of the order of 25 db or better will be readily obtained. The 
m ethod is particularly useful in those problems in which a reasonably accurate 
balancing network is adequate, b u t a high degree of precision is not required.

G e n e r a l

IT IS the purpose of this paper to describe a graphical method which 
has been found useful in the design of simple two-terminal networks 

to simulate the impedance of transmission lines or equipment. The dis
cussion which follows is intended to emphasize the simplicity of the 
method and the rapidity with which it m ay be employed to arrive a t a 
solution; it will also indicate the analytical background without a t
tempting to develop or establish the rigor of the procedure involved. 
A solution can frequently be obtained in a fraction of an hour and it is 
thought th a t the graphical analysis will appeal to the pragm atist and the 
engineer who has a job to do, but very little time in which to accomplish 
his aim, rather than the person interested in the rigor of the solution.

The problem which is considered may be stated as follows: Design a 
two-terminal network with the minimum number of elements which will 
give a desired degree of approximation to a given impedance function 
Z (\) ,  where Z(X) is a fraction whose num erator and denominator are poly
nomials in frequency in accordance with the customary usage in such prob
lems.

O r ig in  o f  P r o b l e m

This problem has arisen most generally in providing balancing networks 
which will give satisfactory return losses against various types of telephone 
facilities. I t  is obvious th a t for a given impedance, (r +  jx ) ,  a t a given 
frequency there are an infinite number of networks which will satisfy 
the given impedance. I t  has also been pointed out th a t the network 
which simulates a given impedance function is not unique. Hence there 
are also a large number of networks which will satisfy a given impedance 
function.

In  designing networks for repeater circuits, it is generally satisfactory
278
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if the return loss is equal to or greater than some specified number of db. 
This somewhat simplifies our problem and permits a double infinity of 
solutions. A method has been given by Brune1 for designing such networks, 
in which it is pointed out th a t there is no unique solution to the problem of 
designing a finite two-terminal network and also states tha t any network 
which satisfies the impedance function may be considered a satisfactory 
solution to the problem. I t  is thought th a t the method which is given 
below will provide a solution which makes maximum use of the number of 
elements employed. T hat is, it will provide a given return loss with the 
minimum number of parts.

The required degree of approximation and the frequency range to be 
covered determine the number of elements required in this solution. In  one 
simple case which will be discussed below in the first example, the approxi
mation between the impedance of a transmission line and a network designed 
to simulate it is the approximation between the curvature of the impedance 
function and the arc of a circle.

G e n e r a t in g  F u n c t io n

The method discussed here differs from tha t outlined by Brune in that 
use is made of known generating functions which are added together in series 
to approximate the to tal function, similar to the manner in which sine 
functions may be added to approximate other functions. This series type 
network can readily be converted to the ladder type by well known net
work equivalence theorems and the solution will then have the Stieltjes 
fraction form pointed out by Fry2 and Cauer.3

The generating function used here is an impedance consisting of a resist
ance in parallel with a pure reactance or a special case of this. This func
tion plus a real corresponds to a bilinear transformation, the properties 
of which have frequently been discussed elsewhere. This particular con
figuration, for instance, has been pointed out both by Brune and by Guille- 
min3 a t M .I.T . and a discussion of the bilinear transformation has been 
given by C. W. Carter4 of the Bell Telephone Laboratories. The series 
addition of such generating functions is similar to the form given in Foster’s 
reactance theorem except th a t there only pure reactances are dealt with. 
The solution can also be worked out with admittances, but will not be dis
cussed here since the average engineer is more accustomed to dealing with 
impedances.

In  many problems, particularly those involving dissipative transmission

1 Jour. Math. &  Physics, Vol X, 1930-1931.
2 Bull. Am . Math. Soc., 35,1929.
3 Guillemin—Vol. II .
4B.S.r./., July 1925.
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lines, the entire impedance function is found in the fourth quadrant of the 
complex plane. When this is so, the generating function is reduced to a 
resistance in parallel with a condenser.

G r a p h ic a l  R e p r e s e n t a t io n  o e  F u n c t io n s

As a first step in utilizing the graphical procedure, it will be advisable to 
acquire some familiarity with the generating function in its general form

(B)

R L C X ^ F L X + R

F=oo

Z(X)= R L  X 
LX  + R

( C )

R
H W l n

F=o

z(xj- R C X +  I

( E )

(°) X0—Wv—O f - ( F  r  _JL X

F  =  o T O F-0
R R

CŁII

<"n

Z ( A ) = R + L X

( F >
R C 

o-WVo-o-ll-o

F“0O
Z ( X ) = R  +  ^

F = 0

CG)
o—̂ 0 00 o

F-Fa

zOO= L C  X 2 - t R C X + l  

A C

Fig. 1.—The impedance loci, Z ( \) ,  for several networks.

and some of its special cases. Plots of various cases are given in Figs. 1(a) 
through 1(h) together with the network configuration and the impedance 
function thereof. Obviously the summation of the properly selected gen
erating functions corresponds to the addition of the partial fractions de
rived by Brune’s method. For an accurate solution these partial fractions 
when combined should approximate the given Z(X).

Figure 1(A) shows the impedance locus of the parallel R, L, C generating
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function as frequency varies from 0 to °o . At 0 frequency Z (\)  =  0 +  jO 
and at co Z (\)  = 0 — jO. The locus is a circle and crosses the real axis at R  
and the frequency at which L  and C are anti-resonant. The special cases 
will be readily apparent and without further discussion attention will be 
shifted to Fig. 1-c which is the generating function applied to obtain solu
tion of the examples listed below, all of which are located in the fourth 
quadrant.

The impedance of this function (Fig. 1-c) a t zero cycles is a real and has 
the value R, and a t infinite frequency its impedance is 0 — jO. The locus 
traced by this function in the fourth quadrant of the complex plane as /  
varies from zero to infinity is a semicircle of radius R /2  whose center is at 
R /2  on the axis of reals. Obviously, the impedance for any given fre
quency depends only on C when R  has been fixed.

One of the most useful networks for voice frequency work is that in which 
two such functions are added together but the second function is the special 
case in which C =  0. We then have a network which consists of a resist
ance Ri in series with the parallel combination i?2 and C2, and is represented 
by the semicircle just described but displaced to the right of the origin by 
the distance Ri. This form corresponds to a special case of the bilinear 
transformation previously mentioned.

As stated earlier a given impedance function can be obtained from a large 
number of networks but when the impedance is to be simulated for a limited 
frequency range, such as the voice band, the selection of the best network is 
reduced to sorting through a relatively small range of networks to select 
th a t one which is the best compromise for the given conditions. This then 
is a restatem ent of the problem: To find the network having the minimum 
number of circuit elements which will give the desired approximation to a speci
fied impedance function.

The other sections of Fig. 1 will be evident upon analysis.

M e t h o d  o f  S o l u t io n

The first step to be followed in finding the solution to a given problem 
is to plot in the complex plane the locus traced by the given impedance 
function as the frequency varies over the range which is to be considered 
and to mark the frequency a t those impedances which are essential to the 
problem. Having done this, the next step is to draw a semicircle with the 
center on the real axis such th a t an arc of the semicircle approximates part 
or all of the locus of the impedance function. In many cases this semi
circle is a sufficiently good approximation but where it is not, it will be 
necessary to add other functions. The examples given below are illustra
tive of cases requiring three-, four- and five-element networks.
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E x a m p l e  1— 104 M i l  O p e n  W i r e

To dem onstrate the  method we will now consider the design of a net
work which simulates a 104-mil copper open-wire line with 12 in. spacing 
and CS insulators. The impedance function for this particular facility is 
plotted on Fig. 2. I t  is perhaps rather obvious th a t this locus can readily 
be a p p ro x im ated  by a semicircle whose center is on the real axis and whose 
intercept on the real axis is not a t the origin. Such a semicircle has been 
drawn, bu t it is recognized tha t the one shown is not unique, for it would be 
possible to draw several others which might do equally well. However, they

Ri

Fig. 2.— Graphical design of two-term inal balancing netw ork for 104-mil. copper
open wire.

would in general be fairly close to th a t shown. Having selected this semi
circle, which approximates the impedance function, it is evident th a t a net
work consisting of a resistance, R 1, in series with a parallel R 2C\ combina tion 
will provide a reasonable approximation above 200 cycles. The series re
sistance R i , is, of course, the left-hand intercept of the semicircle and the R  
axis and the parallel resistance, R 2 , is the diameter of the semicircle. There 
remains, then, the problem of determining C2 which obviously governs the 
distribution of frequencies along the semicircular locus. If C2 is very small, 
the 1000 cycle impedance will be near the right-hand end of the locus since



R 2 is controlling and vice versa. The answer as to what value of C should be 
selected depends on what frequency range we are most interested in approx
imating closely. Suppose in this case tha t we say 1000 cycles is the fre
quency at which we wish to have the best degree of approximation. C2 
will then be determined by drawing a vertical axis passing through Ri  and 
inscribing a semicircle passing through i?i and the 1000-cycle impedance 
of the open-wire line function and having its diameter on the vertical 
axis. The diameter of this semicircle represents X c and therefore determines 
the capacity, C2, of the parallel combination.

Carrying out the procedure just described it will be seen by reference to 
Fig. 2, that X c 2 =  145 ohms a t 1000 cycles and therefore C2 =  1.1 mf. 
The 3-element network thus determined is a resistance of 654 ohms in 
series with the parallel combination of 1800 ohms and 1.1 mf. By arbitrary 
choice the 1000-cycle impedance of the line and network are in good agree
ment. I t  is now necessary to determine the network impedance at other 
frequencies in order to compare them against the open-wire line impedance.

As is well known the parallel impedance a t any other frequency is the 
intersection of the corresponding X c  and i ?2 semicircles. At 200 cycles X c 
= 725 ohms. Drawing a semicircle of diameter 725 ohms on the vertical 
axis through 654 ohms the network impedance is located at the intersec
tion of this semicircle and the i ?2 semicircle, i.e., a t 900 — j  620.

Thus the network impedance locus as a function of frequency may be 
completely determined over the desired frequency range and compared with 
the given impedance locus of the open wire.

This may be done visually. If corresponding points on the two loci are 
close together, the simulation will be a good one and vice versa. If it is 
found th a t the simulation is too good a t one frequency and not good enough 
at other frequencies, it will be possible to alter the distribution of frequencies 
along the locus by changing C2 or the locus may be shifted by changing i ?2 
or both C2 and Ri  may be changed. No specific rule can be stated for this 
but with a little experience considerable dexterity may be acquired in this 
sort of juggling and a locus found which will give an approximately con
stan t approximation over a reasonably wide frequency range. As may be 
seen by referring to Fig. 2, it was found tha t a network consisting of a 654- 
ohm resistance in series with the parallel combination of 1800 ohms and
1.10 mf. gives a very good simulation of a 104 mil copper open wire line over 
the voice range. As is obvious from the graphical method, the simula
tion rapidly deteriorates below 200 cycles due to departure of the network 
locus from the impedance locus of the open ware line. If it were necessary 
to improve this low-frequency simulation, it would be necessary to add 
further generating functions to the design or compromise a t the higher 
frequencies.

Since this network was intended for use as a balancing network, it was
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then tested in the laboratory against the open-wire impedances and found 
to give fairly high return losses as listed in Table I. The corresponding 
return losses were also computed and tabulated. The impedances are 
given for both the network and the theoretical line a t typical frequencies
over the range from 100 cycles to 20,000 cycles.

The impedance function for an open-wire line is given by the equation

-  ( £ r l ) ‘  (1)\G T  C \/

Expanding this function by the binomial theorem and taking the first 
approximation and further letting G =  0, the impedance function becomes

T a b l e  I
104 M il Cti Open Wire, Dry Weather, 12" Spacing, CS Insulators

F re q .
C ycles

Im p e d a n c e R e tu rn  L oss of N e t 
w o rk  v s  L in e -d b

N e tw o rk L in e

R e c t. P o la r R e c t. P o la r M easu red C o m p u te d

100 1360—j878 ' 1620/3279 1101—j883 1410/3878 20.9 21.3
200 904—j623 1097/34.7 865—j562 1032/ 33.0 27.4 29.4
300 34.4
500 699—j281 754/ 2TT9 712—j273 7 6 4 / 2 0 37.8 39.6

1000 665—j 143 68I / 12.2 674— j 144 689/12 .0 42.3 43.6
2000 656— j72 6 60 / 6 .3 662— j74 666/ 6 .4 45.2 47.8
5000 654— j28 654/ 2 .4 658— j'32 659/ 2 .8 43.1 48.4

10000 654— j l 4 .5 654/ 1.0 653— jl2 653/ 1.1 39.5 55.5
20000 654—  j'7.2 654/ 0 .5 652— jlO 652/ 0 .9 51.2

2 ( x ) +
(LC)K2/R)  X

(2 )

Applying the method of Brune, this equation yields a network consisting of 
646.4 ohms in series with a condenser of 1.09 mf. I t  will also be apparent 
th a t eq. (2) has the same form as tha t of Fig. 1(f), i.e.,

= * + y

and by a 1 to 1 comparison of terms it is evident th a t
a

Ri

a n d

( 3 - a )

( 3 - b )
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Including G, the expression for the first approximation of the impedance 
function may be written in the form

Z(X) i  +
( -  -  - V\2 L  2Cj

+  G
^  2C

(4)

hollowing Brune’s method or noting the correspondence with the impedance 
function given in Fig. 1(c), it is apparent tha t the network is a resistance, 
Ri , of 646.4 ohms in series with a parallel i?2C2 combination. C2 is 1.09 
mf as before but R> computes as 312,000 ohms which is so large compared 
to 1.09 mf. tha t the additional resistance provides negligible improvement 
over the previous network for the voice frequency range.

Obviously then, the analytical method requires a t least a second order 
approximation entailing considerable additional analytical work and com
putation which will not be carried out here. This points out the advantages 
of the graphical method; namely, it is rapid, requires no special skill, and 
gives a reasonably accurate answer.

E x a m p l e  2— S ir a l  F o u r  C a b l e — 1320 F o o t  Sp a c in g — 6 M il h e n r y  
L o a d in g  (SP4-1320-6)

In  order to indicate the procedure when two complete RC  regenerating 
functions are required, another example is given which covers an impedance 
simulation of a SP4-1320-6 line. A plot of this impedance function is 
shown on Fig. 3, and it is a t once obvious th a t two semicircular generating 
functions should give a reasonably good approximation to the given im
pedance function.

The method of selecting these functions may be somewhat as follows: 
Consider first the simulation in the low-frequency range, i.e., 200 cycles to 
500 cycles. For this region a semicircle may be selected much as in the 
first example and the one chosen yields a network consisting of Ri = 480 
ohms in series with the R 2C2 parallel combination in which i ?2 =  1460 
ohms. C2 was found by choosing an X  a t 500 cycles close to that of the 
line and from which C2 was found to be 1.38 mf.

I t  is evident tha t to provide high-frequency simulation a condenser must 
be placed in parallel with R x =  480 ohms. Its value is determined by the 
intersection of the Ri and X Cl semicircles a t 10,000 cycles and C\ is found 
to be .0161 mf. The construction lines involved in these determinations 
are shown as light weight solid lines.

Since there are now two impedance functions to be added in series the 
locus will depart somewhat from the two semicircles. However, the de
parture will not be great since the effect of Cx is small a t low frequencies,
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Fig. 3—Graphical design of two-term inal balancing netw ork for spiral four cable.

T a b l e  I I
Spiral Four Cable— 1320 Foot Spacing— 6 M ilhenry Loading— Full Section Termination

F re q .
C ycles

Im p e d a n c e R e tu rn  L oss vs 
T h e o re t ic a l  

L in e -d b
M e asu re d  

R e tu rn  
L oss v s  

A rtif ic ia l*  
L in e -d b

N e tw o rk L in e

R e c t . P o la r R e c t . P o la r M e a s 
u red

C om 
p u te d

100 1046—j713 126 6 /3 4 3 810—j670 1051/3976 14.8 19.8 21.8
200 701—j'528 878/37.0 630—j430 763/34 .3 22.8 22.6 22.9
500 516—j239 569/24.9 500—j220 546/23 .8 33.2 33.0 25.2

1000 488—jl39 507/15.9 470—jl30 488/15 .5 37.1 33.9 26.2
2000 479—jl08 491/12.7 470—j 100 481/12 .0 41.2 38.1 26.6
3000 26.2
5000 456—jl25 473/15.3 460—j 120 4 75 /14 .6 39.9 43.4 26.3
7000 430—j 163 460/20 .8 450— jl50 4 75 /18 .4 36.7 31.8 25.1

10000 389— j201 438/27 .3 420—j200 465/25 .5 32.4 29.3 23.5
12000 23.6
15000 328—j231 401/35 .1 380—j280 472/36 .4 21.8

* 120 sections term inated in 450 ohms.

and th a t of i ?2 is small a t high frequencies. In  this case the two functions 
m ay be thought of as virtually independent.

Table I I  gives the theoretical impedance of this facility and the computed
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impedance of the network at frequencies from 100 cycles to 15,000 cycles 
and, as may be seen by the comparison, a fairly good simulation exists 
throughout the range. This fact has been verified by making return loss 
measurements in the laboratory against the theoretical line with the results 
indicated in the table. Return loss measurements have also been made be
tween the network and an artificial line consisting of 120 sections of this 
facility terminated in 450 ohms. These results show a fairly constant re
turn loss of about 25 db throughout the frequency range. This seems to 
indicate tha t the simulating network is a fairly close approximation to the 
artificial line so far as frequency is concerned and differs from it by a con
stant multiplying factor which is of the order of 1.12. I t  is therefore ap
parent that whenever it is necessary only to simulate the impedance of this 
particular facility, this four-element network will provide a fairly adequate 
simulation. The analytical derivation of this network will be omitted.

method. This is the simulation of non-loaded cable of which the local 
plant is largely composed in urban areas. A first approximation of the

provides a three-element network of the type discussed above which gives a 
return of about 20 db in the 300 cycles to 3000 cycles range. The graphical 
derivation of the three-element network is shown on Fig. 4 which also gives 
the impedance function for 22 ga. BSA non-loaded cable. This latter func
tion is virtually a straight line in the voice range whereas the network is the 
arc of a circle. Hence it would be impossible to obtain an appreciably 
closer approximation throughout the range with a three-element network. 
However, the addition of elements will improve the match as will be shown 
in example 3b .

The network just derived can be expressed in terms of the 1000-cycle 
impedance and applied for any gauge of non-loaded cable as follows:

E x a m p l e  3 a— N o n -l o a d e d  E x c h a n g e  A r e a  C a b l e  

Another case will be cited to show the application of the graphical

analytical method does not yield a useful network bu t the graphical method

Ri = .42 K 

Rt =  2.8 K 

X C2 =  .9 K

(5-a)

(5-b)

(5-c)

where K is the magnitude of the 1000-cycle impedance and

(5-d)

Table I l i a  gives a comparison of the network and line impedances and the 
computed return loss for frequencies through the 200 to 3000 cycle range.
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E x a m p l e  3 b — 1 9 -G a u g e  Q u a d d e d  N o n -L o a d e d  T o l l  C a b l e

Two complete RC  functions plus a resistance are required to give a good 
simulation for non-loaded toll cable when the simulation is carried through 
the voice and carrier frequency ranges. The impedance function for 19 ga.

0 200 400 600 SOO 1000 1200 1400
R E S IS T A N C E

Fig. 4—Graphical design of two-terminal balancing network for 22-ga. non-loaded 
exchange area cable.

T a b l e  I l l- a
22 Gauge Non-Quadded Non-Loaded B SA  Exchange Area Cable

F re q .
kc

L in e  Im p e d a n c e N e tw o rk  Im p e d a n c e C o m p u te d  
R e tu rn  
L o ss— 

d bR e c t . P o la r R e c t . P o la r

0 .2 915—j905 1287/44/7 1380—j725 1555/2778 15.0
0.5 580—j565 8O8/ 44.2 705—j725 IOIO/45.8 19.1
1.0 415—j400 576/44 .0 390—j460 603/49.7 25.2
2.0 295— j280 407/43 .5 285— §245 376/40 .7 26.6
3 .0 250— j220 333/41.3 260—j 165 308 /32 .4 21.2

toll cable is plotted on Fig. 5. The method followed in determining the 
elements is somewhat as follows: Ri  will be given by the intercept of the 
function on the R  axis and is 130 ohms. Next look a t the low-frequency range 
determined by R 3C3 and draw a semicircle which approximates the given 
function in the range of 200-500 cycles. The diam eter of this semicircle
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determines R 3 as 2100 ohms and R 2 is then automatically determined as the 
difference between the i?-intercept of the R 3 semicircle and Ri , hence 
=  420— 130 =  290 ohms. To determine C3, choose the X C3 semicircle a t 500 
cycles to intersect the R 3 semicircle a t a point near the 500-cycle impedance 
of the cable impedance function, but make some allowance for the added 
negative reactance of the R 2C2 generating function. The determination of 
C2 can be made in either of two ways. First an X Ci semicircle can be drawn 
a t 5000 cycles which intersects the i ?2 semicircle a t an impedance near the 
5000-cycle impedance of the cable. The impedance at 1000 cycles can then 
be found graphically for R 2C2 and R 3C3 and added together to Ri . This

,00KC| 2 0
¡Ê 5 * \  /V 3

\
\

5kc\ ^
11

i
1

/

-- 0—  IM PED A N C E  FU N C T IO N
FOR 19 GA QUADDED TO LL 
C A BLE , 110 F

IM PED A N CE FU N C T IO N  
FOR N ET W O R K

R, R 2= 290~ R 3= 2 I0 0 ~  

l30<~ r W V —1 H W n

C2=.30MF C3=.725MF
Z | z 2 z 3

! K ^ * 3 I
S. 1 \

I K ? ^ \

-
A

<5KC

V
\

\  v>
\ s

. 2KC

.
.2KC

,.IKC - - -
J_KÇ_ ----

-2 0 0

,.,-400

H O <14
œ-600

-800

200 400 800 1000 
R ES IS T A N C E

1200

Fig. 5— Graphical design of two-terminal balancing network for 19-ga. quadded 
non-loaded toll cable.

to tal impedance at 1000 cycles should provide a good simulation of the 1000- 
cycle impedance of the cable. A second procedure for finding C2 would be 
to follow a somewhat reverse process: Determine the 1000 cycle Z  for the 
R 3C3 function and subtract it from the 1000 cycle Z  of the cable. Choose C\ 
such th a t the intersection of the R 2C2 semicircles is near the point deter
mined by the subtraction of R 3C3 from the cable.

To avoid confusion of lines the construction circles have been omitted 
from this last drawing except to show the addition of the 1000-cycle im
pedances. As may be seen this network shown in Fig. 5 provides a rather 
good simulation throughout the frequency range above 200 cycles.
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As pointed out earlier, if the first guess is not a sufficiently good approxi
mation a second try  can be made based on the evident shortcomings of the 
first try . In  this case if a closer approximation is required up to 20 kc the 
next step might be to change C3 to .8 mf which would make the Z3 contribu
tions above .1 kc somewhat less negative and would therefore raise the net
work locus. Then changing R\ to 140 ohms would shift the locus 10 ohms 
to the right. The resulting locus would be somewhat closer a t the upper 
frequencies but the change would not be necessary unless a rather high 
degree of balance is required.

T a b l e  III-b  
19 Ga. Qtiadded Non-Loaded Toll Cable

F re q .
kc .

N e tw o rk  Im p e d a n c e L in e  Im p e d a n c e

C om 
p u te d  

R e tu rn  
L o ss  v s  
T h e o -

R e c t . P o la r R e c t . P o la r L in e -d b

.1 1515 —jl064 1852 / 35T9 1103—j 1093 1554 /4 4 .7 18.3
.2 867 — J893 1244 /4 5 .8 783— J770 1097 /4 4 .5 24.8
.5 488 — j493 693 /4 5  .3 501— j482 696 /4 3 .9 38.2

1.0 376 — j340 507 /4 2 .1 361— J335 492 /  42.8 36.0
2.0 271 — j254 37 1 .6 /4 3 .2 265— j229 350 / 4O.8 29.0
3.0 217 — j203 297 .2 /43 .2 223—  i l  80 287 /  38.9 27.8
5.0 166 5— j 139 2 1 1 .3 /3 8 .0 187— j 131 228 / 3 5 .I 26.1
8.0 145 5— j96 .8 172 .0 /32 .2 164— j94 189 /  29.8 25.8

10.0 140 0— j 7 4 .4 15 8 .0 /2 8 .0 155— J79.2 174 / 27 .I 26.5
16.0 134 —  j47.2 142 .1 /19 .5 145— j55.0 155 / 2O.8 27.9
20.0 132 — j37.9 137.9/ 16.O 141— j45 .1 148 / H A 27.9

100 131 -  j7 .3 1 3 1 .0 / 3 .2 130— j 14.0 131 /  6 .2 31.7

In  general the success of a trial of the graphical construction may be 
determined immediately by comparing about three frequencies of the line 
and network.

Table I l lb  gives the computed network impedance and the line imped
ance. The computed return loss is also given and equals or exceeds 25 db 
a t all frequencies above 200 cycles.

I t  is apparent th a t the resistance and condenser elements of the generat
ing functions are in descending order of magnitude with increasing fre
quency for the non-loaded cable the impedance locus of which is essentially 
a straight 45° line. As pointed out earlier, the series addition of such gener
ating functions may be converted to a ladder structure5, whose sections will 
have a tapered characteristic rather than repetitive.

5 Appendix D of Transmission Circuits by K. S. Johnson.
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R e t u r n  L o ss

When designing such networks for balancing purposes, it has been found 
convenient to plot the function on a sheet such as Fig. 6 which divides the 
right half of the complex plane into circular regions such tha t all points on 
or within the boundary of a given region have a return loss against the 
network 1 +  jO equal to or greater than that corresponding to the boundary. 
These circles are determined by the return loss voltage ratio k and the ratio

R E S IS T A N C E

Fig. 6—Curves of constant return loss for the network 1 ZO =  1 +  /0

of the line and network impedances. They may be computed from the 
equation

(1 +  L /N ) / {  1 -  L /N )  =  k (6)

By plotting the line and simulating network loci on such a sheet it is 
generally possible to observe visually whether or not a given network meets 
the specified return loss requirement. If visual accuracy is not adequate,
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it is always possible to measure off N  and L  and the angle between them, 
spot the complex ratio L / N  on the complex plane and read immediately the 
approximate return  loss.

C o n c l u s io n

The examples of the foregoing discussion have been confined to the fourth 
quadrant. I t  was shown th a t by graphical means a number of parallel 
resistance-condenser functions could be determined which when added 
together would yield a close approximation to the given function. In  the 
most general case these functions would involve the generating function of 
R, L  and C in parallel, the locus of which is a circle having impedance 
+ 7O a t zero frequency and —jO a t infinite frequency, and crossing the axis of 
reals a t R  and the frequency a t which L  and C are anti-resonant. A case 
which has been found useful in simulating such things as telephone sets and 
other inductive elements is the parallel combination of R  and L  which, of 
course, is the special case for C — 0 and occurs in the first quadrant.

The foregoing has been discussed with the thought tha t it may be useful 
where there is limited time and where the required degree of simulation 
is consistent with a graphical method. A t some future time it  m ay be 
possible to pursue the problem further and devise the analytic counterpart 
to the somewhat heuristic graphical method.



CHAPTER III

The Use of X-Rays for Determining the Orientation 
of Quartz Crystals

By W. L. BOND And E. J. ARMSTRONG

HIS paper is one of a series by the Crystal Research Group on the
manufacture of quartz oscillator plates. Certain sections of it which 

are not original, but rather adaptations of text book material to the present 
problem, are included for purposes of completeness and for the convenience 
of those readers whose knowledge of the crystallographic literature may 
be limited.

3.1 P r o d u c t io n  o f  X - R a ys  f o r  Q u a r t z  C r y s t a l  X - R ay  W o r k

X-rays are produced when electrons strike a metal target a t high velocity. 
The wave-length of X-rays given off from an X -ray tube varies from the 
longest which can pass through the X-ray tube window to the shortest that 
can be produced from the given target by the applied peak voltage. By 
analogy to the visible spectrum this is referred to as “white” radiation. 
For each different metal, however, there are characteristic radiations of 
certain wave-lengths whose intensity markedly exceeds those of other wave
lengths (Fig. 3.1). The strongest of these characteristic radiations is known 
as the Kai,  the next strongest (generally half as strong and of slightly longer 
wave-length) as X a 2 and the third strongest (shorter in wave-length than 
Kai)  is K(3. The higher the atomic number of the target, the shorter will 
be the wave-length of the characteristic radiation. Therefore higher volt
ages will be required to excite the characteristic radiation from the heavier 
metals. (The minimum wave-length of X-rays that can be excited by any

1.234 X 10-4
given voltage is given by the equation Amin. =   y   where I  is

expressed in volts and A m in . in Angstrom units).
Higher voltages also raise the intensity of the white radiation and, a t 

any given voltage, the white radiation produced from a heavy metal target 
is more intense than tha t produced from a lighter metal target (see Figure 
3.1). When “white” radiation is desired, as in Laue photography, heavy 
metal targets, such as tungsten, are used: when “monochromatic” radiation 
is desired, as in crystal goniometry, the lighter metal targets, such as copper, 
are used because, with a lighter metal target (wave-length of char
acteristic radiation long) the voltage, and therefore the intensity of the
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white radiation, cannot be raised very high before exciting the characteristic 
radiation whereas, with a heavy m etal target (wave-length of characteristic 
radiation short) considerable intensity of white radiation can be produced 
w ithout exciting the characteristic radiation. This is illustrated in Fig. 3.1 
which shows th a t a potential of 35,000 volts is high enough to excite the 
K  group radiation from molybdenum, bu t not high enough to excite the 
shorter wave-length K  radiation from tungsten which, further, gives more 
intense white radiation a t this voltage. Even higher voltages, resulting in
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Fig. 3.1—Variation of intensity w ith wave-length of X -rays from tungsten and 
molybdenum targets a t 35,000 volts

more intense white radiation, could be used with tungsten w ithout exciting 
the characteristic radiation (X =  .209).

Figure 3.2 shows the I - \  curve (estimated) for copper, the target metal 
commonly used in quartz X -ray work, which has a small atomic number 
and can therefore be used as a source of “monochromatic” X-rays with 
moderate voltages. (A further advantage of copper for quartz work is 
pointed out a t the end of this section).

The K a i and K a i  wave-lengths are so close together th a t for most uses 
of “monochromatic” radiation no attem pt is made to eliminate the K a 2 
radiation.' The X/3 radiation, however, gives a distinct intensity peak of 
shorter wave-length which m ust be reduced as much as possible by use of 
a metal filter having a high absorption coefficient for the Kf.3 radiation of
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the target used. In  most cases the best filter-metal for the K(3 radiation 
is the second element below the target metal in the periodic table. For 
example, a nickel filter 0.0005 inches thick is used with the copper target 
which is used for X -ray goniometry of quartz.

The minimum voltage tha t will excite the K ai  radiation of copper (wave
length X =  1.5374A) is 8.86 kv., but a voltage of 30 or 40 kv. is usually 
used to obtain adequate intensity.

Fig. 3.2—Variation of intensity with wave-length of X-rays from a copper target a t
20,000 volts (estimated)

3.2 D e t e c t i o n  o f  X - R ays 

X-rays may be detected by means of heat effects, fluorescence of appro
priate screens, photographic effects and by ionization of gases.

H eat measuring devices are not suited to routine intensity measurements. 
The other three means of X-ray detection are all being used for various 
types of quartz work bu t the ionization of gases is used most widely.

The ionization method involves a chamber which consists essentially of 
a gas-filled metallic cylinder containing an electrode. A potential is main
tained between the electrode and the cylinder so that when the gas is 
ionized by the X-rays the positive and negative ions produced are drawn 
to the oppositely charged electrodes, thus constituting an electric current, 
which current is proportional to the intensity of the X-rays entering the 
chamber. This current is commonly indicated by a current meter pre
ceded by a special vacuum tube amplifier.

The gas used in the chamber is often air but methyl bromide is about 
30 times more readily ionized, xenon 155 times. The only advantage of 
air is tha t the chamber need not be gas-tight. The entrance to a sealed 
ionization chamber must be closed by a substance which does not result 
in undesirable absorption of the X-rays. Since a nickel filter is needed
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somewhere in the path of the X-rays to absorb the X/3 radiation from the 
copper target, it may be used here to seal the entrance of the chamber.

The Geiger-Miiller counter is similar to the ionization chamber, bu t is 
operated a t such high voltage th a t the gas is always near breakdown, 
the passing of X-rays supplying the impetus to complete the breakdown. 
Because of the high voltage the ionization continues to be strong as the 
intensity of the radiation declines. Such a lag is likely to cause erroneous 
maximum readings in crystal measurement.

3 .3  P h y s io l o g ic a l  E f f e c t s  o f  X - R a y s

Even a few minutes direct exposure to X-rays from such a source as the 
G. E. CA6 tube will result in a burn th a t will become apparent in a day or 
so. In  most cases such a burn, if not repeated, will heal w ithout ill effects, 
bu t because the physiological effect of X-rays is cumulative, repeated 
exposure to direct radiation could result in a burn th a t would not heal 
and m ight become cancerous.

Pinhole leaks which permit direct radiation to escape are thus exceedingly 
dangerous. They may be detected by use of a fluorescent screen in a 
darkened room. A sheet of lead-glass j  to 5 inch thick should be held 
between the fluorescent screen and the observer.

X-rays are scattered from all substances which they strike and repeated 
exposure to this scattered radiation may result in a harmful decrease in 
the white blood corpuscles, in sterility, and perhaps in serious burns.

To test for scattered radiation dental X -ray films should be arranged 
as close to the instrum ent on all sides as any part of the operator’s body 
can get and left for a period of two weeks of normal operation. If there 
is no position in which the film becomes fogged during the two weeks, the 
operator is safe. A narrow lead strip across the film will provide an un
exposed portion for comparison with the exposed portion. I t  should be 
emphasized th a t a dental film carried in the pocket is an inadequate safety 
test, since the hands are frequently the most dangerously exposed part 
of the body.

The absorptive power of shielding materials is proportional to the density 
of the material. Minimum adequate shielding is provided by 1.5 mm. 
or about y¥ inch of lead or its equivalent for protection against X-rays 
generated a t 70 k v .1 Equivalent thicknesses of shielding m aterials are 
as follows:

L ead .......................................................................................................................  xg inch
Lead rubber.......................................................................................................... | - j  inch
Lead glass.............................................................................................................  f -x  inch
Steel........................................................................................................................  5 inch
Bricks and concrete............................................................................................ 6 inches
W oods....................................................................................................................  60 inches

1 Davey, W. P., “Study of Crystal Structure and its Applications,” McGraw-Hill, 1934.
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The United States Bureau of Standards has issued a 28-page booklet 
entitled “X-Ray Protection” which may be obtained from the Super
intendent of Documents, Washington, D. C. for 10 cents.

3 .4  D if f r a c t io n  o f  X - R ays b y  C r y st a l s

Following the work of the French crystallographer Haiiy a t the end 
of the eighteenth century the theory that crystals were made up of small 
identical units in orderly arrangement was widely held by crystallographers. 
In  the late nineteenth century these units were thought of as intersecting 
planes of atoms. Then, in 1912, the German physicist von Laue conceived 
the idea tha t such a lattice of atoms should act as a three-dimensional 
diffraction grating for electromagnetic waves of wave-length approxi
mating the interplanar spacing of the lattice. If X-rays were, as was 
suspected, electromagnetic vibrations of short wave-length, they might be 
of the right order of magnitude to obtain diffraction from crystals. When 
the experiment was tried it was found tha t a beam of X-rays (not mono
chromatic) passing through a crystal produced an orderly arrangement of 
spots on a photographic film, the type of photograph now known as a 
Laue photograph.

The term reflection may be used in place of diffraction since X-ray dif
fraction is like light reflection in tha t the entering and leaving beams make 
equal angles with the reflecting or diffracting atomic planes.2 Since this 
concept is simpler, X -ray diffraction is commonly referred to as reflection.

Unlike light reflection, X -ray reflection can take place only under the con
ditions given by the following equation which is known as the Bragg law

n \  =  2d sin 9 (3.1)

where n = a small whole number,
X =  wave-length of X-rays used (generally stated in Angstrom

units)
d =  distance between the atomic planes (generally stated in

Angstrom units).
9 = angle between the X-rays and the atomic planes (“The Bragg 

Angle”).
T hat is, the angle of incidence must be such that the path-length of two 

rays reflected from different atomic planes differs by a whole number of 
wave-lengths so tha t the emerging rays will be in phase. If the difference 
in path-length of the two rays is one wave-length the reflection is called 
the first-order reflection (n = 1). A t some larger 6  angle the path dif
ference will be exactly 2X and reflection will occur again. This is the second 
order reflection (n = 2). Monochromatic X-rays are used so that only

2 Compton, A. H. and Allison, S. K., “X-Rays in Theory and Experiment,” D. Van 
Nostrand, New York, 1935, Pages 340-346.
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one value of 9 will satisfy the equation for each order reflection. Thus, 
with a monochromatic X -ray beam one may not obtain reflection from the 
planes a t all angles as with visible light, bu t only a t such specific angles 
as satisfy the Bragg law. Further, even with optimum conditions for 
reflection the ratio of the intensity of the reflected X -ray beam to th a t of 
the incident beam is of the order of 1:10,000. The Bragg angle 9 is highly 
critical and the reflection of X-rays from atomic planes therefore serves 
as a precise method of crystal orientation.

Figure 3.3 is a diagrammatic representation of the relation nk = 2d sin 6 . 
On such a diagram the following laws of X -ray reflection become obvious:

(1) X m ust be smaller than 2d, th a t is, the wave-length of X-rays used 
m ust be less than twice the inter-planar spacing of the atomic planes to 
be X-rayed.

(2) The number of different orders of reflection n  obtainable from atomic 
planes with interplanar spacing d is fixed by the expression nk  <  2d. In

N>3

other words, since sin 6  cannot be greater than 1 the value of X m ust be 
2 dless than — . The distance between the atomic planes parallel to the 
n

° 3hexagonal prism of quartz is 4.2466 A and the wave-length of the K a i 
radiation from a copper target is 1.5374 A. Hence no reflection higher 
than the 5th order could be obtained from this set of planes using a copper 
target.

On the other hand, a target m etal whose characteristic wave-length is 
very much shorter than 2 d is undesirable since it gives so many orders of 
reflection from each set of atomic planes th a t the m ultitude of closely 
spaced reflections leads to confusion.

(3) Higher orders of reflection occur a t larger 9 angles.
(4) The relation of 9 to X is not linear bu t sinusoidal.
The reflected beam can only lie in a plane containing the normal to the 

atomic plane and the incident beam. Conditions are unchanged by ro
tating the crystal about the normal to the atomic plane being used.

3 R. B. Sosman, “The Properties of Silica,” Chemical Catalogue Co New York 1927.
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3.5 T h e  N a m in g  o f  A t o m ic  P l a n e s  in  C r y st a l s

I t  is convenient to be able to refer to any atomic plane in a crystal by 
some symbol tha t uniquely defines its orientation. The symbols com
monly used for this purpose are known as Miller indices (or Bravais-Miller 
indices for the hexagonal system) and are the reciprocals of the intercepts 
of the atomic plane on a set of crystallographic axes chosen in accordance 
with the symmetry of the crystal. In quartz this set of axes is as shown in 
Fig. 3.4: a vertical axis c and three horizontal axes a t 120° d i , a2 , o3 .

Measurement of the interfacial angles of thousands of quartz crystals 
has shown that the natural faces have intercepts on the crystallographic

-f-C

Fig. 3.4—Hexagonal crystallographic axes

axes th a t are integral multiples of a fixed distance, which is the same in 
the case of all three a axes and different in the case of the c axis. This 
fixed distance along the c axis is found to be 1.09997 times the fixed dis
tance along the a axes. Therefore, the “unit length” of each of the a 
axes is said to be 1; tha t of the c axis 1.09997 and a face tha t cuts the c 
axis a t 1.09997a from the origin is said to have the c intercept of 1. (This 
unit axial length is different for different substances bu t the same for all 
crystals of the same substance.) For example, the front cap face in figure 
3.5 has the axial intercepts 1, co, —1, 1, naming the axes in the order 
ax , 02 , 0 3 , c. The indices for this face are written (lO ll) (general form 
hkil). The front vertical face has the intercepts 1, <», —1, co and the
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indices (10l0). The first two digits of the indices of any vertical prism 
plane are the same as those of the adjacent cap faces: the final digit is always 
zero because they are parallel to the Z  (or c) axis. Since the intercepts on 
Ui and a-i uniquely determine the intercept on a3 , the third digit of the sym
bol may be omitted. The omission is sometimes indicated by a dot, as 
(10-1) (general form hk-l).

c

The use of indices instead of the actual intercepts simplifies the m athe
matics of crystallography in many ways. For example, the sum of the 
indices of two planes forms the indices of an intermediate plane th a t is 
parallel to the line of intersection of the first two. Thus the sum of (00 • 1), 
the atomic plane which is normal to c, and (10-0), prism face, is (10-1), 
the indices of the cap face directly above the (10-0) prism face.
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Further, in the equation n \  = 2 d sin 9, the interplanar spacing d of the 
atomic planes [hk ■ I) is

Where the axial ratio c/a  is 1.09997 in quartz and ao , the distance between 
atoms along the a axis, is 4.903A.4

The n order reflection from the h k - t  plane is sometimes spoken of as 
the reflection from the n{hk-t) plane as in Table I and Fig. 3.8 where, for 
example, the second order reflection from the 01-1 plane is listed as the 
reflection from the 02-2 plane. The justification for this notation is that 
the 02-2 planes would have a d value half tha t of the 01-1 planes (since 
the indices are reciprocals of the axial intercepts) and the first order reflec
tion from such planes would have the same 6  value as the second order 
reflections from the 01 ■ 1 planes i.e., if

Among manufacturers of piezoelectric units a rectangular coordinate 
system is used in place of the hexagonal one described above, but the 
indices as derived from the hexagonal axes are retained. One of the a 
axes is chosen as the X  axis. The three a axes are identical (the vertical 
axis of quartz is an axis of 3-fold symmetry) and therefore any one of the 
a axes may be chosen as X.  The c axis is called the Z axis and a Y  axis, 
normal to A' and Z is so chosen as to form a right-handed coordinate system 
for right-handed quartz or a left-handed coordinate system for left-handed 
quartz as described in Chapter II.

The indices of the cap faces of right and left-handed quartz crystals 
(as viewed from above) are given in Fig. 3.6 which should be compared 
with Fig. 2.4 and 2.6 of Chapter II. (Note that Z  in Fig. 3.6 refers to the 
Z axis whereas z in Fig. 2.6 refers to the z faces or minor cap faces). The 
cap faces directly beneath those illustrated (i.e., on the other end of a 
doubly terminated crystal) would have the same indices except tha t the 
final digit would be negative since they cut the negative end of the Z (or 
c) axis. Thus (01-I) is beneath (01-1) and parallel to (01-1).

Parallel crystal faces lie along the same set of atomic planes. Thus 
(01-1) and (01 -1) represent the same atomic plane. Further, since the

•‘ Wyckoff, W. G., “The Structure of Crystals,” The Chemical Catalogue Co. (1931).

(3.2)

2A =  2d sin 9

then

X =  2 f  sin 9 
2



vertical axis is an axis of 3-fold symmetry, the major- cap-face planes (01 • 1), 
(10 • 1) and ( l l  • 1) have the same properties and this applies also of course 
to the parallel crystal faces (same atomic planes) which are, respectively, 
(Ol - I) , (10-1), and (11 • I )- Thus we can choose any one of these symbols 
to represent this type of plane when speaking of such properties as dis
tance between atomic planes, 6  angle, or angle between atomic planes and 
the Z  axis. The symbol tha t will be used in this paper for this type of 
plane is (0 1 -1 ) .

Similar considerations apply to the set of minor cap faces for which the 
symbol used here is (01-I) which is chosen instead of (Ol • 1) because it 
simplifies tabulation, as in Table I  and Fig. 3.8.

The indices (hk ■ () of all faces or atomic planes with the same X -ray 
properties as those for any given plane may be derived as follows: First 
replace the omitted digit i in the indices of the given plane, which may be
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+X +X
Fig. 3.6—Indices of cap-faces of right- and left-handed quartz crystals

determined from the equation i = —(k +  k). R otary perm utation of 
the first three indices is then perm itted, as a b e t ,  c ab  I, h e a l .

The other three of the six equivalent faces are found by interchanging 
any adjacent two of the first three indices and also changing the sign of I , 
as a b e t  becomes a c b t  or b a c t .  For example:

1 2 3 4  3 1 2 4  2 3 1 4

1 3 2 4  2 1 3 4  3 2 1 4

We could consider the 2 1 3 4 as derived from cyclic perm utation of 
1 3 2 4, and 3 2 1 4 as similarly derived from 2 1 3 4  instead of by inter
change of the sets above them.

The six symbols derived from the above by changing the sign of only 
the final digit refer to faces whose 6  X -ray angle is the same as th a t of the 
above planes bu t whose intensity of reflection may be different.
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TABLE I 
Q u a r t z  X - r a y  R e f l e c t i o n  A n g l e s  

The Planes of Quartz from which the Cu K a will reflect
6 = Bragg angle of X-ray reflection for Cm K a radiation
7  — Angle th a t the plane normal N  makes with the Z  axis
« =  The angle between X  and the plane containing the normal and Z, measured in the 

X Y  plane 
I  = Relative intensity of reflection

hk-l e 7 e /  for
t +

I  for 
t - h k -l e 7 e

00-3 25°20' 0° 90° .50 .50 11-0 18°17' 90° 60°
00-6 58°49' 0° a .38 .38 1 M 20° 9' 65°33' 60°
01-0 10°26' 90° « 24. 24. 11-2 25° 5' 47044' 60°
01 - 1 13°20' 51°47' 11 100. 75. 11-3 32° 3' 36°15' 60°
01-2 19°45' 32°25' u 28. 85. 11-4 40°37' 28°49' 60°
01-3 27°41' 22°57' 11 45. 2.7 11-5 51°10' 23°45' 60°
01-4 36°45' 17037, a 11-6 65°41' 20° 8' 60°
01-5 47°21' 14°15' a 12-0 28°38' 90° 70°54'
01-6 60°59' 11°57' u 12-1 29°59' 73°26' 70°54'
02-0 21°14' 90° 11 28. 28. 12-2 33°53' 59°14' 70°54'
02-1 22°S5' 68°31' u 12-3 39°58' 48°15' 70°54'
02-2 27°27' 51°47' a 26. 26. 12-4 46°44' 40° 2' 70°54'
02-3 34° 5' 40° 16' u 32. 63. 12-5 58°59' 33°54' 70°54'
02-4 42°30' 32°25' u 12-6 78°41' 29°15' 70°54'
02-5 53° 6' 26°56' u 13-0 40°46' 90° 76° 6'
02-6 68°17' 22°57' a 13-1 41°56' 77°41' 76° 6'
03-0 32°54' 90° u 13-2 45°35' 66°25' 76° 6'
03-1 34°10' 75°18' a 40. 1.4 13-3 51°20' 56°46' 76° 6'
03-2 37°5T 62°18' a 19. 27. 13-4 60° 7' 48°52' 76° 6'
03-3 43°45' 51°47' 11 13-5 75°11' 42°29' 76° 6'
03-4 51°58' 43°37' a 6.3 3.2 14-0 56° 6' 90° 79° 6'
03-5 63°41' 37°19' a 14-1 57°22' 80° 15' 79° 6'
04-0 46°25' 90° a 14-2 61°21' 71° 2' 79° 6'
04-1 47°35' 78°52' a 14-3 69° 1' 62°44' 79° 6'
04-2 51° 8' 68°3T a 22-0 38°51' 90° 60°
04-3 57°17' 59°26' a 22-1 40° 3' 77°12' 60°
04-4 67°13' 51°47' 11 12. 0 .7 22-2 43°34' 65°34' 60°
05-0 64°54' 90° a 22-3 47°54' 55°43' 60°
05-1 66°27' 81° 3' 11 22-4 57°59' 47°44' 60°
05-2 71°42' 72°31' « .25 23. 22-5 71°45' 41°2T 60°

"7 23-0 52° 8' 90° 66°35'
23-1 53°20' 76°40' 66°35'
23-2 57° 4' 70° 8' 66°35'
23-3 63°53' 61°33' 66°35'
23-4 76°52' 54° 9' 66°35'
24-0 73°24' 90° 70°54'y  \ 24-1 75°40' 81°32' 70°54'
24-2 88°54' 73°26' 70°54'

\  k 33-0 70°15' 90° 60°
33-1 72° 8' 81°23' 60°

....V

33-2 79°32' 73° 9' 60°

£ - .......
—
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The axes (and therefore the indices) given for left-handed quartz are 
the mirror image of those for right-handed quartz so th a t similar faces 
have the same indices in both and the signs of the crystallographic axes 
are consistent with those of the electrical and physical properties in both. 
(Crystallographers commonly use the same set of axes for both right and 
left-handed quartz.) Table I gives the orientation and X -ray properties

+x
Fig. 3.7—Stereographic projection of normals to the atomic planes in quartz

of the atomic planes in quartz tha t will reflect X-rays with appreciable 
intensity.

The 0, y, and e values have been calculated from the dimensions of the 
quartz crystal lattice as determined by X -ray investigation. The intensity 
values were determined experimentally and are only approximate. Figure 
3.8 shows the geometrical disposition around the X  axis of those planes th a t 
are parallel to the X  axis (column 1, Table I) together with the X -ray data 
for these planes and the disposition around the X  axis of the common single
rotation cuts. Figure 3.7 is a stereographic projection of the normals of
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the more im portant atomic planes of quartz, identified by their indices. 
Its  usefulness in quartz work will be pointed out in Section 3.7B.

In  many cases the reflecting power of an atomic plane differs from that 
of the symmetrical plane on the other side of the Z axis. (See, for example 
01-1 and 01-1). When this difference is very great as with 04-4 and 04-4 
the planes are useful in determining whether a plate is cut a t a positive or 
negative angle from the Z axis. The intensities of planes that have been 
found useful for this purpose are circled in Fig. 3.8.

3 .6  X -R ay G o n i o m e t r y

Since the angles 9 and the intensities 7 are different for different planes 
we can use them to identify these planes, th a t is, to orient the crystal by 
measuring angles between recognized atomic planes and plate surfaces.

Figure 3.9 is a diagrammatic representation of an X -ray goniometer where 
T  is the tube target shown with its intensity pattern,

S S  are slits th a t pass only a narrow beam,
C is the crystal,

I  is the ionization chamber 
M  is the meter th a t measures the ionization current.

The ionization chamber is placed a t an angle 29 to the incident beam, 
where 9 is the Bragg angle for the atomic plane being used, and is not 
moved while reflections are being taken from th a t atomic plane. If C 
is then rocked about the vertical axis P  (normal to the plane of the paper) 
the ionization chamber registers an electric current when an atomic plane 
is a t the proper angle for reflection.

(a) Atomic plane parallel to plate-face.
Let us examine a simple case, tha t for which the existing face is parallel 

to an atomic plane (Fig. 3.10). The crystal is held against the reference 
points by a coil spring. The crystal holder is free to rotate about the 
vertical axis P  (with respect to the X-rays) and the angle of rotation is 
read on the graduated scale. If the entering angle (the angle between 
the entering beam and the plate-face) is one tha t satisfies the equation 
nh =  2 d sin 6 , we will have a reflected ray which is a t a leaving angle 
of 9. Also the reflected ray is always deviated from the line of the original
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ray by the angle 20. If, when the crystal gives a reflected ray, it is rotated 
in its own plane on the reference points the reflection is unchanged.

(b) Atomic plane intersecting plate-face in a line normal to the plane 
of the instrument}

If in the above case the rotation of the crystal in its own plane does 
cause a change of ionization current the surface is not parallel to the atomic 
plane. Figure 3.11 illustrates a case in which the surface is a t an angle 5 
to an atomic plane, this intersection lying normal to the plane of the paper 
in Fig. 3.11. In order that the angle between the X-ray beam and the 
atomic plane shall be 6 , the angle between the beam and the plate-face 
must now be 6  — 8 on one side and 9 +  5 on the other. The deviation 
angle 26 is the sum of these two. Therefore for atomic planes intersecting

Fig. 3.10—Goniometry case (a): Atomic plane parallel to plate-face

Fig. 3.11—Goniometry case (b): Atomic plane intersecting plate-face in a line normal to 
“ the plane of the instrument”

the plate-face in a line normal to the plane of the instrument the ionization 
chamber is set a t 26 regardless of the angle between the atomic plane and 
the surface of the plate.

In Fig. 3.11 the entering angle is shown as 6  — 8 , the leaving angle as 
0 +  5. If the crystal is now rotated through an angle of 180° in its own 
plane the entering angle will have to be set a t 6  +  5 and the leaving angle 
will become 0 — 5. The crystal holder will have been moved through an 
angle 25. Thus 5 can be found by observing the angle through which the 
crystal holder must be rotated in order to achieve X-ray reflection from 
the same atomic plane when the crystal is rotated 180° in its own plane.

5 The plane of the instrument is a plane normal to the axis of rotation of the instrument 
and containing the incident ray.
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I t  should be noted tha t 8  should not exceed 6 . If 8 exceeds 6 , it is neces
sary for the X -ray beam to pass through a great thickness of quartz which 
would so weaken the beam tha t the reflected rays could not be detected. 
Further, even when 8 does not exceed 6  there is still a variation of the 
reflected ray intensity with the angle between the entering ray and the 
plate-face, which may be expressed as follows:6

T _  t sin U
I t  —  I r  —  ; :------sin g( -F sin ge

where
I T =  The intensity of the reflected ray
ge = The “entering angle” - The angle between the entering ray 

and the plate face
gf = The “leaving angle” (In Fig. 3.11 ge = 6 — 8 ; g^ =  6 +  5 =  

20 -  g .)
I H = The maximum obtainable reflected intensity (i.e., when gc =  0 

and gf = 26).

or
1 = 1  sin (26 -  ge) 

R sin (26 -  ge) +  sin ge

The curves in Fig. 3.12 show the variation of I t / I r  with ge/26  for various 
values of 26. I t  is seen th a t for plates as described above and figured in
3.11 a stronger reflection is obtained when ge =  6 — 8  than when ge =  
6  +  5 (i.e., after 180° rotation in the plane of the plate-face). In  other 
words the smaller ge angle gives the larger intensity of reflection. I t  
might be added, however, th a t in practice it may not be possible to obtain 
the maximum values of reflection intensity due to the fact that, as ge ap
proaches zero, the width of the reflected beam may exceed the width of the 
ionization chamber. (See inset, Fig. 3.12.)

Quartz plates containing an X  axis are checked as described above 
(case b) for rotation around the X  axis. For this check they are oriented 
as shown in Fig. 3.13, case b with the X  axis parallel to the axis of the instru
ment. The stippled face in Fig. 3.13 represents the so-called “ reference 
bevel” , the rem nant of the surface of the Z  section, and is therefore normal 
to the Z  axis.

(c) Atomic plane intersecting plate-face in a line parallel to the plane 
of the instrument.

The case described above and illustrated in Fig. 3.11 was the case of 
single rotation plates (AT, BT and others shown in Fig. 3.8) being corrected 
about the X  axis by the use of atomic planes parallel to the X  axis. When

6 Debye, P. and Menke, H., “ Untersuchung der Molekularen Ordnung in Flüssigkeiten 
m it Röntgenstrahlung,” Ergeb d. Techn. Röntgenkunde, B.2, P. 16; Leipzig (1931).
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such a plate is being rotated about the X  axis as in Fig. 3.11 the normal 
to the atomic plane lies in the plane of the instrument. We can also use

Fig. 3.12—Variation of intensity of reflected ray with entering angle ge and the
Bragg angle, 6

Case (b) Case (c)
Fig. 3.13—Position of quartz plate relative to vertical axis of instrument in case (b) 

and case (c). (Stippled face is reference bevel, normal to Z  axis.) In  the absence of a 
reference bevel the X  direction can be determined with polarized light. (See Chapter II , 
p. 246.)

the same atomic plane to correct the orientation of this plate about the 
axis ww normal to the X  axis (Fig. 3.13 and Fig. 3.14). Flere, since the
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atomic planes are a t an angle 8 to the axis of the instrument, the reflected 
ray will not lie in the plane of the instrument. If, however, the vertical 
angle ¡3, between the reflected ray and the plane of the instrum ent is small, 
the reflected ray may still enter the ionization chamber. The maximum 
angle j8 which is permissible, is not the same for all instruments, bu t de
pends on the vertical length of the slit. In  most cases it is about 5°.

The proper angular settings of the instrum ent are no longer 6  for the slab 
and 26 for the ionization chamber bu t are the orthogonal projection of 
these angles onto the plane of the instrum ent; g and g +  g', respectively.

Fig. 3.14—Goniometry case (c): Atomic plane intersecting plate-face in a line parallel 
to “ the plane of the instrum ent”

Formulae are given below for /?, g, and g +  g' in terms of the Bragg

w

A X I S  O F  - J A TO M IC  P L A N E

angle 0  and the angle between the atomic planes and the surface of the 
quartz plate, S.

sin ß = 2  sin 9 sin 8 (3.3)

(3.4)

sin 6
(3.5)

The relations between /3, g +  g', g, 6 , and 8 are shown by the curves 
in Fig. 3.15.

As an example, suppose tha t a BT plate is to be corrected about the
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ww axis using the atomic plane (01 * 1). (In actual practice the closer 
plane (02-3) is used.) Here:

S =  49° -  38°13' =  10°47', 6  =  13°20', 26 =  26°40'

From which /3 =  4°57', g =  13°35', g +  g' =  26°34'

Thus if the plate is correctly cut the reflected ray will enter an ionization 
chamber whose slit is long enough to receive rays which make an angle of 5° 
with the plane of the instrument. However, if the plate were in error by 
more than 6' around the X X  axis (Fig. 3.13) /3 would excede 5° and the 
center of the reflected beam would not enter the ionization chamber. In  
actual practice, therefore, the length of the ionization chamber slit should 
be enough greater than th a t required for the calculated /? to adm it reflections 
from erroneously cut plates.

Since the difference between g +  g' and 26 is only 6' and since the width 
of the ionization chamber slit is usually great enough to accept reflected 
beams over a range of several times 6', no correction of the ionization 
chamber position may be necessary in this case.

On the other hand, the orientation of the plate with respect to the inci
dent beam is highly critical and since g differs from 6  by 15' this correction 
in the orientation of the quartz plate m ust be made.

Discussion of the general case (d), in which the intersection of the atomic 
plane and the plate face is neither normal nor parallel to the plane of the 
instrument, will be found in Section 3.9.

3.7 C h o ic e  o e a n  A t o m ic  P l a n e  f o r  C h e c k in g  t h e  O r ie n t a t io n  o f

A n y  G iv e n  F a c e

If the plate-face to be checked does not lie parallel to an atomic plane, 
the nearest usable atomic plane m ust be found and the orientation of this 
atomic plane in the plate m ust be determined. The procedure for these 
two steps is outlined in this and the following sections.

The problem of the choice of an atomic plane for checking the orientation 
of one of the faces of a given plate has two parts:

(A) Determination of the orientation of th a t face with respect to the 
X , Y  and Z  axes of the mother crystal and (B) discovery of the atomic 
plane whose orientation and X -ray properties are most suitable for use 
with th a t face.

(A) Determination of the orientation of the face with respect to the 
X, Y  and Z  axes of the mother crystal.

The orientation of the plate is commonly given in terms of the A \ , A 2 
and A i  angular rotations as described and illustrated in Section 2.4 of 
Chapter II . Briefly, a basal section of crystal is placed initially with its Z 
axis vertical and its -\-X  axis toward the operator of a horizontal axis saw,
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the saw blade being parallel to X  and Z. The crystal is then turned through 
angle Ay clockwise as seen from above about a vertical axis, then through 
angle A 2 counterclockwise about the original direction of the X  axis. A 
slab is cut of thickness t and this slab layed down by rotating it 90° clock
wise about the original X  axis direction. I t  is then rotated through angle 
A 3 clockwise about a vertical axis and two cuts are made, separated by a 
width w (length t  being cut last). The rotation through the A 3 angle begins 
with the linear edge of the reference level of the slab lying parallel to the saw.

The components of the plate edges P i , P 2 , P 3 (length, thickness, and 
width, respectively) on the X , Y, and Z coordinates after rotation through 
the angle Ai  are given by the following matrix (See Section 5 of “The 
Mathematics of the Physical Properties of Crystals” by W. L. Bond, Bell 
System Technical Journal, Volume X X II, No. 1):

X  component V component Z component

( cos A\ sin A\ 0 \ of P\
— sin Ai cos A i  Oj.......... of.P 2 .........(3.6)

0 0 1 / of P 3

The components of the plate edges on the X , Y, Z  coordinates after 
rotation through angles Ay and A 2 are:

/ l  0 0 \  /  cos A i  sin Ai  0\
r "  = I 0 cos A 2 —sin A 2 } [  —sin Ay cos Ay 0 1

\0  sin A 2 cos A 2)  \  0 0 1/

X  component F  component Z component 
/  cos A 1 sin Ay 0 \  of P i

=  I —sin A 1 cos A 2 cos Ay cos A 2 - s in  A 2 j of P 2. . (3.7)
\ —sin A 1 sin A 2 cos A\  sin A 2 cos A 2j  of P 3

The components of the plate edges on the X , Y, Z  coordinates after 
rotation through angles A y ,  A 2 and A 3 are:

JH _
T  —

cos A 3 0 sin Z 3\  /  cos *4i sin Ay 0
0 1 0 J (  — sin Z i cos Z 2 cos Ay cos A 2 —s in /

\ — sin A 3 0 cos A 3J  \ - s i n  Ay sin A 2 cos A 1 sin A  2 c o s /

X  component F  component Z component

cos Ay cos A 3 sin Ay cos A 3 cos A 2 sin A 3\o f  P
— sin Ay sin A 2 sin A 3 +  cos Ay sin A 2 sin A 3

— sin Ai cos Z 2 cos Ay cos A 2 —sin A 2 of j

— cos A  sin T 3 —s in Z is in Z 3 cos A 2 cos A 3 of j
— sin Ay sin A 2 cos A 3 +  cos Ay sin A 2 cos A s J . . (3
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Since the edge P 2 (thickness direction) is the normal to the major face 
of the plate, its X, Y, Z  components (second horizontal row) give the 
orientation of the major face of the plate in terms of X, F, Z axes of the 
mother crystal.

For example, suppose the orientation of the major face of an N T  plate 
is desired in terms of the X, F, Z axes. The shop rotation angles for an 
N T  plate are

A i  =  99°25'
A t =  49°25'
A 3 =  —12°20'

Substituting these values in the above matrix gives

/  0 .99027 —. 13917\
/ "  =  I — .64279 - .1 0 6 6 2  - .7 5 8 5 2  ] ...................(3.9)

76604 .08946 .63653/

the second row of which gives the components (direction cosines) of the 
unit normal to the plate surface on the X, F, Z axes:

X =  .64279 
F  =  .10662 
Z =  .75852

(B) Discovery of the plane whose orientation and X -ray properties 
are most suitable for use with the face to be checked.

The first requisite for the atomic plane to be used is tha t it shall make 
as small an angle S as possible with the face to be checked. This is desirable 
because (1) 8 m ust be smaller than 9; (2) if 8 is small the same plane can be 
used for correction around P i as around P 3 since the 0 angle will be small. 
If 8  is very small the difference between g and 6  may be within the required 
limits of error so th a t the 9 value may be used w ithout correction; (3) if 8  

is large, the difference between ge and gl  will be large and if the plate is 
placed in the goniometer in such a way th a t ge is the larger angle the re
flected ray may be too weak to register on the ionization chamber meter.

By plotting the stereographic projection of the normal to the plate face 
on Fig. 3.7 the most promising planes may be found quickly. On this chart 
each concentric circle connects all points with the same Z direction-cosine; 
each arc th a t crosses the X axis connects all points with the same X direc
tion-cosine; each arc tha t crosses the F axis connects all points with the 
same F  direction-cosine.

For example, the normal to the major face of the N T  cut is plotted as 
follows:

.64 units are marked off in a positive direction (down) on the X  axis (to
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a point between (21-3) and (21-2). Then, in the direction of the east- 
west arcs, .1 unit is marked off to the right of the X  axis. The point so 
located is found to be about half way between the .7 and .8 concentric 
circles, that is, to have a Z  component of about .75, as calculated above. 
I t  lies about half way between atomic plane normals (21-3) and (31 - 3).

The degree scale given in Fig. 3.7 may be used to determine roughly the 
angle between any two points on the diagram. The scale is non-uniform 
and for any particular region of the diagram that portion of the scale should 
be used that falls on that region when the zero mark on the scale is placed 
a t the center of the diagram.

Fig. 3.16—Goniometry case (d ): Atomic plane intersecting plate-face in a line which 
is neither normal nor parallel to “ the plane of the instrum ent” (general case).

In  the present example the part of the scale to be used is around the 40° 
m ark and the plate face is found to make angles of less than 10° with both 
(21-3) and (3l-3).

In  general the atomic planes with the smaller indices are likely to give 
the stronger reflections. Therefore the better plane to try  first is (21 - 3). 
The indices of this plane are not shown in this form in Table I, but by the 
method described in Section 3.5 it may be seen that a plane with indices 
11-3 would have the same d value for X-ray reflection. From Table I  we 
see that 6  for atomic plane 11-3 is 32° 03'.

In order to determine the angles g and g +  g' (Fig. 3.16) the orientation 
of the atomic plane with respect to the plate edges must be found.



3 .8  D e t e r m in a t io n  o r  t h e  O r ie n t a t io n  o f  a n  A t o m ic  P l a n e  w i t h  

R e s p e c t  t o  t h e  P l a t e - E d g e s , G iv e n  it s  
M i l l e r -B r a v a is  I n d ic e s

Since the indices (hk • I) are the reciprocals of the intercepts of the atomic 
plane on the quartz crystallographic axes (See Section 3.5) of which the 
vertical axial unit is 1.09997 times tha t of the others, the intercepts on axes 
which were all divided into the same length unit would be
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(If 1.1 is substituted for 1.09997 the error introduced is never greater than 
one minute.)

The intercepts on the orthogonal axes may be derived as indicated in 
Fig. 3.17. They are:

1 V 3  E l
h '  h +  2 k ’ l

These intercepts may be taken as the lengths of 3 vectors whose com
ponents on the X , Y  and Z axes are as follows:

N h \
ii(X  axis vector)................. ) ................................. (3.10)

*i(F axis vector) =  ( I...........................

/  0 \
?3(Z axis vector) =  1 0 1...............................(3.12)

\ i W

Now the two vectors (i3 — ii) and (t3 — i2) lie in the plane (hk-l)  (See 
Fig. 3.18), and therefore their vector product is the vector normal to the 
plane hk ■ I
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Fig. 3.18—Orientation of vectors (¿3—*j) and (i3—iz) with respect to orthogonal axes

Fig. 3.17—Derivation of intercepts on

Z

s
□ I (x)

A ST U  IS  S IM IL A R  TO A S V W  
0 = 1

orthogonal axes from intercepts on hexagonal axes

 Y
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T hat is,

N  (the vector normal to the atomic plane ■I)

1 .1V 3 1
i(Ji -F 2 k) 

1.1 ¡h i  
V 3

h{h +  2 k), 

The unit vector N  =

(3.13)

~t - nV S
.(3.14)

where 5  is the sum of the squares of the three terms of N. For example, 
for the (01-1) plane (A =  0, k = 1, I  = 1), we find from equation (3.13) 
tha t

....................................... (3.15)

=  2 .1 5 9 ................................................................(3-16)whence S =  4/3 +  F 2 Ï "

0
and the unit vector normal N  =  I .7857 ] ...................................................(3.17)

\.6186y

which means th a t N  is perpendicular to the X  axis, makes an angle with 
Y  whose cosine is .7857 (=38° 13') and an angle with Z whose cosine is 
.6186 (=51° 47').
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fo r  the atomic plane (21-3) we find from equation (3.13) that

(3.18)

Whence 5  =  4 +  9/1.21 =  11.438 .. .  

and, from equation (3.14) the unit vector normal to (21-3)

(3.19)

N  = (3.20)

We have now determined the orientation of the atomic plane with respect
to the orthogonal axes X, Y  and Z. To determine its orientation with 
respect to the plate edges necessitates the construction of a matrix which 
expresses the components of the plate edges P i P 2P 3 (length, thickness, and 
width respectively) in terms of the X , Y, Z  axes. When the components 
of the unit normal to the atomic plane in terms of the orthogonal axes X,  
Y, Z  are acted upon by this matrix they are converted to the components 
of the unit normal to the atomic plane in terms of the plate edges P \ , P 2 , 
P 3 ■ (For fuller discussion see Section 5 of “The M athematics of the Physi
cal Properties of Crystals” by W alter L. Bond, Bell System Technical 
Journal, Volume X X II, No. 1, pp. 1-72.) Equation (3.8) gives such a 
matrix.

To continue with the N T  cut as an example, the product of the matrix 
given in equation (3.9) for the N T  cut and the components of the unit 
vector for the atomic plane (21-3) given in equation (3.20) gives us the 
components of the unit normal to the atomic plane (2l - 3) in terms of the 
plate edges P i , P 2 , P 3 as axes. Thus,

T hat is, the components of the unit normal to the atomic plane in terms 
of the plate edges Pi, P2, Pz are:

N i  =  -.11223 

N 2 =  -.99180 

7V3 =  +.060293
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When the orientation of the atomic plane with respect to the plate edge 
has thus been determined the next and final step is the determination of the 
angles between the incident X-rays and the plate-face.

3.9 D e t e r m in a t io n  o e  A n g l e s  B e t w e e n  X - R a y s  a n d  t h e  F a c e s  o f  a

F in is h e d  P l a t e

Procedures for determining the angles g and g +  g' for certain particular 
positions of the atomic plane with respect to the plate edges were described 
in section 3.6 under (a), (b), and (c). For the general case (d) in which 
the intersection between the atomic plane and the plate-face is neither 
normal nor parallel to the plane of the instrument, the problem is best 
solved vectorially, as follows:

(d) Atomic plane intersecting plate-face in a line which is neither normal 
nor parallel to the plane of the instrum ent (general case). (Fig. 3.16)

P2

Fig. 3.19—Position 1 for a plate of general orientation (one in which no plate-edge 
is parallel to a crystallographic axis).

L et N i , N 2 , N 3 be the components of the unit normal N  to the atomic 
plane in terms of the plate edges P i , P 2 , P 3 , and X i , X 2 , X 3 the components 
of the unit vector X  along the incident beam. Then

sin Bu,.t  =  X iN i  +  X 2N 2 +  X 3N 3 (3.22)

(the inner product of these two vectors, which is thus equal to the cosine 
of the angle between the incident ray and the normal to the atomic plane 
or cos (90 — 6 )).

In  m atrix form this may also be w ritten :

X c N^k.f =  sin (3.23)

Where X c is the m atrix X i , X 2 , A"3 7

7 See Bond, W. L. “ The M athem atics of the Physical Properties of Crystals,” Bell 
Sys. Tech. Jour., Vol. X X II, No. 1.



hrom Fig. 3.19 we see that, for the beam entering as shown, the components
of the unit vector Xi along the beam are

0
sin gi 
cos gi

so tha t equation (3.22) becomes

sin 8 hk.t =  N 2 sin gi. +  N 3 cos gi (3.24)

which has the solution
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gi = 8 ’ - (3.25)

where ,  s/ : -ATS tan «j  =  - (3.26)

and sin 8 ' =  ---- Sin ^ ■
cos sm_1 Ni (3.260

Fig. 3.20—Position 2 for a plate of general orientation

Again, with the plate rotated 90° around its normal (to position 2) so 
th a t the entering beam is in the position shown by the unit vector X 2 in 
Fig. 3.20, the components of X 2 are

— cos g> 
sin gi 

0

so tha t sin 8  — N2 sin g2 — 2Vi cos | 2 (3.27)

or

g2 — 8 "  -f- (3.28)
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where

and

. ./ N 1ta n  a , =  -

sin 6

cos sin-1 N 3

(3.29)

(3.29')

Fig. 3.21—Position 3 for a plate of general orientation

W ith the plate rotated 90° again (180° from position 1), so that the entering 
beam is in the position shown in Fig. 3.21, the components of the unit 
vector X 3 along the incident beam are

0
sin g3 

- c o s  g3

sin d =  N i  sin g3 — N 3 cos g3so that 

or

where

and sm w =

—  6 ' Ą- b3

Ns
N 2 

sin 6

tan ôz =

cos s in -1^ !
«s' «s'Ô3 — 5i

(3.30)

(3.31)

(3.32)

(3.260

(3.33)

Finally, with the X -ray beam entering as shown by the unit vector X 4 
in Fig. 3.22 (270° from position 1) the components of X 4 are

cos gt 
sin gi 

0

so tha t 

or

sin 6  = N 2 sin gi +  N i  cos ,

g i =  0 " -  a;

(3.34)

(3.35)
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where tan fij =  ^  (3.36)
A 2

and sin 0" =  — —  (3.29')
cos sin-1 N-i

dt =  62 (3.37)

fo r  example, suppose an iVT finished crystal is to be checked by the 
(21-3) atomic plane as suggested in section 3.7B. The components of the 
unit normal to the atomic plane (21 • 3) in terms of the plate edges P i , P 2 , 
P 3 of an A7P  plate were found (at the end of section 3.8) to be

Ni  =  -.11223 
N 2 = -.99180 
N t = .060293

Fig. 3.22—Position 4 for a plate of general orientation 

Substituting in equation (3.26):

tan 5i =
.060293

.99180 

b[ =  — 3°28.7'

a n d  in e q u a t io n  (3.26')

sin 32°3'
sin t) = cos sin-1 — .11223 ’

9' =  32°16'

and in equation (3.29) 

and in equation (3.29')

, J  -.11223 0 ,
* =  =  t a l 1  r i s l s o  =  6  3 0

sin
sin 32°3'

cos sin-1 .060293
=  32°7 '
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so th a t in equation (3.25)

gi =  32°16/ +  3°28.7' =  35°44.7'

Similarly

g2 =  32°7' +  6°30' =  38°37'

g3 =  32°16' -  3°28.7' =  28°47.3

g4 =  32°7' -  6°30' =  25°37'

In  the case (d) of an atomic plane which intersects the plate face in a 
line which is neither parallel nor normal to the plane of the instrument, the 
angle 8  tha t the atomic normal makes with the plane of the instrum ent will 
be different for different positions of the plate.

If N r  is the direction cosine of the normal to the atomic plane with 
reference to that plate edge (P  axis) th a t is placed in the vertical position,

8 =  cos v — 90° =  — sin-1IVF

This value of 8 may be used in determining (8 according to formula (3.3). 
For example, when the P 3 axis (width) of an N T  plate is placed parallel 
to the axis of the instrument,

S =  -s in -W a  =  - s i n - 1 .060293 =  -3 °2 7 .4 '

(The negative sign indicates deflection of the normal toward the negative 
end of the P 3 axis and may be disregarded in determination of /3).

Whence sin /3 =  2 sin 32°03' sin 3°27.4'

0 =  3°40'

This means that the beam reflected from the (21 - 3) atomic plane when 
the N T  plate is placed with its P 3 (width) axis parallel to the axis of the 
instrum ent would be received by an ionization chamber which would accept 
a beam making an angle of 3°40' with the plane of the instrument.

When the P i axis (length) of an N T  plate is placed parallel to the axis 
of the instrum ent

6 =  cos-W i -  90° =  sin-1 -  .11223 =  -6 °2 6 .7 '

Since this is a larger (3 value than most ionization chambers will accept, 
the (21 • 3) plane cannot be used in most cases to check an 2VT plate with 
its P i axis parallel to the axis of the instrum ent unless the ionization chamber 
is moved vertically.

(b) and (c) Atomic plane intersecting plate-face in a line which is either 
normal or parallel to the plane of the instrument.

For plates rotated about X  only (as A T , BT, CT  and DT)  the problem
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ls so simple (See section 3.6, b) that the above procedure need not be 
followed.

For such plates the complete transformation is an A 2 rotation around X:

/ I  0 O N
r '"  =  lO cos A i  —sin A*

\0  sin A 2 c o s  A 2/
(3.38)

The planes used for checking these plates are of the type (Ok ■ I) so that, 
from equations (3.13) and (3.14)

N  = ( 2 ¿I/A 4 ,
\  f/1.1

(3.39)

whence

r" 'N  =

but
2 K

77 k cos A ‘2 —— sin A 2 
V  3 1.1

2 I
^ 7̂  k sin A 2 +  j-j- cos A 2

777= (3-40)

V 3 V 5  =  s i n T o i  i  a n d  U V s  =  c o s y o k  (

where 7 =  the angle between the normal to the atomic plane and the Z  axis 
(note tha t for 7 angles on the negative side of the Z  axis the value given 
in Table I should be subtracted from 180°, as in the case of the A T  cut 
given below).

Thus (3.40) may be written

/  0 ' 
N  =  I sin (7 — A 2) 

\cos (7 -  A 2)/
(3.41)

and (3.25) becomes

gi = 0 — 8 [ where oi =  90° +  A 2 — 7 (3.42)

(Note tha t where A 2 is positive 7 will be on the negative side of theZ  axis)

whence gi =  0 +  7 ~  90° — A 2 (3.43)

gz = 90° +  8  +  A 2 — 7 (3.44)

For position 2, equation (3.40) applied to equation 3.27 gives 

sin d =  sin (7 — A 2) sin g2
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so th a t we may write

sin 6sin g2 =  sin gi - - ■  (3.45)
sin (7 — A 2)

As an example consider a B T  plate for which A 2 =  —49°, corrected around 
the W W  axis (Fig. 3.12) from the (02-3) plane. Table I  gives us #023 =  
34°05', 7023 =  40°16' whence

gi =  34°05' +  40°16' -  90° +  49° =  33°21'

gz =  90° +  34°05/ -  49° -  40°16' =  34°49'

. _i sin 34°05' , .o A.,
*! =  8 ,= S m  s W l 6 '  =  3 4 to

For an A T  plate of A 2 = +35°15' corrected around the IF IF axis from 
(01-I) we find, under (01-1), tha t 6  =  13°20/, 7  =  180 — 51°47' whence

gi =  13°21' +  180° -  51°47' -  90° -  =  ^ “lS '

g3 =  26 -  g! =  10°22'

. _i sin 13°20' 1i001/
8- “ «‘ =  S,n sta S rSS ' " 1321

A complete determination of the errors in a quartz plate includes the 
measurement of angle errors about three m utually perpendicular axes such 
as, for example, the plate edges. Therefore, in correcting a plate we m ust 
use three different X -ray “shots” ; usually two on the major surface with 
the plate rotated 90° between the two “ shots” and a third on a surface 
normal to the major surface, commonly called an “edge” . If the plate is 
thin, the intensity of reflection from the “edge” is low and this measurement 
becomes difficult.

The goniometric procedure described above is best adapted to the routine 
measurement of errors in large numbers of plates which are known to be 
close to the correct orientation. If the error in a plate is large, however, 
or if the cut is a rare one or the orientation of the plate completely unknown, 
analysis by the goniometric method may be extremely difficult.

A simple, direct method of determining the orientation of such plates is 
th a t of the Laue camera.

3.10 U s e  o f  L a u e  P h o t o g r a p h s  i n  D e t e r m i n i n g  t h e  O r i e n t a t i o n  o f  a

Q u a r t z  P l a t e

In  the original Laue photograph the X -ray beam passed through the 
crystal and was diffracted so as to give a spot pattern  on a photographic



X - R A Y S  A N D  O R IE N T A T IO N  OF Q U AR TZ C R Y S T A L S 327

plate beyond the crystal. This necessitated either the use of a very thin 
crystal or a long exposure.

To avoid the variation due to crystal thickness we adopted the “Back 
Reflection Laue camera.” As shown in Fig. 3.23 the X-ray beam passes 
through a hole in the photographic film before striking the crystal. I t  is 
collimated by two pinholes, one on each side of the film. Spot reflections 
from many planes fall on the film and in a few minutes exposure leave a 
record of their points of impingement. M ost of these reflections are not 
due to the peaks of the radiation curve (Fig. 3.2) bu t each spot is due to a

Fig. 3.23—Arrangement of collimator, film and crystal plate for a back reflection Laue
photograph

different X from the continuous background of Fig. 3.2. However, each 
satisfies the equation n \  = 2 d sin 6 .

Figure 3.24 is such a record with many of its spots marked. The spot 
(01 • 1) is recognized as the point of intersection of the greatest number of 
rows of spots. The spot (01-2) is the second most obvious intersection 
point.

On examining such a film we recognize such spot configurations and then 
m ark the indices of the corresponding atomic plane for a few chosen spots. 
From these we can measure three angle-errors. For example, if the crystal, 
Fig. 3.25, is rotated about the vector t by amount et the spot pattern on the 
film will be rotated by the same amount . If the crystal is in error by 
amount ew being rotated about ww clockwise the spot pattern of the film
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will be shifted to the left and the value of ew> can be measured by means of 
a specially graduated scale. See Fig. 3.24. (Scale used is of Lucite and

Fig. 3.24— Back reflection Laue photograph of a B T  plate

t
A

of CRYSTAL

t'

Fig. 3.25—Relation of displacement directions on the film to the t - t  and w-w  axes

calibrated to 10 minutes.) Similarly, if the crystal is misoriented about U  
by am ount et the spot pattern  will shift along w'w' and et' can be measured 
by the same scale used on ew> . To compensate for film expansion due to
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changes in temperature and humidity, measurements are made from two 
spots about equally removed from the center but on opposite sides.

If all three errors exist simultaneously they may still be measured in this 
way provided they are small.

Given e( , ew and et for plates containing the X  axis the errors in A\  , A 2 

and .4 3 can be computed by the formulae

Error in A \ = ew/cos A 2

Error in A 2 = e(

Error in A s = et — ew tan A 2

Consider, for example, the negative (Fig. 3.24) for a B T  plate. The row 
of spots (01-4), (01-3), (01-2), (03-4), (01-1), etc., results from reflections 
from the group of planes parallel to the X  axis (see Fig. 3.8). (Such a 
group of planes all parallel to a given line is called a zone.) In the B T  cut 
the A 2 angle results from rotation around the X  axis. The effect of such a 
rotation on the photograph (Fig. 3.24) is a shift of the spots of the (0k-t)  
atomic planes along the line on which they lie. Therefore, to measure the 
A 2 angle from Fig. 3.24, we choose two spots along this line about equi
distant from the center of the film such as (01 • 1) and (01 -2) and measure 
the angular distance a between the incident X-ray beam and the reflected 
ray causing each spot by measuring the distance between the center of the 
film and each spot using the specially calibrated scale.

By “center of the film” is meant the point through which the center of 
the X -ray beam passed. This point is located as follows. When the film 
is in place in the camera, two reference points are pricked in it by pins built 
into the camera. These points may be seen in Fig. 3.24 as small white 
circles near the center of the right and left edges of the picture. The center 
of the X -ray beam is a t the center of a line between these two points.

When the negative is to be measured it is placed on a glass plate engraved 
as shown in Fig. 3.26 with the reference points a t P, P. The intersection X  
then marks the center of the film.

If A 2 is the plate angle around the X  axis from the Z  axis and y  is the 
angle between the atomic plane normal and the Z  axis and a  is the angle 
measured between the center of the film and the spot, then

. A 2 =  90° — y  hk-C +  oihk-l (3.46)

For the two spots chosen for measurement of the B T  plate of Fig. 3.24,

A 2 = 90° — 7 oi-2 — aoi-2 (Rotation from the B T  cut to the 01-2 plane
is a negative rotation)

A 2 = 90° — 7oii +  aoi-i
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and substituting the values of 7012 and 701.1 from Table I,

. on0 32°25' +  51°47' a 0n  -  «01-2 A 2 =  90 -      +   -------

(3.47)
  47054/ -j- _̂__ &01-2

For more complicated cuts, such as the N T  cut, four spots are chosen, 
two close to the line CC  and two close to the line w'w'. (See Fig. 3.25). 
The positions these spots should occupy on the film for a correct N T  cut

Fig. 3.26—Engraved glass plate for measuring Laue photographs

are computed and compared to the spot-positions on the measured film. 
From this comparison the following errors are determined:

ew error in rotation around the ww axis of the plate from the average 
displacement along C l ' .

. e( error in rotation around the U  axis of the plate from the average dis
placement along w'w'. 

et error in rotation around the t axis by the average angular displace
m ent of the four spots about the center of the film.

The first step in determining the position of a spot for any given atomic 
plane in a correctly cut plate is the determination of the direction cosines 
of the normal to th a t atomic plane with respect to the plate edges. This 
procedure has been described in Section 3.8.

Figure 3.27 is a Laue photograph of an N T  plate. Taking this as ah 
example, we may choose the four spots (31-4), (31-5), (22-3) and (52-5)



from which to make the measurements. From equations (3.13) and (3.9) 
we find th a t the direction cosines of the normals to these atomic planes in 
terms of the N T  plate edges are

/  .4256l\ / - .0 1 1 1 2 \
(31-4) =  -.90357  I , (31-5) =  ( -  .99294 ,

\  .04972/p \ —.11812/p

/- .4 2 6 1 8 \  _ / - .0 0 8 9 8 \
(22-3) =  I -.90421 ) , and (52-5) =  I -.99140  I 

\  .02816/p \ — .13062/ P
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Fig. 3.27—Back reflection Laue photograph of an N T  plate

The orientation of the unit normal to the atomic plane (31-4) with respect 
to the plate edges is shown in Fig. 3.28. Since .90357 =  cos 25°22', the

04972angle between the unit normal N  and the Pi axis is 25°22'. Since ‘ „ =
.42561

tan 6°40' the angular component of the unit normal N  in the PiPs plane 
is 6°40' tha t is, the (31-4) spot should lie in a direction 6°40' from the long 
axis of the film and should be a t a distance from the center corresponding 
to 25°22' as read from the special scale.

The correct locations of the other three spots are similarly calculated. 
These values are given below, with the values actually measured from the 
Laue photograph of the N T  plate and the errors determined from a com
parison of the calculated and measured values.
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(n.b. clockwise and counter-clockwise directions are as seen when looking 
toward the — end of the axis of rotation)

Distance from the Center
Calculated Measured Dijference

(31-4) 25°22' 25°22' 0' O'
(22-3) 25°17' 25°18/ +  1'
(31-5) 6°49' 6°18' - 3 1 ' 30'

(52-5) 7°31' 8°00' + 2 9 '

Azimuth  
(counter-clockwise from  + P i)

Calculated Measured Diference

(31-4) 6°40' 5°48' - 5 2 '
(22-3) 176°12/ 177°18' + 6 6 '
(31‘5) 95°25' 95°36' +  11'
(52-5) 266°03' 267°06' + 6 3 '

Error

wise about Pi

Error 

7' counter-clock
wise about —Pi 
or clockwise about 
+ P 2 8

Now, a small rotation of amount E\ counter-clockwise about Pi  followed 
by one of amount E 2 counter-clockwise about P 2 and a similar one E 3 about 
P 3 is given to the first order approximation by the matrix:

(3.48)

Where e\ , e2 and e3 are the sines of the rotation angles E i , £ 2 , E 3 .

8 This error is determined by averaging the “difference” values for the two planes.

1 — e3 ei \
ez 1 - e i

— e-2 ei 1 /
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From (3.48) we see tha t the order of application of e i , e2 , e3 is immaterial. 
If the desired transformation is r° (i.e., with zero errors) (— r equation 

3.9 for the N T  plate), and the actual one is r, we can consider that r° is 
made up from the desired rotations A° , A \  , A °3 and the r is made up of the
rotations Ai  =  A°  +  A i, A 2 — A 2 +  A2, A 3 = A 3 +  A3 ; or alternatively r
is made from the transformation r° followed by the transformation e so that

r = er° (3.49)

whence

. . (er°)n r°i — e\ r3 1 +  e3 r° 1— ta n ^ i  =  7- 5 r- =  -------------------------
(w  )22 Y 22 — £l 132 4“ 3̂̂ 21

- s in  A 2 =  (er° ) 23 =  r23 — eiri3  +  e3 r° 3 (3.50)

{sr°) 13 _  r °3 — e3 r° 3 +  e2 r°3■ tan A 3 =
{er°) 33 r33 — e2 r\ 3 +  e\r%3

where (er°)21 is the term in row 2, column 1 of the matrix er° ; r%3 is the term 
in row 2, column 3 of the matrix r° (equation 3.9), etc.

From our unfinished example of the N T  plate we have e\ =  .0087, e2 =  
— .0018, e3 =  0 whence

- t a n  1 -  ~ M 2 7 9  +  -0087 X -766 +  0 _  — -6361
an 1 -.10662 -  .0087 X .08946 +  0 .1074

whence A\  =  99c36'"

- s i n  A 2 =  -.75852 -  .0087 X .6365 +  0 =  - .7640

whence A- =  49°49'

-.13917 -  0 -  .0018 X .6365 _  -.1403
tan 3 .63653 +  -0018 X .1392 -  .0087 X .7585 ~  .6302

whence A 3 = —12 °33'

In  starting work on a new cut of crystal one may have difficulty in finding 
the indices of the Laue spots. The easiest method is to photograph a 
crystal tha t has been carefully cut a t measured angles from known planes 
(for instance natural faces). For example, from the angles laid off in the 
shop an N T  plate such as tha t described should be sufficiently accurate 
tha t when P 2 is located on the atomic plane chart, Fig. 3.7, and several 
nearby planes of small indices are computed on the P  axes, there should be 
no doubt as to which spots correspond to these locations.

From a few of these spots one can find many others by “zonal” relations. 
A zone is a family of atomic planes all of which are parallel to one line called 
the zonal axis. Just as there are indices of a plane there are zonal indices.
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Two planes determine a zone. The zonal indices are computed by “cross 
multiplication” of the indices of the planes. The two planes (hiki ■ A) and 
(kiki-l«) determine the zone (k\A — h h , A h  — h A  , h h  — h h ) -  In  
practice this is developed by writing the indices of each plane twice; those 
of one under those of the other, then striking out the two end members of 
each and taking the difference of the cross products. Whereas plane indices 
are always enclosed in parentheses ( ) ,  zonal indices are always enclosed in 
brackets [ ]. For example (00-1) and (01-0) are in the zone:

1 0  0 1 
X X X  

0 1 0  0
[1 0 - 0]

while (2 l-0) and (21-2) are in the zone [24-4], or reducing, in the [12-2]
zone.

This zonal relation is reciprocal in the sense th a t the plane common to 
two zones is derived in the same way as were the zonal indices. For example, 
the plane common to the zones [10-0] and [12 -2] is

1 2 2 1 2 2
X X X

1 0 0 1 0 0
(0 2-2) or, (0 Ï - Ï )

If a given face with indices xyz lies in a zone with the symbol uvw, the 
following equation, known as “ the zonal equation” will be true:

ux +  vy +  wz — 0

In the Laue photograph of the B T  plate, Fig. 3.24, the row of spots (12-2) 
(13-3) (01-1) (15• 5) (13 -3) etc. is due to reflections from planes which 
belong in one zone. Other rows such as (12 - 5) (12-4) (12 • 3) etc. cross this 
row a t some spot whose indices can be computed if two spots in each row 
are known. If the row passes through the center of the film all the spots 
lie on a straight line. If the row is off center it is curved, convex towards 
the center. Experience soon shows us how much curvature goes with how 
great a distance from the center for a series of spots to form a zone.

3.11 X - R a y  C h e c k s  o f  S l a b s  i n  t h e  C o u r s e  o f  M a n u f a c t u r in g

Q u a r t z  P l a t e

In  the course of manufacturing a quartz plate it is common practice to 
X -ray check the first sawn slab and correct the orientation of the quartz 
with respect to the saw before cutting the remaining slabs. Each of these 
slabs is then cemented to the head of a barrel jig so built th a t the orientation
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of the head can be adjusted through small angles and clamped in the ad
justed position. The jig is then placed in an X -ray goniometer set for 
reflection from the plane to be used and the slab adjusted until maximum 
reflection is obtained. The jig itself is not moved. If the slab were per
fectly cut the maximum reflection would be obtained when the head of the 
jig was normal to the jig axis. A miscut will give maximum reflection at 
some other angle and, when clamped a t this angle of maximum reflection,

Fig. 3.29—Orientation of AT and BT plates and slabs with respect to Z  section ( + X  to 
ward reader for right-handed quartz)

will have a surface ground on it normal to the axis of the jig. This surface 
will have the desired orientation of the plate.

As in the case of the finished plate the slab must be checked for angle- 
error around two mutually perpendicular axes in the plate surface. The 
intersection of the slab surface with the Z-cut surface is commonly taken 
as one axis and the normal to this as the other.

For the A T  and B T  cuts these two axes are the same ones used in cor
recting the finished plate and the same settings for jig holder and ionization 
chamber may be used (See Fig. 3.29). For any cut with an A s angle that



336 B E L L  S Y S T E M  T E C H N IC A L  JO U R N A L

is not 0°, such as the N T  cut, these two axes will not be the same as those 
used in checking the finished plate and different settings of the jig-holder 
and ionization chamber will have to be calculated. The procedure is 
similar to tha t for the determination of the g angles for the finished plate 
except tha t the components of the unit vector of the atomic plane used are 
multiplied by the matrix which expresses the transformation after two 
rotations (Ai and A 2) (equation 3.7) instead of the matrix for three rota
tions.

Fig. 3.30—Orientation of N T  plate and slab with respect to Z  section ( + X  toward 
reader for right-handed quartz)

For example, in the case of the N T  cut, A \  =  99°25' and A 2 =  49°20' 
so th a t the A\Ao matrix (equation 3.7) becomes

- .1 6 3 6  .9865 0 \
- .6 4 2 9  - .1 0 6 6  - .7 5 9 5
-.7 4 8 3  - .1 2 4 1  .6517/

which, multiplied by the components of the unit normal to the atomic plane
/.5914\

(21 • 3) in terms of the X , Y, Z  axes I 0 J gives the components of the unit
\.8064/



normal to the atomic plane (21-3) in terms of the reference edges of the 
slab after rotations A\  and A 2 (See Fig. 3.30). These are

/ -  ,0966\
N  = I - .9919  

\ -  .0830/

Substituting in equation (3.26)

0830
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ta n  oi =
.9919 

—4°48'

and in equation (3.29)

. ./ -  .0966
=  z r a s w

l't  =  S°35‘

and from equations (3.25), (3.28), (3.31), and (3.35):

gr =  27°25' 

gt = 37°45' 

g3 =  37°T 

gi = 26°35/

which are the g angles for X-raying the N T  slab where the reference edge 
is the intersection between the slab-surface and the Z-section surface.



CHAPTER IV

Raw Quartz, Its Imperfections and Inspection  

By G. W. WILLARD

4.1 I n t r o d u c t io n

0UARTZ is one of the commonest of crystalline minerals and occurs 
in many variations of size, color, purity, and structural perfection. 

I t  is used for such varied purposes as jewelry, fusing into heat and chemical 
resistant dishes, and for optical and piezoelectric units. However, the 
following discussion will be concerned mainly with such raw quartz as is 
commercially used in the manufacture of piezoelectric circuit elements. I t  
might be added that the terminology used may be more in keeping with the 
language of the piezoelectric manufacturers than of the geologist. Further, 
description of many unusual types of defects, and variations of common 
types has been omitted. An attem pt is here made to describe such defects 
as are of most interest in the piezoelectric art and in such a manner as to be 
most widely useful. Following is a description of raw quartz and its defects, 
the means of observing these defects, their appearance as recorded photo
graphically, and a discussion of their effects on finished plates.

The words defects and imperfections as used in this article mean a de
viation from a perfect specimen of raw quartz; they do not necessarily 
mean tha t the material is not entirely satisfactory for the purposes intended.

4.2  S o u r c e , S i z e , Sh a p e

Quartz crystals of usable quality and size come mainly from the interior 
of Brazil. From other sources the supply is negligible, or the size too small, 
or the imperfections too predominant. Even from Brazil only one in a 
hundred of the mined stones is usable. The size of stones most commonly 
used run from one-half to five pounds (about one-half cup to one quart size). 
The shape of the stones varies from well faced material, with all of the 
original natural faces intact, to stones in which the faces are broken or 
eroded away. When the faces are entirely broken away by mining opera
tions the stones resemble chunks of broken glass. When the faces are eroded 
away by having been washed along river beds the stones are called RIV ER 
QUARTZ, and the appearance is tha t common to river stones. River quartz 
usually exhibits a network of shallow surface cracks resulting from the 
continual bumping along a river bed, and hence is more subject to thermal 
and mechanical shock than uncracked stones.

338
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W ith defaced quartz (river and broken) the orientation of the crystal 
structure cannot be determined from the surface shape. Since the stones 
m ust be cut at specific orientations relative to this structure, special means 
m ust be employed to determine the structure orientation. For this reason 
m any users of quartz prefer faced stones. However, defaced stones are 
usually more free from defects than faced stones, since optical twinning is 
commonly concentrated near the natural faces of the original stone and 
other defects near the base. Thus by making use of special means (in- 
spectoscope, conoscope, oriascope) defaced quartz may be cut to good 
advantage.

Fig. 4.1—Quartz may show smoky or citrine coloring throughout or only in restricted 
regions, irregularly as a t the left, or in PHANTOM planes as a t the right.

4 .3  C o lo r

Usable quartz is transparent internally (though the exterior surface may 
be opaquely coated), never translucent (milky). The color of the quartz 
varies from perfectly clear through slightly smoky to fairly dark. The 
obviously dark stones are called SMOKY QUARTZ. Smokiness may be 
uniform  throughout a piece, or varying from clear to dark, or confined to 
plane sheets within a single piece, see Figure 4.1. D ark smok)' stones are 
not used because the)’ cannot be inspected for defects and optic axis. With 
stones tha t are used this coloration is seldom so dense that it may be detected 
in the small finished plates with ground surfaces.

Because the smokiness is due to so slight a deviation from the pure quartz 
its analysis is extremely difficult. The coloration is variously explained, as 
due to minute traces of impurities (organic or inorganic), as due to the dis
sociation of a few Si02 molecules into free silicon and oxygen, and otherwise.

An important fact about smoky quartz is tha t it may be cleared of colora-
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tion merely by heating to 350°C. to 450°C. for a short time1 (see Fig. 4.2). 
The clarity of cleared stones, even though originally very dark, rivals th a t of 
normallv clear quartz, thus leading to the belief tha t most commercial quartz 
is colored to a slight degree.2 Further, it is claimed that irradiation of either 
cleared or normallv clear stones with radium rays causes them  to become

Fig. 4.2—Coloration in quartz may be cleared by beating to tem peratures below 500°C. 
A, B and C are adjacent portions of one dark, smoky stone, only C having been cleared. 
The five, small blocks were likewise cut from a single stone, the second and fourth having 

• been partially cleared a t 350°C and fully cleared a t 500°C.

smoky. I t  is then questionable whether there is a m aterial difference in 
clear and smoky quartz, or only a difference in condition of the material. By 
the limited studies tha t have been made light smokiness has not been found 
to have any definite effect on finished plates. I t  might be. added th a t such 
quartz plates as are normally heated to 400°C. to 500°C. in the process of 
manufacture, would of course be cleared of any smokiness originally present.

1 Stones so cleared 8 years ago are still clear.
2 .Arkansas quartz  (not used commercially) is noted for its unusual clarity.
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W hat has been said of smoky quartz applies equally well to C ITR IN E 
QUARTZ except that here the coloration is straw colored (yellow to brown). 
Citrine quartz is even more uncommon, commercially, than smoky quartz.

4 .4  T w in n in g

Electrical and optical twinning are among the most common defects of 
crystal quartz. There are few stones without one or both present. Either 
type is usually difficult or impossible to detect from the exterior form of the 
crystal. Presence of either type in a finished piezoelectric element inter
feres with its perfect operation. Twinning is an abnormality of growth, in 
which an apparently homogeneous crystal is not actually of the same handed
ness, electrical sense, or orientation throughout. In the case of both elec
trical and optical twinning (the only common twinning types in quartz), 
the electric and optic axes in all parts remain parallel each to each.

In a crystal which is only ELECTRICALLY TW INNED, the stone is 
entirely of one handedness (either right or left), but one portion is of OP
POSITE ELECTRICAL SENSE to another portion. This change in sense 
of structure is NOT detectable by ordinary optical means. However, at 
the surface it is detectable by, (1) the piezoelectric effect (determination of 
electric charge on squeezing); (2) x-ray reflection intensities (using certain 
sense determining planes, see Chapter I I I ) ; and (3) most readily and ex
tensively, by etch-pits and etch-pit figure techniques.8 Commonly elec
trical twins are sufficiently large tha t they may be separated near a twinning 
boundary and both parts used.

In  a crystal which is only OPTICALLY TW INNED, one portion of the 
crystal is of OPPOSITE HANDEDNESS and electrical sense to another 
portion. This change in handedness of structure is detectable by optical 
means (i.e. by examining between crossed polarizing filters). Optical 
twinning may also be detected, a t the surface, by the etch technique in the 
same manner as electrical twinning. LTsually a stone will be mainly of one 
handedness with only small, thin, interlayered growths of opposite handed
ness, thus making it impossible to use both handed portions separately.

Further discussion of both electrical and optical twinning will be found in 
Chapter V, where means for simultaneously detecting both are described.

4 .5  C r a c k s

M any quartz stones contain cracks which are not readily seen by a casual 
surface examination. As mentioned above river quartz commonly exhibits 
a network of shallow cracks extending inward from the surface, caused by 
bumping. All types of stones commonly contain one or more cracks, es-

3 In  finished plates, of course, the effects of twinning are also determined by measuring 
the resulting piezoelectric and elastic constants of the plate (i.e., their effect on frequency 
and activity).
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pecially when badly twinned or full of inclusions. Some of these cracks may 
be due to rough handling, bu t others are due to growth conditions, or result 
from tem perature changes after growth.

Though large cracks are readily detected by means to be described, it 
might be noted th a t when cracks are sufficiently fine (small separation 
compared to light wave-lengths) they will no longer be seen. Thus every 
visible crack may be considered to extend beyond its visible range, and some 
actual cracks will not be visible a t all. Because of such cracks and other 
defects in quartz, special care should be taken in handling uncut and partially 
cut stones to prevent their subjection to mechanical or therm al shocks. On 
the other hand, small, flawless, finished plates will stand considerable shock. 
I t  is even common practice to solder to finished plates (after metallizing).

4.6 I n c l u s io n s  (B u b b l e s , N e e d l e s , P h a n t o m s , V e i l s , E t c .)

The remaining abnormalities of raw quartz (used for piezoelectric ele
ments) may be classed as inclusions. Among these are inclusions of solid, 
liquid, and gaseous material. The size of individual inclusions may vary 
from submicroscopic, to those easily visible with the naked eye. The in
clusions may be isolated, or arranged in lines, or planes, or curved surfaces. 
In  many cases the arrangement forms of inclusions (bubbles, needles, phan
toms, veils) have been used to describe inclusions, with little regard to the 
nature or size of the individual inclusions. This is because inclusions which 
are too small to analyze individually, are still visible when grouped by hun
dreds in lines or surfaces.

When inclusions are sufficiently small and closely grouped they give a 
BLUISH cast (Tyndall effect) to the group. Thus the bluish cast is recog
nized as indicating fineness of grouped inclusions. When the individual 
inclusions are larger, the group appears white. W ith still larger inclusions 
one may actually see separate, individual inclusions, looking like minute 
bubbles. Thus, describing the group as blue, white or bubble textured is of 
considerable importance, when analyzing or estimating the usability of 
quartz with grouped inclusions.

BUBBLE INCLUSIONS look like small bubbles (i.e., small spherecidal 
cavities) in the quartz. When bubbles appear individually, or randomly 
scattered, they are referred to as just bubbles. When bubbles occur in 
organized groups the group is referred to as a bubble phantom, bubble veil, 
etc. Smaller bubbles appear only as light reflection points and their shape 
is not seen.

In  general such bubbles may be filled with gas, liquid, solid, or any com
bination of phases. They m ay be of the same nature as rare, large cavities 
in which one can easily see a liquid moving about. Analysis of the contents 
of such cavities has indicated the presence of C 02, water, salt solutions, and
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other substances tha t might have been present during growth conditions. 
T hat these cavities are seldom in the form of negative crystals, i.e. having the 
plane natural faces characteristic of quartz, is not easily explained.

N EED LE INCLUSIONS appear as long, thin lines or needles. They 
m ay be straight or curved, blue, white or otherwise. W hether they are 
continuous or composed of rows of individual inclusions is usually not dis- 
cemable. Needles, visible without concentrated illumination (and fluid 
immersion), are likely to be inclusions of crystalline material, such as rutile 
(brown), tourmaline (black). Usually such needles are called rutile needles, 
because of the commonness of rutile and the difficulty of determining whether 
they are rutile or some other material. They might better be called DARK 
needles. BLUE NEEDLES are fine textured, and may appear singly or in 
parallel groups, which may be a t angles to other parallel groups. In  other 
cases they spread from a bubble point, like a comet. Blue needles may also 
be feathered (having short feathery rays along the sides), may be hard (very 
fine and sharply distinguishable), or soft (diffuse). Probably the most 
im portant characterization of all blue needles is their blueness, which in
dicates fine texture. W H ITE NEEDLES are similarly hard or soft. 
CHUVA is a special type of white needle which would be extremely elusive 
except for the fact tha t along its length are small bubbles, giving chuva the 
appearance of dew drops along a thin fiber. For piezoelectric usage an 
im portant distinction between needles is whether they are blue, white, chuva, 
or dark.

PHANTOMS are an arrangement form of inclusions (or coloration), in 
plane sheets which are parallel to possible natural crystal faces (usually the 
prism or pyramid faces). Often several, differently oriented, phantom 
planes are formed together so as to give the appearance of a crystal within a 
crystal, thus the name phantom (or ghost). Phantoms may also appear as 
groups of parallel sheets. Phantoms may be of smoky, blue, white, or 
bubble texture and should be so noted when describing their effects on 
piezoelectric elements. T hat phantoms are closely related to disturbed 
growth conditions is apparent from their close relationship to crystal faces.

VEILS are an arrangement form of inclusions in curved sheets. They 
are most commonly of a tenuous bubble texture, but may also be white or 
bluish. Again this distinction is of importance in estimating their deleteri
ous effects. The cause of inclusions appearing in veil form is not clear.

CLOUDS (a term  not widely used) refer to inclusions irregularly dis
tributed in restricted regions of the crystal.

4.7 I n s p e c t i o n  M e a n s

The raw quartz inspectoscope is the name of an instrument used for the 
inspection of raw quartz. This inspectoscope may, of course, be also used
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for the inspection of quartz in various stages of processing, and for other 
transparent materials than quartz.

B y  means of a polarized light optical system the stones are examined 
for optical (but not electrical) twinning. By this same means the direction 
of the optic axis through the stone is also determined. By means of con
centrated high-power illumination the stones are inspected for cracks, color 
and inclusions. By both means the stones are illuminated and inspected 
while immersed in an immersion fluid of matching index of refraction.

M E R C U R Y  L A M P

Fig. 4.3—The raw quartz INSPECTOSCOPE, top and front views. The stones are 
held in the immersion tank  and viewed from above. Polarized light from the mercury 
lamp is used for locating the direction of the optic axis and for detecting optical twinning. 
Concentrated light from the projection lamp is used for detecting other interior defects. 
See also Fig. 4.5.

W ithout such immersion it is difficult or impossible to illuminate the interior 
properly, or to see into the interior, of oddly shaped or rough surfaced stones. 
Such immersion eliminates refraction (bending of light rays) at the surface. 
The interior of stones with ground, fractured, or other surfaces, are as easily 
examined as a piece of plate glass.

The im portant design features, maintenance and operation procedures 
are given below. Figure 4.3 is a diagram of the instrum ent, and Fig. 4.5 
shows an early model utilizing many of the features described below. Three 
plate glass windows W  are cemented into apertures in the open-top, steel



immersion tank, Fig. 4.3. A raised perforated table T  rests on the bottom of 
the tank. For polarized light inspection of twinning and of optic axis direc
tion, the right to left optical system is used. This comprises an AH-4, 
100 w att, mercury-vapor lamp (requiring special transformer) isolated in a 
well ventilated housing with window IIT\, a set of color filters F\, 1<\, (and 
possibly F 3), a polarizing filter Pi  with ground surface G (for light diffusion), 
the immersion tank, the polarizing filter P 2 (crossed to Pi), and the mirror 
(mounted at 45° to the vertical) to reflect light vertically up through a 
window in the drain pan (not shown in Fig. 4.3), to the eye. For inspection 
of defects other than twinning, a high powered projection system is used. 
This comprises a projection lamp (isolated in a housing by window IIF2, 
and with forced draft), condenser lenses CL, and the immersion tank. Here 
one looks down directly into the tank a t the stone. Reflectors R  may be 
added to both systems to increase the illumination.

This instrument resulted from a restudy of long-used “inspection tanks” 
and methods, and includes some features not originated by the author. 
Since this inspectoscope is believed to be superior to many inspection-tank 
equipments now in use, the more important design features will be described.

The tank should be large enough to allow easy handling of the stones in 
the fluid, with allowance for positioning any portion of the stone in the pro
jection beam, and allowance for rise in level of the fluid as the stone is im
mersed. However, the size should not be made larger than necessary, for it 
has been found in practice tha t the fluid very rapidly collects lint and dirt, 
which (being kept in suspension by agitation) scatters or diffuses the light. 
This, besides scattering the light from its proper paths, interferes with the 
polarized light inspection by depolarizing the beam. In large tanks with 
dirty  oil the light becomes almost completely depolarized and no patterns 
can be seen. If, however, the crystal is large enough to nearly fill the length 
of the tank  (along the polarized light beam), this depolarization is small.4 
Thus, a tank as small as is consistent with the size of the stones to be ex
amined should be used. The smallest convenient size and shape of tank 
would be about 8 inches in the polarized light direction, 8 inches in the pro
jection light direction, and 5J inches high (all elements of Fig. 4.3 are drawn 
in proportion to these tank dimensions). This permits easy examination of 
two to three pound stones (pintsized), and six-inch long stones may be used 
without great difficulty.

Isolation of lamp heat is an important consideration in both optical sys
tems. In  the projection system the high wattage lamp would dangerously 
heat up the whole instrument if the heat were not properly dissipated. In

4 In  an emergency small stones can be examined in a large tank with polluted fluid by 
placing the stone a t the mirror end of the tank and [introducing a polarizing filter directly 
in the fluid, close to the stone, on the lamp side (Polaroid J-Film is only slowly attacked 
by m any of the immersion fluids).
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the polarized light system the heat m ust be isolated from the color filters and 
especially from the polarizing filter P h for it is extremely im portant tha t 
polarizing screens should not be overheated. They deteriorate (lose their 
polarizing property) rapidly above 60°C., and should not reach a tempera
ture uncomfortable to the touch. Their deterioration by heat or otherwise 
is not usually discernible except by examining their extinction quality with 
the aid of a good piece of polarizing m aterial (turned for extinction, they 
should pass practically no light). Since the polarizing filters and the color 
filters all absorb some light themselves it is im portant to ventilate these units, 
as well as to isolate the mercury lamp heat with a separate housing. The 
window IIFi in the mercury lamp housing may be of one-eighth inch pyrex 
glass, or better the heat filter HF  (specified later), and may be a moulded 
filter (since there is no focusing required here). However, the window for 
the projection lamp housing should be polished, either pyrex or heat filter 
as above (since here the light is used in a focused beam).

The polarizing filter Pi  and P 2 may be glass filters (polarizing film ce
mented between glass plates by the manufacturer) or film filters held be
tween sheets of one-eighth inch plate-glass, with taped edges. The latter 
arrangement is less expensive, and the film is usually obtainable without 
delay. Extra filters' should be kept on hand. The two filters must be 
mounted, relative to each other, in a crossed position (for extinction). Since 
light entering the tank from P i must be diffuse it is necessary to introduce a 
ground glass surface. This is accomplished without adding an extra glass 
plate by grinding one surface of the polarizing filter, the outer surface if a 
cemented glass filter, an inner surface if using loose film between glass plates 
(the inner surface may be used here to provide for protection from dirt). 
In  either case the ground surface must be on the lamp side of the filter or it 
will depolarize the light.

In  the past a carbon arc has been used as the projection light source. 
Such arcs are not handily turned on and off, nor adjusted, and are now dif
ficult to obtain. An incandescent projection lamp overcomes these diffi
culties. A 500 to 1000-watt lamp with double-plane filament structure 
(filament in two planes, and staggered relative to each other, giving a solid 
square of illumination) is ideal for this purpose. Such lamps operate a t high 
efficiency, are a concentrated source, have a short life, and generally require 
forced ventilation. A recommended lamp is the Mazda, Clear Projection, 
750W— 120V, T-12, C-13D Fil., Med. P.F. base. This lamp requires a 
small blower for ventilation and when operated with a foot switch, only dur
ing th a t part of the inspection tha t it is needed, gives a satisfactory replace
m ent schedule.

I t  is im portant in the projection system to use large, short-focus condenser 
lenses, and to focus the lamp image near the center of the tank. This allows
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the great concentration of light which is necessary for detecting fine-textured 
defects, and makes it easier to determine just where in the crystal (in depth) 
the defect lies. Further, with the large angle of illumination available, 
those defects which require a specific angle of illumination may be found with 
less hunting. It should be noted that in figuring the object and image dis
tances, the refractive index n of the immersion fluid must be taken into 
account (the window to image distance with fluid present is about n times 
tha t with fluid absent).

The color quality of the light used in the polarized light system has a 
considerable effect on the ease of observing the light patterns obtained when 
inspecting for twinning and optic axis. A typical light pattern of a piece of 
raw quartz tiewed along the optic axis is shown in Fig. 4.8. The broad dark 
and light contours, “thickness-contours,” are the ones used in locating the 
optic axis. -The finely “toothed-patterns” a t A, B, and C show twinning. 
The conditions that make the former most pronounced are not necessarily 
the same as those that make the latter most pronounced. The broad thick
ness-contours are most pronounced in monochromatic light, but barely 
visible in white light. This is due to the large variation of rotatorypower 
with color, which, in all but the smallest stones, causes such overlapping of 
the white-light color contours as to result in practically no appearance of 
contours a t all. This effect does not apply to the twinning regions, since 
in most cases the thickness of oppositely handed material is too small to 
develop overlapping. The result with white light is tha t the stone appears 
mainly white, except for regions of twinning where the toothed pattern is 
seen in color. For twinning detection, then, the advantage of white light is 
largely due to removal of the extraneous thickness contours. This possible 
advantage for the novice is not obtained without some loss of factors neces
sary for complete identification.

On the other hand, in determining the direction of the optic axis, the 
thickness contours are essential, and hence monochromatic (or a restricted 
spectrum) light is necessary. This illumination is most easily achieved with 
a mercury arc and color filters. The mercury arc emits a restricted spectrum 
(mainly ,578/u yellow, ,546/r green, .436^ far-blue lines and weak red and 
blue-green bands), and is very efficient. Even without filtering it gives 
far better thickness-contours for axis determination than does white light. 
The insensitivity of the eye to blue leaves mainly yellow and green. The 
yellow may be largely removed without appreciable loss of green by using 
filter Fi and the blue and blue-green may be removed with filter FT How
ever, the red can be removed only with considerable loss of green by filter 
F 3. The use of F i and F2 alone are recommended as giving sufficient re
striction of spectrum and yet high illumination. (All three filters, as used 
in the conoscope, give a fairly monochromatic green.) The filters need not
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be polished, only moulded, since here there is no focusing of light. The 
filters described above are the Corning glass filters:

F h Code 3484, H .R. Traffic Shade Yellow,
F 2, Code 5120, Didymium,
F s, Code 4303, D ark Shade Blue Green,
HF, Code 3966, Extra Light Shade Aklo (a heat filter).

A corresponding set of filters passing more light, but giving a less mono
chromatic light are:

F h Code 3486, H .R . Yellow Shade Yellow,
Fi, Code 5920, H .R. Illusion Pink,
F3, Code 4308, Light Shade Blue Green.
I t  might be added tha t the pronounced effects of filters are easily observed 

with any instrument by holding small polished filters over the eye. These 
same filters give some improvement even with white light, for optic axis 
detection. Further, if the filter were not so heavy, polished filters might be 
better applied a t the eye than at the light source, since here they would also 
cut down extraneous illumination from the room. Or the same result might 
be obtained with large polished filters (expensive) and an eye chute a t the 
viewing end of the system.

Several factors are of importance with regard to the immersion fluid used 
in the inspectoscope. The fluid should have a refractive index matching 
tha t of quartz, and be clear and colorless (to eliminate loss of light). I t  
should be of low viscosity, so tha t dirt and dust may settle and air bubbles 
rise, rapidly (to prevent depolarization of the polarized light beam). Low 
viscosity also aids in the draining of oil from the stones after inspection. 
W ater solubility of the fluid would be an aid to cleaning. Necessarily the 
fluid must be non-toxic and non-flammable, and preferably odorless, inex
pensive and commercial. Various fluids satisfying these requirements to 
varying degrees have been used. Since there is no m ajority agreement as 
to which of the fluids now in commercial use is most satisfactory, no particu
lar fluid can be recommended. (Three are listed in Chapter II, page 258.)

However, a word may be added about the required degree of refractive 
index match. Mineral oils of index 1.47 to 1.48 are, definitely, very poor im
mersion fluids for quartz. W ith them it is difficult to see into the interior 
of stones without plane polished surfaces. Ground and unpolished surfaces 
still cause considerable diffusion. For good inspection viewing the fluid 
should have an index between 1.53 and 1.56 (preferably between 1.54 and 
1.55).

The refractoscope is a simple instrum ent especially designed for the pur
pose of easily and exactly checking the index m atch of fluid to quartz. The 
principle having been already noted (p. 255, Chapter II), it suffices here to 
describe the use of the instrument. A test tube, Fig. 4.4, filled with the
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fluid to be examined, is mounted in an adjustable-height stand, the optical 
system lowered into the test tube until the flat bottom surface of the lens 
contacts the fluid, and the stand is placed in an inspectoscope, conoscope, 
or in front of a lamp (the stand being adjusted to proper height for good il
lumination). The optical system comprises a lens L  (for magnification and 
elimination of ripples on the liquid surface), a thin Z-cut quartz prism <2,B 
and a narrow slit diaphragm S. When the slit is viewed simultaneously 
through, and at the sides of the prism, a view similar to one of those shown

R

Fig. 4.4—The immersion REFRACTOSCOPE may be used in conjunction with an 
inspectoscope or conoscope for determining the degree of refractive index match (or mis
match) of the immersion fluid relative to quartz. At the right is shown the manner of 
reading the instrument.

in the figure may be seen. The two short lines are always the same distance 
apart and are used as a unit of index mismatch, the unit being u =  .009 =  
.01. The left-hand short line is the one to be aligned with the long line for 
perfect match, and the actual mismatch An, is measured by the separation of 
these two lines. The remainder tab is added to remind the operator which 
indications represent perfect match, too high and too low fluid index. Since 
the indices of both quartz and fluid vary with temperature and with color 
of light used, the refractoscope was especially designed for immersion directly

5 The larger the prism angle the greater will be the sensitivity of reading, and the smaller 
will be the readable range of mismatch.
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in the instrum ent using the immersion fluid. When, in such instruments, a 
polarizing filter is so oriented as to cut off one or both short prism-lines, these 
lines may be restored to view by rotating the test tube in the holder (upon 
continuous rotation one line and then the other will disappear). W ith 
vertical conoscopes the mirror may be removed for bottom  illumination. 
When monochromatic light is used all three lines are the same color as the il- 
luminant. When using non-monochromatic or white light, the long, slit 
line is the color of the source, while the short lines develop into two, separate 
spectra. In  this case, th a t portion of the spectrum is used for alignment 
which is most predominantly used in the immersion instrument. The 
sensitivity of the refractoscope, when approaching perfect match, is about 
An =  .001. This sensitivity is of course attained when one adjusts the 
fluid to match the quartz, by addition of the proper high or low-index com
ponent. When the fluid does not match there is a less accurate measure of 
mismatch, but this measure is still good for determining the degrees of fluid 
adjustm ent to be made.

The principle of the refractoscope may be even more simply applied to 
measuring the fluid to quartz mismatch, by making use of the inspectoscope 
and a basal section of quartz, using the 120° prism formed between two good, 
clear, adjacent natural faces. The section is placed base down in the tank 
a t the far side from the mercury lamp, and so positioned th a t a vertical slit 
diaphragm, placed on the other side of the tank, may be viewed through the 
two prism faces. W ith the polarizing filters removed, the two images of the 
slit as seen through the prism do not (in general) align with the slit as seen 
above the prism. The image farthest from the prism vertex is the one that 
should be aligned with the slit, for perfect m atch of refractive indices. The 
necessity of removing the polarizing filters can be obviated by tilting the 
prism and slit about the line of sight, preferably a t 45° from the vertical (or 
this might have been obviated, if the polarizing screens had been out with 
their plane of polarization at 45° to the vertical).

Finally, experience indicates tha t the importance of keeping the immersion 
fluid clear and clean is not generally realized. As noted above, contamina
tion not only gives bad scattering of the projection beam, but also 
depolarizes the polarized light. A perforated plate raised from the bottom 
of the tank is an aid in keeping the settled d irt from being recirculated 
again. More effective is the provision of simple, easy means for draining, 
filtering and refilling the tank. One or more thicknesses of chamois makes a 
good filter, provided the chamois is occasionally washed out with a solvent.

4 .8  P h o t o g r a p h ic  S t u d y  o f  I n t e r io r  D e f e c t s

The original inspectoscope of Fig. 4.5 was used a t the Hawthorne plant 
of W estern Electric Company, in obtaining the accompanying photographs.



For inspecting twinning and direction of optic axis, the stones were viewed 
horizontally through the polarizing filter E  and window, with mirror F 
removed (using mercury lamp A).  Normally the operator looks directly 
down into the mirror to see the same view. For observing other interior 
defects, the view is from directly above the tank, through the fluid surface 
(with projection lamp in housing II being used). This is the normal manner 
of observation. B  mounts heat and color filters;C is a polarizing filter with 
diffusing surface; E, a polarizing filter crossed to polarizer C; G, a glass win
dow; and I J  is a rudimentary lamp house normally fitting over A  to edge 
of B. The tank D has two rectangular windows parallel to C and E, and a 
circular window in rear wall for entrance of projection illumination.
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Fig. 4.5—The inspectoscope and stones used for the following figures. See also Fig. 4.3

Most of the following photographs are of stones shown, Fig. 4.5, on the 
drain pan and in the tank. Note tha t stones 3, 6, 9, 12, 14 are well faced 
stones; 9, 7, 13 have fractured surfaces; and 15 is typical river quartz (nearly 
perfect internally). The special manner of orienting the stones in the tank 
to obtain the desired views will appear from the following descriptions. The 
views are one-half to full size.

Figure 4.6 is a polarized light view of a wedge shaped basal section (one- 
fourth inch thick at the left, to three-fourths inch thick at the right). The 
wedge is viewed along the optic axis with the plane faces approximately 
perpendicular to the line of sight (i.e., parallel to the polarizer C of Fig. 4.5).
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The back face is larger than the front face so tha t outside the borders of the 
front face the thickness tapers off very rapidly. Since the dark contours 
here show thickness of the section (as the lines of a contour map show height 
above sea level) one may easily determine the shape of the wedge. The 
inner contour A A  is near the greatest thickness, contour BB  intermediate 
thickness, and outer contour A A  near the thinnest portions a t the edges. 
I t  might be added tha t the thickness-contours do not exactly indicate a 
region of equal thickness unless the eye is distant from the stone, and unless 
the stone is viewed exactly along its optic axis.

Figure 4.7 is a polarized light view of an inch-thick basal section (i.e., 
Z-cut) with the parallel ground surfaces perpendicular to the line of sight

Fig. 4.6—A wedge-shaped basal section of quartz viewed along the optic axis in polar
ized light. The THICKNESS-CONTOURS locate regions of equal thickness, A-A 
thickest to C -C  thinnest.

(i.e., the stone is viewed along its optic axis). Neglecting for the moment 
the ring pattern  C, one observes a wide, diffuse vertical thickness-contour 
a t B. W ith parallel surfaced stones a thickness-contour should cover the 
whole stone, since the thickness of the stone is uniform. Here the stone is 
not viewed exactly along the optic axis. If the eye be placed close these con
tours become circular.

Further, this view shows the effect of placing a lens between the tank 
window and polarizer a t E, Fig. 4.5. The result is a ring pattern, the real 
image of which is a t the focal distance of the lens on the eye side. The 
image may also be obtained on a ground glass a t this point and its location 
is independent of the distance between quartz and lens (no rings will appear
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if too far separated). This ring pattern  is due to conical illumination (or 
more correctly to conical viewing; here the illumination of the stone is 
diffuse). This simply illustrates the basic principle of the conoscope. The 
principle is further illustrated by tilting the section out of its present posi
tion, which causes the ring system to move in the direction of tilting. The 
theory of these effects is given in Chapter II.

Figure -1.8 is a polarized light view of a pyramidal cap of quartz with a 
fractured back surface (stone 3, Fig. 4.5). Here the stone is viewed along 
the optic axis (the six natural cap faces making equal angles with the line 
of sight). The continuous dark bands are thickness-contours, and again

Fig. 4.7—A parallel faced, basal section of quartz viewed along the optic axis in polar 
ized light. X ote the vertical thickness-contour a t B. The conoscope ring-pattem  C 
m ay be obtained by introducing a lens.

represent regions of equal thickness in the optic axis direction. H ad the 
fractured surface been flat instead of broken these contours would have 
been hexagonal and parallel to the hexagonal edges of the cap. The toothed- 
pattem s a t A  to G are due to optical twinning (thin layers of the quartz 
whose handedness is opposite to tha t of the main stone). Although the 
exact shape and location are not determinable, the approximate location 
and extent are observed by tilting the crystal while Hewing. The contour 
and pattern changes resulting from angularly moving the crystal (away from 
the position of Hewing directly along the optic axis) are shown by Fig. 4.9, 
which should be compared with this figure.

Figure 4.9 is a polarized light Hew of the same stone as shown in Fig. 8,



Fig. 4.8—A  broken cap of quartz is viewed along the optic axis in polarized light. Few, 
broad thickness-contours show good alignment with the optic axis. The fine TOOTHEL - 
PA TTER X S are due to optical twinning.

Fig 4 9—The same cap as in Figure 4.8. b u t viewed slightly off the optic axis. Xote 
the increased num ber of thickness-contours, and their fineness, also th a t some twinning 
regions are enhanced.

354
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the only difference being tha t here the crystal is viewed slightly off the optic 
axis. Comparing the two views it is noted tha t here there are many more, 
and narrower, thickness-contours.6 As the crystal is further rotated away 
from optic-axis-viewing, the contours multiply until they are no longer 
visible. Thus, it is by so positioning the stone as to obtain the fewest and 
widest thickness contours that the optic axis direction is determined, the 
axis then being parallel to the line of sight from eye to stone. I t  might be 
parenthetically rioted that the handedness of raw stones may be determined 
in the inspectoscope, if the polarizing filter on the viewing side be rotatably 
mounted, by observing the contour contraction or expansion as the filter is 
rotated (for stones progressively thicker from 'outer boundary inward, the 
handedness rule is opposite to that for the conoscope).

A further effect of tilting the stone away from optic-axis-viewing is to 
enchance the toothed, twinning-patterns. Certain of these patterns are 
enhanced by tilting one way, others by tilting differently (note tha t regions 
.4, C and G are much clearer here than in Fig. 4.8). Also, since the thick
ness-contours move about and the toothed patterns remain fixed, motion 
of the stone is an aid to location of twinning (except in the rare cases of 
large sized twins, where this does not hold). Note that optical twins usually 
extend inward from the original natural faces. The twin G which appears 
to be internal, actually extends inward from a cap face.

Figures 4.10 and 4.11 show projection illumination views of typical, 
parallel BUBBLE-PHANTOMS (in stone 7, Fig. 4.5). The light from the 
left converges into the stone, focuses about centrally, diverges and passes 
out of the stone at B. Due to an internal fracture in the right end the light 
is also reflected upward at C. The light beam is visible in the fluid bu t not 
in the stone, because a slightty contaminated fluid scatters far more light 
than does quartz.

In  Fig. 4.10 the stone is held so tha t the phantom planes .4-/1 are viewed 
edge on (the only way finer textured planes are visible), while in Fig. 4.11 the 
planes are viewed at a slight angle, to show area of the planes. These planes 
have a texture of distinguishable bubbles. The planes are long, about an 
inch wide (with rectangular boundaries at their left end) and are parallel 
to a possible natural face (no acutal faces present on this broken stone). 
Such bubble phantoms are probably not permissible in any finished piezo
electric plate.

Figure 4.12 shows bubbles, cracks, veils, and phantoms (in stone 9, Fig. 4.5) 
and pairs of angularly joined phantom planes, B-B, parallel to the natural 
faces A - A ; each pair forms two faces of interior phantom crystals. The tex
ture of the phantom planes near A-A  changes along their length from bubbly 
at the left to bluish at the right. A dense curved blue veil is seen at C-C,

6 Actually the thickness contours are not now as closely related to the thickness as before 
(due to the birefringence effects being added to the rotatory effects; see Chapter II) .
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while a disperse, curved, bubble veil is shown at E. Above and to the right 
of D  are two small fractures.

Fig. 4.10—An edge view of BUBBLE-PHANTOM S using the concentrated projec
tion light. See also Fig. 4.11

Fig. 4.11—The same stone as in Fig. 4.10, viewed a t a slightly different angle. Note 
the bubble-texture, and the w idth  of the planes.

Figures 4.13 and 4.14 show blue needles in two parts of a single stone 
which contains needles throughout (stone 10, Fig. 4.5). Only those needles
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which are near the concentrated focal point of the projection illumination are 
visible in each view. The length direction of the needles must be nearly par
allel to the direction of illumination to be seen well (thus wide angle of illumi
nation is an aid in finding the needles). Needles elsewhere in the stone may 
be observed by moving the stone about. The flares at the ends of the stone 
are due to exterior surface conditions. The needles of Fig. 13 are of the 
comet type (radiating from a point), while those of Fig. 14 lie in parallel 
groups. In  each case a few of the needles are slightly feathered, and all 
are soft needles.

Figure 4.15 shows a stone (14, in Fig. 4.5) in which the defects are con
centrated in the base, a common occurrence. Were this stone to be proc-

Fig. 4.12—This stone, viewed in the projection light, shows phantoms A-A to B-B, 
blue-veil C-C, bubble-veil E, and two fractures near D.

essed by Z-sectioning, a saw cut near the line C-C would divide the stone 
into a large, nearly perfect portion, and a small unusable portion which 
need not be further processed. Otherwise sawn, bad portions will have to 
be processed, or good portions of a largely bad section would be too small 
to obtain plates from. This points out the importance of coordinating 
processing with inspection, even though the stones have been already in
spected and judged to be worth processing.

Bubbles and cracks fill the end of the stone at B, scattered bubbles appear 
in a veil a t A, and a few isolated bubbles are a t D. Note the clarity of the 
stone relative to the fluid, as shown by the beam of light entering the stone 
from the left, not visible internally.
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Fig. 4.13—This stone is full of blue needles, though only those located m tne locus 
of the light beam are visible. See also Fig. 4.14.

Fig 4.14r—The same stone as in Fig. 4.13 shows other blue needles in a different ar
rangement, by holding the stone differently with respect to the light.

4 .9  E f f e c t  o f  I n t e r io r  I m p e r f e c t io n s  o n  F in is h e d  P l a t e s

The practical effect on the finished piezoelectric plates, of the various types 
of interior defects, is one of the least understood factors directly related to 
economic use of the strategic material, raw quartz. This is because of the
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wide variation of the types, sizes and concentrations of defects, and the 
further variation of the types, sizes, and requirements to be met in the 
finished plates. However, an analysis of the factors involved leads to some 
important conclusions. The various factors may be correlated as follows.

Fine textured inclusions are less objectionable than coarse textured inclu
sions (i.e., smokiness, and blue needles and phantoms, than white, or bubble 
needles and phantoms). Isolated defects are less objectionable than con
centrated defects of the same texture size (i.e., isolated bubbles, than bubble 
phantoms). Cracks should never be permitted in finished plates. Twin
ning will be discussed in detail in Chapter V.

Fig. 4.15. This stone could be economically processed by cutting off the base rear 
line C-C. A few scattered bubbles appear a t D, fractures and bubbles fill the base B, 
and A is a bubble veil.

Further, a given defect is more likely to be tolerated in: (1) large piezoids 
(finished piezoelectric elements) than in small ones; (2) in low-frequency- 
mode plates (C T  and D T  types) than in high-frequency-mode plates (A T  
and E T  types); (3) in plates to be operated at low amplitudes of vibration 
(filter elements, and oscillator plates with low drive) than those driven to 
maximum amplitudes (oscillator plates with high drive); and (4) plates 
having low rather than high-quality requirements (on activity, temperature- 
coefficient, frequency adjustment).

Thus, blue needles have long been permitted in some types of large, low- 
frequency-mode filter elements. While breakage has resulted from the use 
of blue needles in high-frequency oscillators .with very high drive, it is not



360 B E L L  S Y S T E M  T E C H N IC A L  J O U R N A L

known tha t blue needles may not be used in many other types of oscillators. 
I t  is likely th a t smokiness is less objectionable than blue needles (very 
lightly-smoky m aterial not recognized as such has been widely used).

A further im portant factor, often disregarded, is related to high-frequency
mode plates and their method of manufacture, and more specifically to the 
method of finally adjusting the dimensions to give the required activity, fre
quency, and tem perature characteristic. When such plates are made by the 
PR E-D IM EN SIO N IN G  technique, which requires very small tolerances 
on the machined dimensions and orientation, they are finally finished by 
hand adjustm ent of only one dimension, the thickness. On the other hand, 
when the plates are machined to only moderate accuracy of dimension and 
orientation, they m ust be finally hand adjusted on all three dimensions to 
obtain satisfactory characteristics. By this method of adjustm ent it is 
possible to correct, not only for misdimensioning and misorientation, but 
for small defects in the quartz itself. However, with pre-dimensioning and 
a single dimensional adjustm ent practically no correction may be made for 
errors, or quartz defects. Thus, higher quality quartz may be necessary 
for manufacture by the pre-dimensioning technique than otherwise.

The conclusions tha t may be drawn from these considerations are: (1) 
only by a quantitative statistical study can it be determined whether a 
given type of defect will be permissible in a given type of finished plate, (2) 
known usability of a given type of defect in a given type of plate does not 
prove its usability in a different type of plate (the type includes size, mode 
of vibration, and required electrical operating characteristics), and (3) the 
method of manufacture is also related to the usability of defective quartz 
(i.e., pre-dimensioning vs. non-predimensioning).

Since in the past very little defective quartz has been used in the manu
facture of piezoelectric elements, especially oscillators, there is little manu
facturing experience tha t may be used as a guide to its introduction now. 
The quickest means of obtaining this information, and of making use of the 
reservoir of defective quartz, would seem to result from trial manufacture 
first of the most likely to succeed types of plates, from quartz with the most 
likely tolerable types of defects. If and when this utilization is found to be 
practical the less likely cases may be examined, while a t the same time de
fective m aterial is being used and experience is being gained in grading the 
raw quartz into usably defective and non-usably defective. This special 
grading of quartz will be difficult to control exactly. I t  will be easier to 
grade into types of imperfections than into quantities of defects per-unit- 
volume. Further, it will be easier in manufacturing trials to determine 
whether a given type of defect is permissible if the defects appear in large 
quantities, than if in very small quantities (where they may actually be 
absent in some finished plates). For these two reasons it will be preferable
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in trial manufacture, to select for processing stones which have the desired 
type of defect in large (to maximum) quantities per-unit-volume. Due to 
the many variables involved in both selection of material and in manu
facture, a large quantity of stones must be processed for a fair trial. The 
criterion of usability of the defective material will then be related to number 
of usable finished plates (satisfying the required electrical and physical 
specifications on the finished plate) that can be obtained from a given quan
tity  of raw quartz (and thus to the relative costs cf producing satisfactory 
finished plates from defective and from non-defective quartz).

If and when a type of defect has been shown to be harmful by the above 
method, steps may then be taken to ascertain if some method of selection or 
measurement can be made on the defective raw quartz to separate the eco
nomically usable from the economically unusable material during inspection.



The New Statistical Mechanics

By

KARL K . DARROW

THIS is the second article upon statistical mechanics which I  have pub
lished this year in this Journal. The first, which appeared in the 

January (1943) issue, was devoted to the oldest form of the theory, which is 
variously known as the old, the classical, or the Boltzmann statistics. The 
word “statistics,” I repeat from the former article, is a synonym for statisti
cal mechanics, objectionable bu t (because of the length of the alternative) 
hardly to be avoided. The “new statistics,” frequently divided into “ the 
Bose-Einstein statistics” and “ the Fermi-Dirac statistics,” emerged in the 
middle twenties and ever since it has been gradually pushing its ancestor 
aside. In  this article I propose to expound the new statistics, laying especial 
emphasis on the theory of monatomic gases, to which the former article was 
strictly limited.

A definition of statistical mechanics may well be asked for a t this point, 
especially since in the former article I failed to give one. Like many other 
things either subtle or familiar, statistical mechanics cannot fully be defined 
till it is fully understood, by which time a definition may seem nugatory. 
As an attem pt a t an advance definition, I  suggest th a t statistical mechanics 
is the theory which, starting from the assumption that matter {and, in due course, 
radiation) is an assemblage of particles, undertakes to explain (I) entropy, (2) 
temperature, (3) specific heats, and (4) the distribution-in-energy of the particles 
in  thermal equilibrium. The critical reader may justly say tha t these are 
four aspects of a single problem, bu t I  think it well to separate them not
withstanding. The word “particle” often has to be construed as standing 
for an elaborate structure, bu t in dealing with monatomic gases (and with 
radiation) we may let it stand for a point endowed with energy and 
momentum.

How does the classical statistics succeed in handling these four problems? 
To take them in reverse order: it does very well with the fourth, for material 
gases (but not for radiation). I t  does very well with the third, for mona
tomic gases (but not for polyatomic gases nor for radiation). I t  produces 
an adequate theory of tem perature for monatomic gases, identifying the 
tem perature with the mean kinetic energy of the atoms multiplied by a 
certain factor. I t  has a very strange adventure with entropy, producing 
a theory which in part is remarkably successful and in p a rt is disconcertingly
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fallacious, and has to be altered in awkward and dubious ways to be made 
completely successful.

To consolidate these statements and introduce the new theory, I review 
the Boltzmann statistics.

The N  atoms of a gas in a container are represented by N  numbered balls, 
identical in every way except the numbering. In  the earlier article a game 
was proposed in which a collection of numbered baskets was provided for 
these balls, and the balls were tossed into the baskets in a predetermined 
w ay: iVi of them into the first of the baskets, N 2 into the second, and so on 
until each of the baskets contained its preassigned number of balls with N M 
in the M th  or last basket. The set of numbers Ni, N 2, N 3, ■ • ■ N M was 
called a “distribution,” and the question was asked: in how many different 
ways can this distribution be realized? I t  demands a previous answer to 
another question: how can a given distribution be realized in more than 
one way? I t  is the numbering of the balls which makes this possible. If 
for instance we exchange two balls in different baskets, the distribution is 
not changed, and yet there is a difference between the second situation and 
the first, for an inventory of all the balls in all the baskets shows tha t in 
those two particular baskets the assortment has been changed. We thus 
have realized the same distribution in two different ways. If we had 
exchanged two balls in one basket, this would not have been regarded as a 
change; we should still be realizing the same distribution in the same way, 
in the sense of the Boltzmann statistics. I t  was shown in the earlier article 
th a t the number W  of ways of realizing a distribution—or in more technical 
language, the number of complexions in the distribution—is given by the 
formula:

W  = N l/U N jl  (1)

I have said tha t in the Boltzmann statistics, the balls stand for the atoms 
of a gas. For what then shall the baskets stand? The baskets stand for 
compartments in space; bu t “ space” may have several different meanings.

Giving “space” the ordinary meaning: imagine the gas contained in a 
box, and the box divided mentally (not physically!) into M  compartments 
of equal volume. I  called these by the name of “cells” in the previous 
article, bu t now, for a reason which will shortly appear, I  rebaptize them 
“ regions.” These are the baskets. W  has its smallest value, which is 
unity, when all of the atoms are in the same region. I t  has its greatest value, 
which is N l/([N /M )f\u , when in each of the regions there is the same 
number N /M  of atoms. B ut this corresponds, as nearly as the picture is 
able to correspond, to the uniform spreading throughout the box which by 
vast experience we recognize as the natural permanent state of the gas “in 
equilibrium.” The uniform distribution is outstanding because it has the
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greatest value of W . If now we baptize W  with the name of “probability,” 
we may then say th a t the state which in N ature is the prevailing one is in 
the Boltzmann statistics the most probable one. In  the theory it is de
scribed by the equation:

N j  =  N /M  (2)

Now think of “momentum-space” in which there is a dot for every atom, 
and the Cartesian coordinates of the dot are the momentum-components 
Px, py, pz of the atom. The coordinates of the dot determine the energy E  
of the atom, by virtue (for m aterial particles) of the relation:

E  = (I/2m ) (pi +  py +  pi) (3)

This is a fact of the first importance, as will shortly appear. Let us divide 
the momentum-space into regions of equal volume. Each of the regions 
will correspond to a small range of energy-values, as a sample of which we 
may take any particular one among them. Therefore when we distribute 
the dots—or let me say simply, the atoms—in any manner among them, we 
have perforce a certain value of the total energy U of the gas, which we may 
consider as preassigned if we so wish. Now we are to compare this distribu
tion only with such others as show the same value of U. Among these there 
is one which is outstanding because it has the greatest value of W. This was 
shown in the earlier article to be the canonical or Maxwell-Boltzmann 
distribution, described by the formula:

N,- = N A  exp ( - B E / )  (4)

in which N,- stands for the number of atom s in the region numbered j \  E } 
for the value of E  appropriate to th a t region, i.e. obtained by substituting 
into (3) the coordinates of some point in th a t cell; A  and B  for constants, 
whereof A  depends on B  while B  depends upon U /N  the average energy of 
the atoms of the gas. This distribution also is attested by experiment as 
being tru ly  th a t of a gas in its normal natural abiding state of equilibrium.

Now I  mention the concept of a six-dimensional space which comprehends 
both the ordinary space and the momentum-space, and is divided into six
dimensional regions of equal volume. By this device one is able to speak of 
(2) and (4) as two aspects of a single distribution in the “yu-space.” This is
the distribution outstanding among those with which it may legitimately
be compared by reason of having the greatest TT-value. I t  is the most 
probable distribution, in the sense given in the Boltzmann statistics to the 
word “ probable.”

This is the first trium ph of the Boltzmann statistics, attained by number
ing the atoms. I ts  other triumphs, and its ultim ate confusion, come when
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it copes with the task of interpreting entropy. But if I  continue longer 
this review of the conclusions of the former article, the reader’s tolerance 
may be exhausted. Let us make haste to find out how the newer statistics 
sets forth to find out the most probable distribution.

One of the most appealing features of the new statistics is, tha t it does not 
impose on atoms of a single kind tha t peculiar distinction which I described 
above as “numbering” them. We therefore now remove the numbers from 
the atoms, restoring thus to atoms of a single kind—it might for example 
be helium—that quality of absolute indistinguishability which the classical 
statistics took away from them in order to achieve its aims.

Having de-numbered the atoms, we start anew to play th a t very game 
with numbered balls and numbered baskets which we played in the classical 
statistics with such remarkable but incomplete success. B ut now th a t the 
atoms are de-numbered, they can no longer be the balls (nor, for th a t m atter, 
the baskets). Something drastically new m ust now be done, and is.

In  the new statistics, the halls stand for the compartments and the baskets 
for the populations.

I  m ust define the word “population.” I t  means the number of atoms in 
a compartment, or as I  will say from this point onward, in a “cell.” The 
balls which are tossed into the basket numbered 0 stand for the cells con
taining no atoms; the balls which go into the basket numbered 1 correspond 
to the cells containing one atom apiece, and so forth indefinitely. Ci shall 
be the symbol for the number of balls in the |§h basket, which is to say, the 
number of cells containing i  atoms apiece. C shall stand for the total 
number of cells.

L et the cells a t first be compartments of equal volume in the ordinary 
space, obtained by dividing up (mentally) the box containing the gas. For 
the number of complexions or inventories corresponding to a given distribu
tion, defined by given values of the quantities C;, we have as before:

W  =  C!/nCf! (5)

and taking the logarithm:

In W  = C In C -  SC,- In Ci (6)

In  using this expression I  have again, as often in the previous article, as
sumed the validity of what I  there called “ the super-Stirling approxi
m ation” ; bu t notice th a t this no longer means tha t I  assume each of the 
cells to enclose an enormous number of atoms—it means instead that there 
is an enormous number of cells having each particular population.1

1 Clearly this cannot be so for all populations no m atter how g rea t! This is a difficulty 
which also pops up in the old statistics, though there it is not m et until the ordinary space 
is replaced by the momentum-space.
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We seek a set of values C i  such th a t when it  is realized, the quantity  W  
shall have a value stationary with respect to all variations ôCi conforming 
to two conditions : first, th a t the number of cells shall remain the same, which 
is to say, ZSCi shall vanish; and second, th a t the number of atoms shall 
remain the same, which is to say, 2 i8Ci shall vanish.

Such a set is the following:

Ci =  Cae~i$ (7)

a  and ¡3 standing for constants yet to be determined; for taking the first 
variation of InW  from (6), we find:

ô(ln W ) =  — 25C;(1 +  In Ci)

= -  25Ci(l +  In Ca) +  PZiôCi (8)

and the required condition is fulfilled. Assuming w ithout proof that the 
stationary value of W  is also a maximum value, and referring to W  as the 
“probability” of the distribution of cells among populations, we have come 
to the startling conclusion th a t the most probable distribution is the one 
given by (7) !

I  call this a  startling conclusion, because it contravenes our inbred con
viction th a t the natural distribution of a gas in ordinary space is the uniform 
distribution. Of course, in the last two sentences I  have used the word 
“ distribution” in two senses, and this m ust be rectified a t  once. W hat I 
have just called “ the uniform distribution” is the uniform distribution in the 
old sense—the same number of particles in every cell. In  the new sense of 
the word, this is a distribution in which all of the cells have the same popula
tion, and therefore in which one basket contains all of the balls. Definitely, 
this is not, in the new statistics, the most probable distribution! Indeed 
it is not even a conceivable distribution, for the number of cells is infinite.

To mitigate this clash of theory with experience we can do nothing else 
than  assume our cells to be so tiny th a t in any region of the gas large enough 
to be surveyed by observation, there is a m ighty number of the cells. Then 
a t  worst we can take it from experience th a t in the normal natural abiding 
state of the gas the number of atoms in each region will be the same if all 
the regions are of equal volume, while within each region we can distribute 
the atoms among the cells as the new statistics tells us to. However, it 
m ay yet be possible to come to this conclusion from the theory. In  prepara
tion for the effort, I  sketch the procedure for evaluating the constants a 
and /3 in the distribution (7).

A similar task was set before us in the earlier article : th a t of evaluating 
the constants of the Maxwell-Boltzmann law in terms of the to tal number 
and the to tal energy of the atoms. Here for any region we are to evaluate 
the constants a  and (3 in terms of the number of cells C and the number of
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atoms N . The task is greatly eased by the opportunity of using two well- 
known formulae:

1 +  * +  z2 +  • • • =  (1 -  x ) -1 (9)

1 +  2x +  3x2 +  • • • =  (1 -  *)“2 (10)

The start is made from the two self-evident equations:

C =  2  Ci =  C S a e *  (11)

N  =  2  iC t =  CEiae~il3 (12)

By putting x  for e 3 and using (9) and (10), the student can easily win 
through to the results,

a  =  (1 — e~*), C /N  = ee -  1 (13)

and then to the final form of the distribution-law (7):

c - - c r f c ( v f c ) ’ (14)
and finally, after consulting \5), to the expression for the number of ways 
11 max in which this the most probable distribution— “most probable” in the 
eyes of the new statistics—can be realized. Its  logarithm is:

, ttt ^ , 2V -1— C iV +  C . .In ITmax =  C In — - —  +  N  In — ——  (lo)

This is the most im portant formula of the new statistics, as will presently 
be clear.

Divide now the space containing the gas into “regions” of equal size, 
each comprising the same number C of cells, which number shall be great. 
For the benefit of those to whom the memory of the previous article may 
still be vivid, I  say now th a t insofar as there is any correspondence of the 
new to the old statistics, these “regions” correspond to the “cells” of the older 
theory. This is the reason why, in my recent brief synopsis of the old 
statistics, I  used the word “region” to replace the word “cell” used in the 
prior article. Let the subscript j  be the marker for these regions, so that
N j  shall stand for the number of atoms in the j th  region. P u t N,- for N
in (.15). Now each member of (15) refers explicitly to the j th  region, and 
on the left I  should pu t (In iF (max),), bu t for two purposes—one of which is 
brevity, while the other will appear in due time—I pu t In W,- instead:

In W,- =  C In +  N i In (16)

The quantity  W is an odd sort of “probability” relating only to the 
contents of the region j .  I t  is, to repeat, the number of ways in which the
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most probable distribution of the C cells among the possible populations can 
be realized, there being N ,■ atoms in the region. Nothing of the sort ap
peared in the old statistics.

Now form the product of all of the quantities W,-. This is a “probability” 
relating to the entirety of all the regions, therefore to the whole of the gas. 
I t  is the total number of ways in which the most probable distribution can 
simultaneously be achieved within each of the regions. I t  is taken to be the 
total number of ways in which the most probable distribution of the gas- 
as-a-whole can be realized; for in the new statistics we have no other way 
of defining the most probable distribution of the gas-as-a-whole, than this 
way of subdividing first into cells and then into regions comprising many 
cells. The symbol for this product shall be IT, for although I have already 
used th a t symbol in this article, its former meaning is now taken over by 
W j, and it is free again. We have:

In IT =  2  In W,- (17)

the quantities W¡ being still those functions of N,- which were shown in 
(16).

We seek now a set of values of N such th a t when it is realized, In IT, 
and therefore IT also, shall have a value stationary with respect to all 
variations 8Nj conforming to the sole condition th a t the total number of 
atoms shall remain the same, which is to say, 2<5iV,- shall vanish.

I t  may be recalled th a t a similar problem arose in the old statistics. I  
trea t it here in a more general and hardly less simple way, by writing the 
self-evident equation:

8 In IT =  2  8Nj (18)
dNj

For the fulfilment of our wish it is a sufficient condition th a t all of the deri
vatives on the right-hand side should have the same value; since than Sin W  
will be 2 SNj multiplied by a constant, and when one vanishes so will the 
other. For this it is in turn  a sufficient condition tha t all of the independent 
variables N,- should have the same value.

Uniform spreading of the atoms among the regions, with equal numbers in 
all regions of equal size, is therefore the condition in which In IT has a 
“ stationary” value, which as always is assumed to be a maximum value. 
W ith the new definition of probability, the state of uniform spreading be
comes the most probable in the new statistics, as with the old definition of 
probability it was in the old.

We go into the momentum-space to see whether the Maxwell-Boltzmann 
law results from the new statistics.

The momentum-space is now to be divided into regions of equal size,
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each large enough to comprise a great number C of cells and small enough 
so th a t the function E  of equation (3) may be deemed sensibly constant 
throughout it; E,- shall stand for the value of E  appropriate to the region. 
(I t is convenient to imagine the regions as layers separated from one another 
by concentric spheres having the origin for their common centre). For 
each of the regions W,-, the number of ways in which the most probable 
distribution of the cells among the possible populations can be realized, is 
given again by (16); and W,  the number of ways in which the most probable 
distribution can simultaneously be achieved within each of the regions, is 
given again by (17).

We now seek a set of values of N y such that when it is realized, InW  shall 
have a value stationary with respect to all variations SNj  conforming to two 
conditions: first, that the total number of atoms shall remain the same, which 
is to say, 2(5TVj shall vanish; and second, tha t the total energy of the gas 
shall remain the same, which is to say, ' Z E f i N y shall vanish.

Referring back to (18), we see tha t for the fulfilment of our wish the 
following is a sufficient condition:

=  P  +  Q Ej  (19)

P  and Q standing for constants; for when these substitutions are made into 
every term  of the summation on the right of (18), the expression to which 
5 In IF is there equated may be regrouped into one term proportional to 
Z 8N,- and one proportional to S-EySiFy, and vanishes when it ought to 
vanish.

Gone is the comfortable ease with which we disposed of the corresponding 
problem in the ordinary space! There we did not even have to know what 
sort of function W ,  is of N,-; whatever it might be, we were able to conclude 
tha t iVy m ust be the same for every region. Here the outcome must depend 
upon the functional relation between W y and N,-. There is, however, no 
ground for apprehension, for though the function in question looks rather 
involved in equation (16), its derivative is surprisingly simple, and we come 
with ease to the condition which we seek:

In ( N j  +  C) -  In N f =  P  +  Q E j  (19)

which may be rewritten thus:

£  =  - 1  +  eP+QEi (20)
JMj

This is not the Maxwell-Boltzmann law, but approaches tha t desired law in 
w hat I  will call the “ limit of extreme rarefaction,” where the number of
cells in the region exceeds manyfold the number of atoms. As C / N y grows
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greater and greater, the first term on the right recedes into relative insignif
icance; and with an ever-increasing degree of approximation, we have:

N }- =  N A e ~ BEi (21)

with N A  put for Ce~F and B  for Q—which is  the Maxwell-Boltzmann law 
and the law confirmed by experiment.

A  help fu l and troublesome coincidence between two different quantities

When in the earlier article I  used the section-heading repeated just above, 
it referred to the near-equality between the logarithms of two different 
numbers: one number being that of all the complexions compatible with the 
m ost probable d is tribu tion  (of numbered atoms sprinkled among numbered 
cells in ordinary space) and the other being that of all the complexions 
compatible with a ll conceivable d istribu tions altogether. The most probable 
distribution had so great a share of all conceivable complexions, that no 
grave error was committed in pretending (so long as we were dealing with 
In W )  that it actually had them all without exception!

A similar coincidence occurs in the new statistics, and will now be set 
forth.

Consider the j th  region by itself. In  (15) I  have given the expression 
for In ITmax, the logarithm of the number of ways in which the m ost probable 
d istribu tion  of cells among populations can be realized. This is now to be 
compared with In W to t, the lo g a rithm  of the total number of ways in which 
a ll possible d istribu tions  of cells among populations can be realized. Note 
that I  say “all possible” and not “all conceivable” distributions! The only 
possible ones are those which are compatible with the fixed number AT3- 
of atoms. This limitation prevents us from proceeding by the easy route 
of the earlier article. Indeed in order to solve the problem “in how many 
ways can all possible distributions of cells among populations be realized?” 
it is necessary, or at any rate customary, to restate it in a very different 
maimer, which is the following:

I n  how m a n y  d ifferen t w ays can  A~3 un-num bered balls be distributed among  
C  num bered baskets? Two ways are considered as different unless », =  n t 
for every value of i  («, and n ,  standing for the populations of the ith basket 
in the two ways).

Notice that again the balls stand for the atoms and the baskets for 
compartments in space, as they did in the old statistics! We are playing 
a new game with the old baskets and the old balls, instead of playing the 
old game with new balls and new baskets as we have just finished doing. 
I t  has to be a new game, for the numbers have been removed from the old 
balls and the old game is therefore unplayable.

This is, to pu t it mildly, one of the less perspicuous problems of the
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I  review the situation. We began by dividing space (ordinary space, or 
momentum-space, or /¿-space) into w hat were called cells in the earlier 
article and are now designated “regions.” We wanted to reach, as most- 
probable-distribution of the atoms among the regions, the uniform spread 
in ordinary space and the Maxwell-Boltzmann law in momentum-space. 
To do this by the method of the new statistics, we divided each region into 
many “cells.” The first stage of the argument then consisted in taking a 
typical region, and ascertaining the most probable distribution of the cells 
among the populations. We then evaluated PTmax, the number of ways in 
which this distribution could be realized. Inserting In W m^  into the argu
m ent we continued into the second stage, and attained the wanted result. 
B ut now it turns out th a t in the first stage we might have om itted to ascertain 
the most probable distribution of the cells among the populations in the 
typical region. Anybody might win through to the same desirable outcome 
w ithout even suspecting th a t there is a most probable distribution of cells 
among populations. All he needs is to evaluate ITtot, the number of ways 
in which all possible distributions of cells among populations within the 
region can be realized. He may then replace In ITmax by In IT tot, and pro
ceed with the second stage as before. Since the two logarithms are 
practically equal, the outcome is the same.

There are accordingly two routes to the result, which do not merge until 
the argument is carried partw ay to the conclusion. Is one of them right 
and the other wrong? Or to ask a milder question: is either to be preferred 
to the other?

So far as I  can see, neither can be proved wrong, and the question must 
be asked in the milder form. For myself I  stand by the preference exhibited 
in this article, for the basic reason th a t along this route each of the stages of 
the argument consists in finding a most probable distribution: first for the 
cells among the populations of each region by itself, and then for the atoms 
among the regions. By the other route the two stages are differently 
handled, since in the first stage one considers all the distributions (of cells 
among populations in each region by itself) and then in the second stage the 
most probable distribution (of atoms among regions). There is also the 
minor advantage, th a t the value of TTmax is much easier to derive than the 
value of ITtot, or a t  least so it seems to me.4 However, many physicists 
of eminence have preferred the second route. Anyone may say of course 
th a t the question is foolish, since the number of complexions subsumed under 
the most probable distribution is so large a fraction of the total number of 
complexions altogether th a t no danger arises from confusing them. This is 
w hat the equations have been saying, and now I  have said it again in words.

4 I t  was the  other way about in  the  somewhat similar case which was treated  in the 
earlier article.
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Y et any policy which leaves this basic law unsaid, or even fails to emphasize 
it, is (I think) a  bad one for all bu t the very few to whom it is already obvious.

Another question: may the old statistics be regarded as the limiting form 
of the new statistics, in the limiting case of ‘’extreme rarefaction” where 
in every region the number of atoms is very much smaller than the number 
of cells?

I t  may seem th a t this question has already been answered with a yes, 
in view of the fact th a t in the limiting case the new statistics gives the same 
distribution-law—in momentum-space as in ordinary space—as the old one 
does. Nevertheless the answer is no. M athematically this appears in the 
following way. In  the old statistics the Maxwell-Boltzmann law springs 
from the denominator II Ay! in the right-hand member of equation (1), 
which turns up as (—SY , ln X ,)  in the expression for InW. Now we look 
a t the equation (23) and see the term —X ¡ln X , appearing with several 
other terms in the right-hand member. In  the limit of extreme rarefaction 
it outweighs all the others and survives by itself. We summed it over all 
the regions and so arrived again a t ( — 2 A ; ln N ,), from which again the 
Maxwell-Boltzmann law emerged. B ut in this method of the new statistics 
each term of the summation comes by itself from the corresponding region, 
whereas in the method of the old statistics the whole summation arrived 
upon the scene en bloc or all in a single piece. The former method does not 
pass into the latter method in the limiting case. The conclusions agree 
in the limit, bu t the methods do not.

I  have mentioned this because not infrequently one finds in print the 
careless statem ent tha t the old statistics is the limiting case of the new 
statistics, or words to tha t effect. Actually one can find more potent ways of 
contradicting tha t statement, as for example by7 emphasizing tha t the old 
statistics numbers the atoms and the new one leaves them un-numbered, 
and in no way can the one policy7 be regarded as a limiting case of the other. 
More convincing y7et would it be to show tha t the new statistics and the old 
lead to results which definitely7 differ even in the limiting case of extreme 
rarefaction. This is what I  next undertake to show as an incident of the 
explanation of entropy which the new statistics affords.

T h e o r y  o r  E n t r o p y

For a substance of a single kind in a single phase, the basis of thermo
dynamics is the single equation,

dU = TdS  -  P dV  (31)

in which there are five variables: pressure P, volume V, absolute tempera
ture T, energy V  and entropy7 A. Two may be varied independently, and



374 B E L L  S Y S T E M  T E C H N IC A L  J O U R N A L

any two of the five may be taken as these two, the remainder becoming the 
dependent variables.

From (31) we deduce, to begin with,

T  =  (d U /d S )v (32)

an equation which shows th a t if ever someone sets up a theory in which 
entropy is expressed as a function of energy and vice versa, it is per se a 
theory of absolute temperature. This, however, will find its due place 
later. W hat is of instant importance is a second deduction,

(c)S /dT )y = T ~ \d U /d T )y  (33)

for making use of which we take note of the fact (not explicitly stated till
now) th a t when the volume does not change no mechanical work is done
upon or by the substance, and therefore all of the change in energy is that 
brought about by the inflow or outflow of heat. This fact is expressed in 
another equation,

0d U /d T )v = H v (34)

H v standing for the am ount of heat th a t m ust be fed into the substance to 
raise its temperature, a t  constant volume, by one degree— the “heat- 
capacity a t constant volume,” as some would call it. Combining the two,

(d S /d T )v =  H ,/T  (35)

Envisage now the entropy A as a function of volume and temperature, 
and view the equation:

dS  =  (d S /dV )T dV  +  (d S /d T )r dT  (36)

An equivalent for the coefficient of d T  has been provided, and now it is 
needful to find one for the coefficient of dV. To do this we use the function
(U — T S ), to be denoted by A , which by aid of (31) is seen to have the
following differential:

dA = - P d V  -  Sd T  (37)

Out of this one draws the following two deductions,

(d A /d V )T = ~ P ,  (d A /d T )v = ~ S  (38)

Differentiating both sides of each of these equations, the former with respect 
to T  while holding V  constant, the la tte r with respect to V  while holding T  
constant, one gets two expressions for w hat is one and the same quantity, 
to wit, the second derivative d^A/dTdV. Equating these two expressions, 
and saying goodbye to A  which has fulfilled its purpose, one has,

{dS/dV )T = (d P /d T )r  (39)
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which by the way is one of four equations collectively known as Maxwell’s 
relations—a memorial of Maxwell’s creative work in early thermodynamics, 
as the name of the distribution-in-energy law is of his work in early statistics. 

Substituting from (35) and (39) into (36), we find:

dS  =  (d P /d T )vdV  +  (Hr/T )d T  (40)

a usable and a useful expression for the entropy 5 —usable, tha t is to say, 
to anyone who knows the heat-capacity H v and the derivative (dP/dT) v, 
as functions of volume and temperature, for the substance in question.

Now take it on faith th a t there exists a gas having the following qualities: 
first, its pressure and volume and absolute tem perature are linked to

gether by the equation,

P V  =  L T  (41)

L  being a constant; whence follows,

(.3P /dT )r =  L /V  (42)

second, if the attem pt is made to express its energy U as function of T  
and any one of the remaining variables (to wit, P  or V  or S), then the latter 
variable drops right out of the picture, leaving U as a function of T  alone. 
I  suppose this seems a needlessly longwinded way of saying tha t U does not 
depend on P  or V, bu t it is necessary to provide for the fact tha t U may be 
expressed as (say) a function of S  and V, whereupon it will be found tha t 
neither variable drops out of the picture. This is one of the features that 
make the science of thermodynamics very like a maze.

third, the heat-capacity H v is independent of all the variables.
With these stipulations, (36) becomes:

dS = (.L /V )d V  +  (.Hv/T )d T  (43)

integrating which, we readily find th a t for the peculiar kind of gas presented 
just above as an article of faith, the entropy is given by the formula:

S  = L \ n V  +  H v \ n T  +  C (44)

The symbol C stands for one of the most useless things in the world: an 
arbitrary additive constant of integration. The only purpose normally 
served by such a constant is, to prevent people from thinking tha t the 
equation is right if the constant is left off. Its  presence means th a t the 
absolute value of S  is undeterminable, is beyond the reach of experiment to 
determine. Nevertheless this constant is one of the principal themes of 
statistical theory; and we shall see that in defiance of what I  have just 
said, and no part of which I  retract, it does make sense to assign a particular 
value to this constant, and remarkably good sense a t that.
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I  propose to begin very soon on the proof tha t the new statistics, applied to 
a flock of atoms which are merely mass-points, gives an excellent description 
of just such a gas. However, there is a detail, or rather an element of the 
structure, waiting to be inserted correctly—a trivial one in appearance, but 
in all of thermodynamics and all of statistics there is nothing further re
moved from the trivial. I t  is the dependence of the entropy on the quantity 
of the substance, the dependence of S  upon N  the number of atoms. To 
p u t a question seemingly so simple th a t it almost answers itself: given two 
samples of the same kind of gas under identical conditions, one comprising 
twice as many atoms as the other, what is the ratio of their entropies?

This is a remarkable question, because it seems so absurdly simple and is 
actually so very complex.

Before the advent of statistical theory, anyone versed in thermodynamics 
would probably have answered it by replying either th a t S  is proportional 
to TV, or tha t the question has no meaning. The first reply is suggested by 
the consequences of the fact th a t thermodynamics proposes no way of 
measuring the entropy of a gas (or other substance), bu t only ways of 
measuring the entropy-difference between two states. Let IT, 2 \ and IT, 
T2 stand for the values of V  and T  in two states of one gas. Equation (43) 
informs us th a t the entropy-difference is L  In (F 2/F i)  +  H v In (ZT/TT). 
The constant C has vanished; the remaining terms are proportional to TV 
because L  and H v are proportional to TV. The entropy-difference is there
fore proportional to TV. I t  seems reasonable to conclude th a t 5  is propor
tional to TV, bu t so long as there is no specific assertion about C the conclu
sion is not binding; and the proper reply is actually, th a t the question has 
no meaning.

B ut the statistical theories do make assertions about C, and the question 
is on the verge of acquiring a meaning; so it m ight be a good idea to ask in 
advance w hat sort of answer we should like to have. I t  seems natural to 
expect S  to be proportional to TV, so th a t the “double sample” shall have 
twice the entropy of the “single sample” under identical conditions. But 
w hat are “ identical conditions?” Here is the catch. No more than two 
of the three variables P, V, T  can be made the same for both the samples. 
I  suppose th a t almost anyone would choose T  for one of these two, so un- 
plausible would it seem to expect the double sample to have twice the en
tropy of the single sample if their temperatures differed. But after this is 
decided, shall we make V  the same for both, and accordingly give doubled 
pressure to the double sample? or shall we make P  the same for both, and 
accordingly give doubled volume to the double sample?

This is no mere quibble, for the choice will determine the dependence of 
C o n  TV.

The first alternative requires th a t C  be proportional to TV. This is
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obvious from inspection of (44) when one remembers tha t L  and I i v are 
both proportional to N. I  rewrite tha t equation accordingly, and put 
No for the number of atoms in a gramme-molecule, R  and Cv and R K 0 for 
the values of L  and H v and C appropriate to N 0 atoms:

5  =  (N /N 0)R l n V +  (N/No) Cv In T  +  (N /N 0)R K 0 (45)

S  is doubled if N  is doubled while V  and T  stay the same, which is what was 
intended.

This equation will not suit the second alternative; for if V  is doubled 
along with N , S  will be more than doubled. Over and above the doubling, 
S  acquires an extra term 2(N /N 0) R  In 2. Now if the constant C just 
happened to include a term —2(N/No) R  In 2, the extra term would be 
obliterated, and S  would just be doubled if N  and V  were to be doubled 
while P  and T  remained the same. Such a term is provided by replacing 
(45) with the equation:

5  =  (N /N 0)R  In V  +  (.N /N 0)Cv In T  — (N /N 0)R  In N  +  (N /N 0)R K 0 (46)

where the last two terms on the right are to be regarded as forming the con
stant C. This then is the dependence of C on N  which is demanded by the 
second alternative.

To guide the choice between the two alternatives there is, so far as I 
know, bu t the one argument; it is, however, a powerful one, and seems likely 
to hold the field unchallenged.

We have been thinking of two samples of identical gas a t identical temper
ature. Think of them now as divided by a removable partition. When 
the partition is taken away, what happens? If the initial pressures are not 
the same, there is a swirling and a surging, dying away in time into a state 
in which the pressure is the same throughout the volume now common to the 
samples, bu t is not the same as it was before in either separate gas. This is 
just the sort of trend of events with which one likes to think that an entropy- 
change, and indeed an entropy-gain, is linked. Notice also tha t if the 
partition is replaced, the state of affairs on either side does not become the 
same as it was before! B ut now suppose the initial pressures to be the same. 
The partition can be removed and replaced without entailing any perceptible 
change in the gas such as one likes to associate with a change in entropy.

The second alternative is in harmony with these facts, the first is not. 
So to the question “is the entropy of a gas of 2N  atoms double the entropy 
of a gas of N  atoms?” the acceptable answer is: “yes, i f  the volume of the 
double gas is twice tha t of the single gas, their temperatures being the same.” 
Now, this is also the answer given by the new statistics; for as we shall 
presently see, it leads to a formula like (46). I t  is not the answer given 
by the old statistics, which (as I said in the earlier article) leads to a formula
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like (44). This is one of the dominant reasons for preferring the new sta
tistics to the old.

Now I  proceed to the theory of entropy and temperature derived from 
the new statistics.

N e w  S t a t is t ic a l  T h e o r y  o f  E n t r o p y

Entropy is identified with the quantity  In W , multiplied by a constant k 
which as yet is disposable:

S  = k In JV (47)

I t  is now to be shown th a t for the picture of a gas which is a flock of mass- 
points in the “most probable sta te” as defined by the new statistics, and in 
the limit of extreme rarefaction, this expression becomes the same as (46), 
with further consequences of much value.

As in the previous article, I  separate the entropy into S c the “contribution 
of volume to entropy” which springs from the sprinkling of the mass-points 
in ordinary space, and S m the “contribution of tem perature to entropy” 
which springs from the sprinkling of the mass-points in momentum-space. 
This is an artificial separation and worse than artificial, for it leads to a 
fault in a detail which is not trivial. Nevertheless I  think tha t for ease of 
exposition the procedure is justified, and the detail will be made correct a t 
the end of the argument.

We m ust now take (16) down to the “limit of extreme rarefaction.” 
I  repeat this equation:

In W j  =  ( N j  +  C) In ( N j  +  C)  -  C  In C -  N j  In N j  (16)

The journey toward the limit is menaced by some of the oddest pitfalls, 
and m ust be travelled with care. I  recall th a t by Taylor’s expansion, In 
( N }- +  C) is equal in first approximation to ( N  , / C  +  In C)  when N j  is 
small by comparison with C.  Making this substitution into (16), one finds 
th a t the right-hand member consists of six terms. The two largest of these, 
C  In C  and — C  In C, destroy one another. The smallest, N 2/C,  is to be 
neglected (if we couldn’t  neglect it, the dependence of entropy upon N  

would be hopelessly misrepresented). All of the remaining three terms 
m ust be kept, for even the smallest—which is N ,—will play a perceptible 
p a rt in the check of theory with experiment. We have:

In W j  =  N j  In C  -  N j  In N j  +  N j  (48)

The quantity  In W  is the summation of In W j  over all the regions. 
Notice tha t we are interpreting entropy in such a way, tha t the entropy of 
the gas in the container is the sum of the entropies of the portions thereof 
in the individual regions. This is why we are destined to come to a result
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in harmony with the “ second alternative” aforesaid, wherein the total 
entropy of two gases of identical P  and T  is the sum of their separate entro
pies! I t  is otherwise in the old statistics, and tha t was the source of the 
troubles of that elder theory. But to proceed:

In W  =  2 H  IF,- =  TV In C -  2 TV,- In TV,- +  TV (49)

In the ordinary space and in the most probable state, TV,- is the same for all 
the regions, as we have found already (page 363) and therefore is equal to TV 
divided by F / F 0, or to TVF0/ F ;  here Fo is the volume of the region (not the 
cell!). The next step is to pu t this into (49), realizing now tha t each term 
becomes the same and the whole summation is F / F 0 times the typical term. 
One is agreeably surprised to find tha t Fo tumbles out of the expression: 
this is a feature of the new statistics—the regions have but an intermediate 
and an auxiliary quality, the size assigned to them is gone from the final 
equations. In  its place appears the volume of the cell, which is Vo/C, 
and which I denote by qc. For S c we have:

S ,  =  N k  In F  -  N k  In TV -  N k  In qc +  TV (50)

Note the last three terms, for future comparison with the two last of (46); 
but a t this moment note especially the first, and compare it with the first 
of (46). Entire agreement is attained by assigning to k the value,

k = R /N 0 (51)

as in the old statistics. The “Boltzmann constant” k is the “gas-constant” 
R  divided by the “Avogadro number” TVo.

Seeking now the “contribution of temperature to entropy,” S m, we turn 
to the momentum-space. Here the most probable distribution is given by 
(21), and is to be inserted into (50):

In IF =  TV In C -  2  TV,- In TV,- +  TV
=  T V l n C - T V l n A  +  TV2 A B E ie~BEi +  TV (52)

I t  will be recalled from the earlier article, or failing this can easily be seen, 
that,

TV 2  A~BEi =  TV, TV 2  d E / F “ 1' =  U (53)

U standing as heretofore for the total energy of the gas. The expression
(52) is simplified of aspect, and multiplying it by k, we find for S m,

* S m =  k In I F  =  kN  In C — kN  In A  +  kBU  +  klV (54)

Though I have spoken of this as the contribution of temperature to entropy, 
the temperature is nowhere to be seen! I t  is waiting on the doorstep; 
bu t before allowing it in, I  wish to operate on the quantity In A,
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This quantity, by (53), is given thus:

— In A  =  In 'Le~DEi (55)

The so-called “partition-function,” which is the sum appearing on the right, 
is' made of terms contributed one from each region, the term  from the jth  
region being exp{ —B E ¡)—herein E ,• stands (it is proper to say) for the aver
age value in th e /th  region of the function,

E  =  (1 /2m) {pi +  p l +  pi) (56)

If the regions were of unit volume, this summation would be (approxi
mately) equal to the triple integral of exp( — B E ,)  over the whole of momen- 
tum-space. B ut the volume of each region is C,-qm, wherein qm stands for the 
volume of the cell. This signifies th a t while the integral contains one term 
for each unit of volume, the summation comprises 1 /C jqm terms for each 
unit of volume. The summation is accordingly 1 /C jqm times as great a r 
the integral. Denoting the integral by I ,  we have in place of (55),

— In A = In I  — In qm — In C, (57)

and in place of (54),

S m = k N \n  I  -  kN  In qm +  kBU  -  kN  In N  +  kN  (58)

We note with satisfaction th a t the size of the region has disappeared, even 
as it did while we were operating in ordinary space!

The next step is to consult a table of definite integrals for the value of the 
integral I  (or to work it out one’s self, if one’s memory of the mathematical 
technique is vivid). The tables give:

I  =  (2 t  m / B f 2 (59)

Before returning the table of integrals to the library, the student should

also look up the value of the definite integral / x e  ax dx; for with its aid he
Jo

will be able to  find a very simple relation between B  and V . I  have already 
said tha t either determines the other, and now for this special case we shall 
find the relationship. The procedure consists in going back to the second of 
equations (53), realizing tha t

2  E j exTp(-BEj) = (1 /C,-qm) J J  J E  exp~(wn dpx dpy dpz (60)

and performing the triple integration over the whole of momentum-space, 
a feat which is not so hard as it looks. M ultiplication by A , as indicated in 
(53), removes the factor (l/Cygw), and the simple conclusion is,

U =  3 N /2 B  (61)

a relation valuable in two ways.
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In  the first place, (61) enables us to eject either B  or U from the expression 
for S m. I t  seems more sensible to do away with B, leaving S m expressed as a 
function of the energy of the gas; bu t I will let the reader do tha t for his own 
instruction. In  view of the peculiar significance of B  this is for our purposes 
the better one to keep.

Now it is high time indeed to show what is that peculiar significance. 
Differentiating 5  with respect to U, we find kB  for the derivative. Turning 
back to (32) we are reminded that this derivative is l / T  by the definition 
of the absolute temperature T. Now the temperature has stepped across 
the threshold, and S m assumes the form :

=  (3/2) N k  In T  -  N k  In N  +  N k  In [(2tttnk)m ew /q m] (62)

Notice that the term -f- kN  has been absorbed into the final term, so tha t 
e'~ has been replaced by e'11 in the argument of the logarithm: this is a usage 
with which the student must become familiar. (Some writers also incorpo
rate — N k  In N  into this final term, which thereby acquires a factor N  
in the denominator of the argument; the term then ceases to be a constant, 
which is why I  do not follow this policy.)

Comparing (62) with (46) we see tha t S m embodies correctly the 
dependence of entropy on temperature, provided tha t Cv (the specific heat 
per gramme-molecule) is equal to (3/2)kN<>. Since a value for k—to wit, 
R/No—has already been forced upon us as a necessary and a sufficient 
condition for making S  depend correctly on the volume, this new require
ment is tha t Cv should be equal to (3/2)2?. Now this is a fact of experience 
for the gases called monatomic!

I  said tha t the relation of U and B  expressed in (61) is valuable in two 
ways. The second is only the first seen from a different viewpoint, for 
which I  rewrite (61) in  the form:

U /N  L  U = ( 3 / 2 ) »  (63)

For the flock of mass-points distributed in  momentum-space in  the manner 
indicated as the most probable by the new statistics (as, for tha t m atter, by 
the old) the average energy is (3/2)k times the absolute temperature. This 
is the very result obtained from simple kinetic theory for the ideal-gas scale 
of temperature. The statistical theory therefore identifies the absolute 
scale of temperature with the ideal-gas scale, which is as it should be. I t  is 
therefore an adequate theory of temperature and (as we lately saw) of the 
specific heat of monatomic gases.

Now I  have given an expression for S c, the “contribution of volume to 
entropy,” which is (50); and an expression for S m, the “contribution of 
temperature to entropy,” which is (62); and it seems natural to proceed by
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adding the two and identifying their sum with the entropy of the gas. But 
each of the summands contains the so-ardently-wanted term  — N k  In N, 
and therefore the sum m ust contain a term  —2N k  In N , which is — N k  In 
N 2. This term is not a t all of the wanted form, and its mere presence in 
(Sm +  S c) spoils the chance of identifying th a t sum with entropy. We 
have in fact come to a result in contradiction with equation (46) and with 
the assumption on which th a t equation was founded, viz. th a t if two samples 
of a gas are a t the same pressure and tem perature their entropies are in 
proportion to their volumes. The reasoning has not been suited to its aim.

The origin of this final misadventure lies in the circumstance tha t in the 
hope of making easier the exposition, I  made w hat now has proved to be an 
undue separation between the two “contributions” to the entropy. The gas 
was mentally divided into groups of atoms, each occupying a certain region 
of limited size and distribution among the cells of th a t region according to 
the law of the new statistics. In  computing S c I  defined the j th  region as a 
small piece of ordinary space, and then counted all the atoms in that region 
regardless of the fact th a t they have very diversified momenta. In com
puting S m I  defined the j th  region as a small piece of momentum-space, and 
then counted all the atoms in tha t region regardless of the fact tha t they are 
sprinkled all through the total volume of the container. I  may properly 
say th a t I  used a six-dimensional region throughout, bu t in the first stage 
it was a region limited in ordinary space and comprising the whole infinity 
of momentum-space, while in the second stage it was a region limited in 
momentum-space and comprising the whole volume of the box in ordinary 
space. I  should instead have carried through the operation in a single stage, 
using a six-dimensional region limited in both ordinary space and momentum- 
space. I t  may seem th a t this procedure m ust either lead to the same result 
as the other, or m ust be much more difficult, or both. Neither is the case.

Instead of writing down a number of new equations which would look 
precisely like the old ones, I  invite the student to go back to page 368 and 
recommence the argument a t the words “We go into the momentum-space. 
. . . .” If he will replace “momentum-space” by “¿¿-space,” he need 
make no other change as far along as equation (21); the argument is just the 
same. Now let him turn  ahead to page 379, and equation (52): this is 
valid for the ¿¿-space as it was for the momentum-space, and so are equations
(53). The novelty, however, is latent in the first of equations (53), which 
reappears as (55), and which I  now rewrite for one more time:

-  In A =  In 2  e~BEi (64)

On page 380, the summation was shown to be equal to (1 /C,-gm) times a 
certain integral denoted by / ;  the integral was over the three dimensions of 
momentum-space; qm was the size of the elementary cell in momentum-
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space. In  /¿-space, however, the corresponding integral is over the six 
dimensions, and may be written thus:

/// dx dy dz I I I  e BE dpx dpu dpz

This sixfold integral is nothing but the product of V the volume of the 
container (resulting from the first three integrations) by the integral here
tofore denoted as I  (resulting from the last three integrations). I t  is to be 
multiplied by (1 /C,-h3), Cj now standing for the number of cells in the six
dimensional region and h3 for the volume of the six-dimensional cell (I 
explain the curious symbol later). The product is the reciprocal of A, 
and therefore:

k In W  = kN  In V  +  In I  +  kBU  -  kN  In N  +  kN  -  kN  In li (65)

The term  {—kN  In N ) appears just once, and not twice as it did in the sum 
S c and S m: all is well in this regard. The presentation of / ,  of B  and of U 
as functions of T  follows just the same lines as above.

(Notice, for future reference, th a t we should have attained to the same 
result had we ignored the ordinary space, operated in the momentum-space 
exclusively, and assigned the value ii ¡ V  to the volume of the elementary 
cell in momentum-space.)

So, identifying k l n W  with S, we come to the consummation of the new 
statistical theory of entropy, the equation:

5  =  kN  In V  +  (3/2)kN  In T  -  kN  In N  +  kN  In [(2 ttm k)w ebl2/h 3] (66)

The dependence on volume is right; it was qualitatively so to start with, 
was made exactly so by choice of the value of k as R/No. The dependence 
on temperature is exactly right, since it is a fact of experience tha t for 
monatomic ideal gases the specific heat a t constant volume is (3/2)1? per 
gramme-molecule. The dependence on number of atoms is exactly right, 
tha t is to say, it makes S  proportional to N  for given P  and T. The additive 
constant is fixed in value absolutely, or will be when we assign a numerical 
value to A3; for k is a universal constant, e the base of natural logarithms, and 
m the mass of an atom of the gas.

For the benefit of such as may still be interested in comparing the old 
statistics with the new, I recall tha t the old statistics in its theory of entropy 
furnished the first and the second terms of (66), and apparently furnished 
also the fourth term though with e3/2 in place of e n . The third term it 
omitted, thereby lending itself to the untenable doctrine that entropy should 
be proportional to N  for given V  and T  (and not for given P  and T). Since 
there was no term kN  In N , I  committed no error when in the previous article 
I  deduced S c and S m separately and then added them together to get 5.



This procedure is right in the old statistics, becomes wrong in the new. I 
suppose th a t this is what some expositors mean when they say th a t in the 
new statistics there is a correlation between positions and momenta, or 
words to th a t effect. I  say th a t the old statistics apparently furnished a 
term equal to the fourth of (66) except for the power to which e is raised. 
Actually the old statistics gives an additive term N k  In [(2irmke)3l2/Q] and 
the new statistics gives an additive term N k  In [(2irmk)3l2ebl2 /Q], bu t Q in the 
former case is the volume of the region and in the la tter case is the volume 
of the cell. Giving the same value li to Q in the two cases is positively not 
doing the same thing. However by doing this notwithstanding, and by 
“ tampering” with the old statistics in a certain way which I  described at the 
end of the previous article, it is possible to produce an expression exactly 
like (66).

S iz e  o f  t h e  E l e m e n t a r y  C e l l

We have reached the final step, which consists in assigning a value to the 
size of the elementary cell in /¿-space. For this I  have used the symbol h3, 
implying (as everyone has guessed already) th a t it is taken to be the cube of 
Planck’s constant h so promiscuously found in Nature. W hat arguments 
can be advanced to justify this choice?

I t  may be remarked very simply, th a t since the volume of the elementary 
cell has the “dimensions” of the cube of the product of length by momentum, 
and since these are also the dimensions of h3, and since both h3 and tha t 
volume are very fundamental things, w hat could be more natural than to 
identify them the one with the other? This was the argument used when 
formula (66) was first derived from the old statistics with the aid of judicious 
tampering.

An argument more precise of aspect may be adduced from wave-me- 
chanics. Imagine the box containing the gas to be a cube, its edges—these 
being of length L  so th a t L% =  V—being along the coordinate-axes x, y, z. 
The doctrine of wave-mechanics avers th a t the momentum-components 
px, pv, pz of any atom  are perforce integer multiples of h /2 L ; for this is the 
condition th a t the waves which are associated with the atom shall form a 
stationary w ave-pattern with nodes a t the walls of the cube, and upon this 
condition wave-mechanics is insistent.0 Now let us reenter the momentum- 
space, and place a dot a t every point for which p x, py and pz are integer 
multiples of h/2L. The dots form a cubic lattice, and it would seem very

6 The wave-length of the waves associated w ith a particle moving parallel to the rr-axis 
is h /p x, and there m ust be an integer num ber of half-wave-lengths between the walls of 
the cube which are perpendicular to the axis of x  and face one another a t a distance L. 
The same may be said, mutatis mutandis, of a particle moving parallel to the axis of y or z, 
w ith m omentum py or p z; while if an atom is moving obliquely so th a t two or all three of 
its momentum-components differ from zero, each of these components is to be treated as 
if it alone existed.
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nice if I  could say a t once th a t the elementary cube of this lattice has the 
volume li / L 3 which is li /  V. However, this cannot be said, for there is an 
obstinate factor which makes the elementary cube have the volume ha/8 L 3. 
People get around this by remarking tha t since an atom reverberating to 
and fro between the walls of the cube changes the sign of one of its mo- 
mentum-components whenever it strikes against one of the walls, therefore 
every dot is one of a group of eight dots all of which correspond to the same 
motion of the atom, and all eight should be counted as though they were 
one.6 Therefore in the region of momentum-space enclosed between any 
two spheres centred a t the origin (such as we used in determining the distri- 
bution-in-momentum) we are to count one-eighth of the dots. The number 
so obtained is the same as the number of cells of volume h3/ V  contained in 
the region. Thus it comes to the same thing whether one says th a t the 
atoms are distributed among one-eighth of the dots or among cells of volume 
li / V . Now I  recall my remark (page 383) tha t equation (66) down to the 
last detail can be derived by playing the game of balls and baskets by the 
rules of the new statistics in  the momentum-space alone, provided th a t to the 
elementary cell in this space we assign the volume li /  V. For doing this last, 
wave-mechanics has now offered a kind of retroactive basis. There seem 
to be flaws in the basis, bu t they are of a kind which cannot be mended (if a t 
all) w ithout a thorough study of a very hard subject, to wit, the a rt of 
interpreting wave-mechanics in the ordinary language of space and tim e.7 
I  think it will be better to proceed a t once to the test by experiment.

T e s t  b y  E x p e r i m e n t  o f  t h e  N e w  S t a t is t ic a l  F o r m u l a  f o r  E n t r o p y

Enough has been said already to cover the first three terms of the formula 
(66), which correctly give the dependence of entropy S  upon volume V, 
temperature T, and number of atoms N . The present question is: what 
does experiment say of the fourth term, the additive constant which involves 
the mass m  of the atom and the universal constants k and h?

Having treated this question a t length in the June 1942 issue of this 
Journal, I  will here give only the barest outline. For this purpose I  rewrite 
(66), by the aid of the equation of state of the perfect gas,

P V  =  N k T  (67)

6 If (a, b, c) are the coordinates of one dot, those of the other seven of its group are: 
(a, - b ,  c); (a, b, - c ) ;  (a, - b ,  - c ) ;  ( - a ,  b, e); ( - a ,  - b ,  c); ( - a, b, — c); { - a ,  - b ,  - c ) .

7 In  previous pages I  said th a t the proper way of playing the game of balls and baskets 
is to play it  in the six-dimensional space, with N j  representing a definite number of atoms 
located in a six-dimensional region which is composed of a narrowly-limited region in 
ordinary space and another narrowly-limited region in momentum-space. Wave- 
mechanics, in the current interpretation, will not allow this; it  claims that, if the N j  atoms 
are located in a limited region of momentum-space, they are spread all over the box con
taining the gas.



so as to give entropy S  as function of pressure and tem perature:

A =  - k N l n P  +  (5 /2 )kN  In T  +  k N  In ' ^ ie ) J  (68)

Notice th a t here every term is strictly proportional to A, in accordance 
with the “second alternative” of page 377.

Let P  and T  be so chosen th a t the gas is in equilibrium with its solid 
crystalline phase. To keep this choice in mind, I  will replace T  by T s, 
signifying “ temperature of sublimation” a t pressure P. Let the N  atoms 
of gas now be cooled to the absolute zero. F irst they will condense, still a t 
tem perature T s, into the crystalline solid. In  so doing they will disgorge 
the “heat of sublimation,” L  per gramme-molecule, amounting to NL/No; 
and their entropy will decline by N L /N o T s, since the process is reversible. 
Let the cooling continue. As the crystal declines in tem perature from any 
T  down to (T  — dT), it disgorges heat in the am ount of (N /N o)C pdT  and 
entropy in the am ount of (N /No)(Cp/T ) d T ; here Cp stands for the specific 
heat (per gramme-molecule) of the crystal. The pressure is supposed to 
remain the same throughout the entire process. When the crystal arrives 
a t absolute zero, its entropy has the value:
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So =  - k N l n P  +  (5 /2kN  In T s +  kN  ' J

~ { N / N 0) ( L /T a) -  (A/Ao) r  (Cp/T) dT
Jo

(69)

The right-hand member of this equation embodies the new statistical 
theory of entropy. If on the left I pu t the value zero for So, I  express what 
is known as “N ernst’s H eat Theorem” or the “Third Law of Thermo
dynamics.” If experiments say th a t the right-hand member of (69) is 
equal to zero, they ratify not indeed the statistical theory by itself or the 
Third Law by itself, bu t the assumption th a t both are true. Now, this is 
what the experiments do say. B etter to describe the situation, they say 
tha t the first three terms on the right of (69) are equal to the last two terms 
with sign reversed. All of the noble gases have been tested with suitable 
accuracy, and eight or nine of the metals with accuracy not so high, yet 
better than “order-of-magnitude accuracy.” For further details I must 
refer to my article already cited.8

81 cannot refrain from mentioning a detail of the statistical theories, which is amusing 
if one sees it  a t  once and confusing if one sees it belatedly (mine was the la tte r experience). 
I t  pertains to the power to which e is raised in the third term  on the right in (69). If in 
the  new statistical theory we leave out the term  N  in (49), thus stopping w ith a first 
approxim ation instead of going on to the second, we arrive ultim ately a t e3/2 instead of 
eW2. If in the old statistical theory as modified by Tetrode we use the first-order Stirling 
approxim ation instead of the second-order one for N l, we arrive ultim ately a t e312 instead
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T h e o r y  o f  R a d ia t io n

Black or total radiation, which is the electromagnetic radiation within a 
cavity enclosed by walls a t a uniform temperature, may be regarded as a 
monatomic gas of which the atoms are called “photons.” I t  has two 
peculiarities. First, the relation between energy and momentum is not the 
same for a photon as for a material atom. If by p I  represent the magnitude 
y /p i  +  pi +  p\ of the momentum, then the energy E  is given no longer by 
the familiar equation (3), bu t rather by this one:

E  =  pc (70)

c standing, of course, for the speed of light. This is no insignificant change, 
bu t recedes into secondary importance when compared with the other 
contrast. N ot only the distribution-law for the photons, but the actual 
total number of photons itself, is fixed by N ature when the temperature of 
the walls of the cavity is fixed by the observer. To the quantity called N , 
the number of atoms in a container of volume V, no specific value has ever 
yet been assigned in these pages; for with a material gas it may be raised or 
lowered a t will, by pumping gas into or out of the box. In this section, 
however, it will have to have a value, for N ature has given it one.

Can the theory achieve what N ature demands of it? I t  can, and this is 
the way.

The momentum-space is divided as heretofore into regions of equal 
volume, each containing C cells of volume qm. A distribution is described 
by giving the number of photons in each region, N t- standing for the number 
in the j th  region. The probability W  of a distribution is given as always 
by the formula (16) and this is it:

In IF =  S In W j =  2 [(¿V, +  c ) ln (N i +  C ) - C l n C - N j In Nj] (71)

We are not now proceeding to the limit of extreme rarefaction! Radiation 
presents itself to us under conditions remote from this limit, and must be 
treated without recourse to the approximation hitherto used in these pages.

When the quantities TV,- are altered by the small amounts or “variations” 
8Nj, W  undergoes the slight alteration or variation given thus to first 
approximation:

8W = 2 8Ni = S [In (W +  C) -  In Nj\ 8N, (72)

of e6'2 (see the text preceding equation (35) of the prior article on page 134 of the January 
issue of this Journal). Thus in both cases we arrive a t e3/2 or e5/2, according as we pause 
a t a first approximation or go on to a second; but I discern no mathematical or physical 
similarity whatever in the two situations in which these approximations are made.
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In  the quest for the “most probable distribution” this quantity  is required to 
vanish for variations which are controlled by a certain condition.

On a previous page (368) where we were dealing with material atoms in 
ordinary space, the sole condition was tha t the to tal number of atoms should 
remain the same (and equal to N ). This led to the uniform distribution, 
N j  =  a; here a stands for a constant, which turns out to be the product of N  
by the ratio of the volume Vo of the region to the volume V  of the box.

On another previous page (369), where we were dealing with material 
atoms in momentum space, the condition imposed was twofold: th a t the 
number of atoms N  and the total energy U of the atoms should remain the 
same. This led to the distribution (20), which in the lim it of extreme 
rarefaction became the Maxwell-Boltzmann or canonical distribution N ,  =  
N A  exp (—B E j); here E , stands for the energy-value appropriate to the 
j  th region, and A  and I? for two constants which were shown to be determined 
by N  and U.

In  this case where we are dealing with photons in momentum space, the 
condition which leads to the right result is simple bu t surprising. We must 

' adm it only such variations as leave the total energy constant, bu t we must 
not require th a t the total number of photons should likewise remain the same. 
Applying this strange condition, we find it taking the form,

In (N j +  C) -  In N j = B E j (73)

with only one constant, which is going to be controlled by the total energy U. 
Rewriting this:

T  =  eBEi -  1 (74)

One sees immediately th a t N , which is the sum of all the quantities N j, is 
no longer a t liberty to take whatever value the experimenter pleases!

H itherto I  have assumed th a t all the regions are of equal volume, bu t I 
can free myself from this assumption by pointing out th a t N j/C  is the 
average number of photons per cell in the portion of momentum-space 
where E  has the value E ,. Now let us carve up the momentum-space into 
regions separated by spherical shells all centred a t the origin. The region 
extending from the sphere of radius p to the sphere of radius p  +  dp will be 
of volume Airp1 dp, and will accordingly contain Airp2dp/qm cells, if by qm I 
denote the volume of a cell. The appropriate value of E  will be pc. The 
number of photons in the region will accordingly be given thus:
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Unrecognizable as it may seem, this is actually a statem ent about the 
spectrum of black radiation! This is because a photon of momentum p 
and energy pc is associated with light-waves of wave-length given by the 
“Buie of Correlation” :

X =  \  (76)
P

If I  therefore multiply both members of (75) by pc, I  have an expression for 
the amount of energy associated with the waves ranging in wave-length 
from h/p  to h/ ( p -f- dp).

There are instruments able to sort out the waves of different wave-lengths 
with their associated photons; they are called spectroscopes. There are 
instruments able to indicate the total energy borne by the photons thus 
sorted out; they are called by such names as bolometer and thermopile. 
There are people able to use these instruments; and so (75) can be tested. 
I t  is customary to rewrite (75) so tha t either wave-length or frequency 
becomes the independent variable, in place of p; bu t nothing would be 
gained for the purpose of this article by doing so. The fact of experience is, 
tha t (75) is a correct description of black radiation provided tha t three 
modifications be made:

a) For qm we are to write h3/V ,  presuming tha t this comes to the same as 
though we had operated in six-dimensional space and pu t h3 as the volume 
of the elementary cell therein (page 383);

b) For B  we are to pu t 1 /k T ;
c) We must double the right-hand member of (75), the factor 2 being 

ascribed to the fact tha t light is polarizable.
Making these modifications, and putting V = 1 so tha t the forthcoming 

equation shall refer to the radiant energy contained in unit volume, we have

dN  = ----- - dp (77)gPc/kT — I

for the number of photons in unit volume endowed with momenta between 
p and p +  dp, energies between cp and c(p +  dp). This is the distribution- 
formula for black radiation of temperature T, commonly known as “Planck’s 
law.”

To have derived this law is the first, the great and the historic achievement 
of the new statistics. Other ways have indeed been found for deriving it, 
beginning with Planck’s own; bu t the way of the new statistics is smoothest 
and quickest. Quite different is this story from tha t of the theory of m ate
rial gases! There, the distribution law was correctly given by the old 
statistics long before it was tested. Here, the distribution-law was found
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by experiment years before it was explained, and a great puzzle it  was. 
There, the old statistics and the new (in the limit of extreme rarefaction) 
led to the same result. Here the old statistics was impotent, and the new 
had to be invented.

Reverting to the identification of B  with 1 /k T :  this may be proved in 
the following way9. Refer back to equations (74) and (71), and for ease 
of operation write Xj for (eBEj — l ) -1. We then have:

5  =  k In W  =  k 2  {C(l +  *,-) In [C(l +  x,)} -  Cx¡ In [Cx¡[ -  C In C] (79)

Differentiate S  with respect to B  and do the like with U, and divide the 
former derivative by the latter, so as to get the derivative dS/dU . I t  
will be found tha t this is equal to kB; and since by definition of absolute 
temperature it is also equal to T~l, the identification is made.

T h e  B o s e - E i n s t e i n  a n d  t h e  F e r m i - D ir a c  S t a t is t ic s

H itherto in this article, except for one protective allusion, I  have spoken 
as if the new statistics were one and indivisible. There are, however, two 
branches of it, known respectively as the Bose-Einstein statistics and the 
Fermi-Dirac statistics. I t  is the former of which I  have treated throughout 
this essay. The point a t which the la tte r branches off is to be found on 
page 365, where I  introduced the game of balls and baskets, the balls stand
ing for cells and the baskets for populations. On reaching this point the 
game is to be played with the supplemental assumption th a t there are only 
two baskets, those numbered 0 and 1. T ha t is to say: a cell may either be 
empty or may contain a single atom, bu t never more than one.

I  leave to the student the task of revising equations (7) to (16) accord
ingly, but I  take it upon myself to point out how easily the problem can be 
solved by the second method—that of pages 370-71, the method involving 
the counting of all the different ways in which un-numbered atoms can be 
distributed among numbered cells. In  the Bose-Einstein case the funda
mental formula is (22), which is not very easy to derive. In  the Fermi-Dirac 
case we proceed by playing anew the game of balls and baskets. There are 
bu t the two baskets, one being set out to receive the balls corresponding to 
the empty cells and the other for the cells containing one atom  each—the 
“filled cells,” we may call them. There being in the 7th region N,- atoms 
and C cells all together, the first basket is destined to contain (C — TV,-) 
balls and the second to contain N The question is then: in how many

91 am indebted for this proof, as well as for much other assistance in the preparation 
of the article, to Dr. L. A.. MacColl.

N j  =  Cxi (78)

U  =  2  N j E j  — C L  EjXj (80)
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ways can C numbered balls be distributed among two baskets, these to 
contain (C — N ,) and N j  of the balls respectively, two ways being con
sidered as different unless the inventory of each basket is just the same for 
both ways? But this is the problem set up and solved in the earlier article, 
though there the balls stood for atoms and the baskets for regions. The 
answer is:

W M  =  C!/(C -  N j)l N jl  (85)

instead of equation (22). Using the first or second order Stirling approxima
tion—it doesn’t m atter which—one comes to the analogue of (23), which is:

In IFtot =  C In C -  (C -  N f) In (C -  2V>) -  N , In N,- (86)

Different as this looks from (23), the two become alike in the limit of extreme 
rarefaction, and in this limit equation (48) expresses the result both of the 
Bose-Einstein and of the Fermi-Dirac statistics. Since equation (48) is the 
parent of the Maxwell-Boltzmann distribution-law and of the expression 
(66) for the entropy of a monatomic gas, both of these flow from either type 
of statistics, and experiment does not decide for either over the other.

When we avoid the limit of extreme rarefaction, the two forms of statistics 
do depart from one another. If  photons obeyed the Fermi-Dirac statistics, 
the distribution-law for black radiation would not be (75). We should be 
obliged, in the denominator on the right-hand side of tha t equation, to re
place the negative sign of the second term by the positive sign. In  so doing 
we should contradict the data of experiment in an unmistakable way; and 
for photons accordingly, the Fermi-Dirac statistics is to be rejected.

This form of the new statistics being no better than the other for material 
gases, and definitely wrong for radiation,; where is it to be preferred and why?.

To answer the first question, I  point to the “electron-gas” which pervades 
the metals and is accountable for their quality of being excellent conductors. 
Experiment (as I  recounted in these pages fourteen years ago10) confirms that 
these intra-metallic electrons form a gas which obeys the Fermi-Dirac 
statistics. I t  is not, however, the limit of extreme rarefaction which here 
we meet bu t the opposite one, the limit of extreme condensation. These 
electrons are as densely concentrated as the atoms of the solid itself, a degree 
of condensation never even approached by any ordinary gases. In  this 
limit the distribution-law attains a form entirely different from both the 
Maxwell-Boltzmann law and the black-radiation law, and very remarkable. 
I dare not, however, expose this article to the risk of a doubling in length, 
which a treatm ent of this topic would probably entail; and I  can avoid it 
with a fairly clear conscience, for the experimental evidence th a t electrons

10 This Journal, S, 672 (1929); also Physical Review Supplement (Reviews of M odem  
Physics) 1, 90 (1929).
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obey the Fermi-Dirac statistics has been enlarged but little since my article 
of 1929.

As for the second question, I can give only the shadow of an answer. 
The reason for adopting sometimes the Bose-Einstein and sometimes the 
Fermi-Dirac statistics springs from wave-mechanics, and tha t requires an 
article of its own. I  can say, w ithout proof, th a t the choice depends upon 
the number of elementary particles in the atom. The gas is supposed to 
conform to the Bose-Einstein or the Fermi-Dirac statistics, according as that 
number is even or odd. An electron is an elementary particle all by itself, 
wherefore the preceding paragraph.

For m aterial gases, the crucial number is obtained by adding up the 
numbers of the protons and the neutrons in the nucleus, and the number of 
orbital electrons which surround the nucleus and complete the atom. In  
nature the atoms for which the crucial number is even vastly outnumber 
those for which it is odd, and the Bose-Einstein statistics is therefore the 
prevalent one. The principal isotope of nitrogen and the second isotope of 
hydrogen do indeed belong to the rarer category, bu t in the gaseous state 
their atoms always pair themselves into diatomic molecules, a circumstance 
which restores these gases to the realm of Bose and Einstein. A detail in 
the band spectrum of a diatomic molecule is available for telling which form 
of statistics the individual atom would obey if free; it confirms what I  have 
just been saying—but this is an intricate story.



E lectrom agnetic W aves

A Textbook* (S30 pages, $7.50 net) by S. A. Schelkunoff, published by D.
Van Nostrand, Inc., New York City, 1943.

THIS new addition to a well-known series has been awaited with much 
interest by all those acquainted with Dr. Schelkunoff’s contributions to 

propagation theory, and it will be found tha t their expectations have been 
entirely fulfilled. This monumental piece of work is equally remarkable for 
the originality and consistency of its approach as for the wealth of informa
tion contained in its five hundred densely packed pages.

The author’s systematic use of the harmonic oscillation, with complex 
variables and coefficients, is in line with the marvelous development which 
has occurred in the communication field during the last fifty years. Alter
nating current theory, then acoustics, then vibrational mechanics succes
sively dropped the differential equations which physics offered as a basis and 
systematically restricted themselves to harmonic oscillations. This has 
resulted in the replacement of the differential operator by iu, leading to a 
tremendous simplification of steady-state analysis, which has been reduced 
to the calculation of amplitude ratios and phase differences. The genuinely 
difficult problems have not disappeared for all tha t but are now relegated to 
Fourier or Laplace transform theory, and it has become apparent that an 
enormous field of application can be covered by purely algebraic processes.

Not the least advantage of this method has been the unification brought 
into the three chapters of technical science mentioned above. Electrical 
impedances gave the model after which acoustical and mechanical imped
ances were fashioned; and mixed m utual impedances, thereafter, made it 
possible to write the equations of electro-mechanical or acoustico-mechanical 
transducers. There was an exciting era of intense development in this field 
during the twenties; and it was amusing to hear a t tha t time, and even a 
good deal later, irate die-hards denouncing “ impedances” with bitter irony 
or viewing with alarm the spread of “analogies.”

Dr. Schelkunoff has set about to carry this point of view into Electromag
netic Theory, and it may well be tha t his will be the honor of having brought 
into the fold of harmonic oscillation theory the last chapter of Physics which 
still had to be incorporated. (One might think of Optics, but of course half 
of the book is really Optics.) Having given, in the first pages of his fourth

*Thls review by P. Le Corbeiller is reprinted from Quarterly of Applied Mathematics, 
Vol. 1, No. 2 by permission of the editors. Mr. Le Corbeiller, until coming to the 
United S tates where he has joined the faculty of H arvard University, was an engineer 
with the Adm inistration Française des Postes, Télégraphes e t Telephones.
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chapter, a short and quite personal derivation of Maxwell’s equations (1-15, 
p. 69), Dr. Schelkunoff w ithout taking breath adds immediately: “Since we 
are concerned primarily with fields varying harmonically with time, we 
replace the instantaneous field intensities and current densities by the corre
sponding complex variables and write Maxwell’s equations as follows:

J E n ds =  ~J I  io>pHn dS  -  J I  M n dS ,
(1-16)

J E n d s = I I  (g +  iue)E„ dS  +  J f  J n dS .”

Thus the sacrosanct Maxwell equations are swept away with movie-like 
swiftness, and instead we have the steady-state equations of a medium char
acterized by a distributed series impedance iup  and a distributed shunt ad
m ittance g+ iue  (p. 81).

The analogy with a transmission line whose series inductance is p., shunt 
conductance g and shunt capacitance e, all taken per un it length, is inescap
able (p. 243). In  particular the above prim ary constants simply beg to be 
transformed into the familiar secondary constants of transmission line 
theory; here the intrinsic propagation constant a and the intrinsic impedance 
r/ are defined by

o- =  V iup(g  +  iue), v = \ /  ~ (9-1)
y g +  iwe

(p. 81) (cr is in neper/m eter, 7) in ohms; the book is w ritten in M KS—p. 60). 
For free space we shall haveg =  0, and the following numerical values of the 
fundam ental constants (p. 82):

impedance of free space rj0 «  1207r ohms, (9-4)
characteristic velocity v0 3. 10s meters/second.

* * *

Surprising as it may appear to transmission engineers and sound engineers, 
who daily handle their respective characteristic impedances Zo or pc, there 
still are very competent physicists who balk a t the  idea of free space having a 
characteristic impedance of about 377 ohms. Yet, in the words of Professor 
Ronold W. P. K ing:1 “The existence of such a characteristic resistance for 
electromagnetic effects is just as mysterious, bu t not more so, than the exist
ence of the finite velocity vq.” Dr. Schelkunoff explains very well how this 
constant could have been overlooked by the builders of the classical theory': 
“The physicist concentrates his a ttention  on one particular wave: a wave of 
force or a wave of velocity or a wave of displacement. His original differen
tial equations may be of the first order and may involve both force and

1 Mimeographed “Notes on Antennas” for the course of Electronics and Cathode Ray 
Tubes (Eng. 270), H arvard University.
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velocity; but by tradition he eliminates one of these variables, obtains a 
second order differential equation in the other and calls it the ‘wave equa
tion.’ Thus he loses sight of the interdependence of force and velocity 
waves . . (p. vii). Still, it is surprising to see tha t one has started with
two constants 60 and /xo, and recognizing the fundamental importance of 
their product, yet has not enquired about their ratio.

Then, the reader will ask, how can the Theory of Relativity give a leading 
role to the velocity of light and not mention the impedance of free space. 
Has Einstein no use for 770? Well, he has, and he has not. First, an essential 
point in Special Relativity is the merging of the magnetic and the electric 
fields into one skew-symmetrical tensor. When doing this in the MKS sys
tem, homogeneity requires the use of the components of E  and of 770H ; but 
the factor 770 is not apparent, for instance, in the equations on p. 44 of “The 
Meaning of R elativity” (by A. Einstein, Princeton Univ. Press, 1923) which 
uses a system of units in which 770 =  1. Secondly, if we try  to connect the 
universal constant 770 with other members of this interesting family, we find 
that 770 times a (charge)2 has the dimensions of “action,” and more precisely 
that

(e =  charge of the electron, h =  Planck’s constant). We see from this that 
there is more to 770 than appears in Special Relativity, the first step in the
successive Einsteinian extensions of Maxwell’s theory.

* * *

We have dealt a t length with this question of the “ impedance of free space” 
because it exemplifies the spirit of the whole work. I t  occurs in the course 
of a short but apt presentation of the “Fundamental Electromagnetic Equa
tions” (Chapter IV), immediately applied to harmonic oscillations. The 
book as a whole is devoted not to Electromagnetism in general but, as 
specified in the title, to Electromagnetic Waves.

Three preliminary chapters introduce the more advanced mathematical 
tools which will be used, but sparingly, in what follows: such topics as con
tour integration, Bessel and Legendre functions. Chapter V is a short and 
original presentation of Network Theory.

The central part of the book begins with Chapter VI, “About Waves in 
General,” a sort of preview of the questions which will be treated in detail 
later, during which we are introduced to radiation from given currents, 
propagation along wave guides, and to such general tools as electric and 
magnetic current sheets, the method of images and conformal representation.

In the following four chapters, we meet the most thorough treatm ent

2 See Quarterly of Applied Mathematics, 1, 78 (1943).
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available of the propagation of waves, guided or bounded, in one, two and 
three dimensions. I t  is impossible to do justice here to the richness of the 
material, which must have cost tremendous labor and which is in great part 
taken from the author’s own publications. We find in Chapter IX , however, 
classical problems of Fresnel optics, adroitly adapted to contemporary radio 
needs. Chapter X I is a relatively short treatm ent of antenna theory, 
principally of conical antennas, and in the last chapter we return  to wave 
guides and solve various problems involving discontinuities, even to an iris 
or a transversal wire. This subject is still under development by the author, 
and the readers of the Quarterly have had the benefit of one of its recent 
extensions.2

The specialist in wave propagation has no need to be told of the value of 
this book; bu t the reviewer would like to explain to his fellow non-specialists 
why it is particularly im portant th a t they should not miss it. When the 
results of much present-day research will suddenly be made available, it will 
be a hard task to catch up, not only with the new knowledge, bu t still more 
with the new modes of attack. The borderland between radio and optics 
is one of the fields from which great things can confidently be expected. Dr. 
Schelkunoff’s book is a great opportunity for those not a t present engaged in 
research to get familiar with methods which they will want to use tomorrow.

P .  L e  C o r b e i l i e r .



Abstracts of Technical Articles by Bell System Authors
Paracon— A New Polyester Rubber.1 B. S. B ig g s  and C. S. F u l l e r . 

Paracons are high molecular weight linear polyesters which are soft enough 
to be rubbery and are capable of undergoing a vulcanization reaction. They 
are prepared by the condensation of dibasic acids with glycols or by the self 
condensation of hydroxy acids, and the name is intended to signify ‘ ‘conden
sation rubber.” Paracon looks and feels like rubber, and in comparison 
with other rubbers it has some distinct advantages and some definite limita
tions. Its outstanding properties are oil resistance, high heat and light 
resistance, lack of odor and fast curing cycle. Tensile strength ranges from 
1500 to 3000 pounds per square inch with elongations of 400 to 600 per cent.

Rubber pigments and compounding techniques may be used with it but 
vulcanization is accomplished in most cases by the action of benzoyl peroxide 
rather than sulfur.

Aside from its practical aspects the development of paracon is of theoreti
cal interest because of the light it throws on rubber structure and the 
mechanism of vulcanization processes.

Unsaturation of Butadiene and Related Polymers as Determined by Iodine 
Chloride Addition.2 A. R. K e m p  and H e n r y  P e t e r s .  This paper de
scribes procedures which have been developed to determine the unsaturation 
of various butadiene and related polymers and copolymers, as well as mixed 
vulcanizates of Buna S and rubber. These methods are based on the-use of 
^-dichlorobenzene as a solvent and iodine chloride as the addition agent, fol
lowing the general technique employed in the standard Kemp-Wijs method 
for the determination of the unsaturation of natural rubber.

The ratio of butadiene to styrene in copolymers has been calculated from 
the iodine value and from the carbon-hydrogen ratio; however, the accuracy 
of these procedures is subject to several variables which are discussed.

Unsaturation data are presented on highly purified emulsion-type poly
mers of butadiene-isoprene and butadiene-styrene which agree closely with 
the presence of one double bond for each diolefin molecule present. The 
reaction rate of Buna S with halogens is shown to agree closely to tha t of 
natural rubber hydrocarbon.

Brittle Temperature of Rubber under Variable Stress.3 A. R. K e m p , F. S. 
M a l m  a n d  G . G . W i n s p e a r .  T h i s  p a p e r  s u p p l ie s  t h e  n e e d  f o r  a  m e th o d  to

1 Chern. and Engg. News, June 25, 1943.
2 Indus. & Engg. Chemistry, Analytical Edition, July 1943.
3 Indus. & Engg. Chem., April 1943.
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determine the tem perature a t which rubber and similar materials fracture 
under variable bending stress. Although the brittle  tem perature is sharply 
defined under high-speed bending through a sharp angle, it is lower as the 
speed of application or the magnitude of the stress is reduced. In  some 
instances decreases of more than 28°C. in brittle tem perature resulted from 
reductions in bending stress such as might be encountered in service.

Vulcanized pure gum natural rubber and plasticized polyvinyl chloride- 
acetate copolymer showed the largest changes, whereas the compounded and 
vulcanized natural and synthetic rubbers involved in this study exhibited a 
reduction in brittle temperature from 5° to 10° C. in going from the highest 
to the lowest stress employed.

American Science Mobilizes for Victory.4 R o b e r t  W. K i n g . There are 
no accomplishments of the Bell System in which its men and women take 
greater pride than those marking the continuous activities in developing and 
applying the a rt of communication.

The Bell Telephone Laboratories’ accomplishments, reflected for decades 
in improved instrumentalities and systems for the transmission of electrical 
signals and speech, have been possible because vast resources of scientific 
knowledge have been devoted as part of the System’s general responsibility 
to the public, to a broad and fundamental program of exploration, experi
m ent and design.

Today the more than 6,000 members of these Laboratories are engaged on 
hundreds of development projects requiring research, invention and design, 
for the Army, the Navy, and the N ational Defense Research Committee.

T hat this should be both logical and inevitable will not surprise any one 
who considers the vital part played by communications in modern warfare. 
Rapid movement of troops and supplies over far-flung lines of action on land 
and sea and in the air are possible only when directed through effective com
munication systems. More and more the electrical transmission of intelli
gence is becoming the unifying influence pervading all branches of war 
organizations. I t  coordinates the movement of naval and aerial fleets; it en
ables infantry, tank columns and formations of aircraft to operate as a single 
unit. I t  shrinks a thousand-mile battle  line to the compass of a single 
sector.

The article by Dr. King points out the place of independent m ilitary re
search, although its actual volume is less than th a t carried on directly by the 
Army and Navy. I t  also draws upon experience in industrial research to 
show tha t the sudden solution of war problems by appeal to science is scarcely 
to be expected.

i Bell Tel. Mag., June 1943.
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Filtered Thermal Noise— Fluctuation of Energy as a Function of Interval 
Length? S. 0 . R i c e . Let a source of thermal noise be connected to the 
input of a band-pass filter. Consider the energy which would be dissipated 
during the interval k  to k  +  T  if the output current were to flow through a 
resistance of one ohm. When T  is held fixed and k  regarded as a random 
variable, the resulting energies have a distribution whose average and stand
ard deviation depend upon T. Here this dependence is studied. The 
standard deviation of the difference of the energies of two contiguous inter
vals, each of length T, is also obtained.

Ultra-Short Electromagnetic Waves. I V —Guided Propagation? S. A. 
S c h e l k t ix o f f . Doctor S. A. Schelkunoff presented the material contained 
in this article as a lecture before the basic science group of the New York 
Section. He treated the subject in a “non-mathematical” manner. Cer
tainly the electrical engineer will welcome any concept which allows an 
easier approach to the solution of certain problems involved in wave guides 
than the more complete equivalent field-theory method. In  this fourth 
article in a series of six on ultra-short electromagnetic waves, Doctor Schel
kunoff combines transmission-line theory with optical analogy and derives 
useful relations for both wave guides and cavity resonators. The three 
preceding articles appeared in the March, April and M ay issues of Electrical 
Engineering.

Variable-Frequency Bridge-Type Frequency-Stabilized Oscillators? W. G. 
Sh e p h e r d  and R. 0 . W i s e . Results are given of a theoretical and experi
mental investigation into two types of bridge-stabilized oscillators incorpo
rating a thermal device for amplitude control. One circuit employs only 
resistances and capacitances in the frequency-determining network and 
consequently is useful for low-frequency operation. The other circuit uses 
an inductance-capacitance network which is well adapted to the higher- 
frequency network. Conditions for optimum stability and the variation of 
the stability with frequency determined experimentally are found to be in 
general agreement with theoretical results.

Beyond the Ultra-Short Waves? G. C. S o u th w o rth . This article reviews 
briefly the work done many years ago by the pioneering physicists with the 
so-called electric waves as well as the more recent efforts by engineers to put 
these waves to practical use. I t  also describes some of the expedients and 
changes of technic used to overcome difficulties as this work progressed to

5 Jour. Acous. Soc. Amer., April 1943.
6 Elec. Engg., June 1943.
7 Proc. I .  R. E ., June 1943.
»Proc. I .  R. E., Ju ly  1943.
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higher and higher frequencies. One, of fairly recent origin, is the wave-guide 
or hollow-pipe technic. The la tter not only provides a simple and efficient 
way of propagating microwave power from one point to another bu t there 
have also grown from it some very interesting counterparts of the tuned 
circuits, the matching transformers, and the filters tha t have been in common 
use for some time a t the lower frequencies. The possible bearing of this new 
technic on the future of electrical communications, as, for example, televi
sion, is pointed out.

The Impact of War on Long Distance Service,9 M a r k  R. S u l l i v a n .  The 
article gives in narrative form much of Vice President Sullivan’s testimony 
concerning toll board service before the Federal Communications Commis
sion on December 16, 1942.

Increasing traffic and severe curtailment in additions to plant, make it 
progressively more difficult to m aintain service performance a t its usual 
level. In  the last two years Long Lines toll traffic has nearly doubled, this 
increase being almost equivalent to the to tal level of business reached over 
a period of some 65 years. P lant materials available for telephone con
struction, on the other hand, have been sharply curtailed. Copper, for 
example, had been used in building telephone plant a t the annual rate of 
more than 90,000 tons; now only about 8,000 tons are used.

The increased volume of long distance calls has been accompanied by in
creased complexities in the handling of calls; more attem pts required per 
call, a greater proportion of person-to-person calls, and greater length of haul 
requiring more switching. Over all, the results still average well. However, 
not all calls fall on or near the average due to the uneven distribution of 
increased calling which has followed generally the path  of war activity and 
varies tremendously in different localities. Just as growth in calling has not 
been uniform throughout the System, so has circuit congestion been most 
pronounced in cities most affected by war activities. A customer whose 
individual call is delayed well beyond the average may appraise the service 
by th a t call, even though he may realize th a t the average speed of all calls 
is much faster.

Despite the increased traffic volume, complexities and the shortage of 
facilities, there have been some truly notable achievements. Accuracy and 
speed of answer have suffered relatively little. Additions to the operating 
force of 150,000 were made in the past two years to handle the increased load 
and to replace losses. Operators, seasoned and new, have faced the chal
lenge to the service and, true to the finest traditions of the service, are 
giving their best to a difficult job—willingly and cheerfully.

9 Bell Tel. Mag., June 1943.
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Drying of Textiles™ A. C. W a l k e r . In  1937 a textile-drying research 
project was initiated by the United States Institute for Textile Research and 
supported by the textile industry, for the purpose of evaluating the effects 
of temperature and humidity on the physical and chemical properties of 
important textile fibers. The present paper gives a comprehensive report 
of the results obtained and points out the basis upon which the industry 
must proceed in problems relating to textile drying. In all cases, consider
ation should be given to the theories relating to the form in which the 
moisture is distributed within the fiber structure and to data of the type 
discussed by the author.

10 Trans. A .S .M .E ., M ay 1943.
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