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A Mineral Survey for Piezo-Electric Materials
By W . L. B O N D

T JE C A U S E  of the increasing interest in piezoelectric m aterials in m any 
branches of science an exhaustive study of the m inerals was under

taken w ith the object of finding all the m aterials th a t could possibly be of 
use for piezo-electric elements. M uch help was derived from existing d a ta . 1

Considerations of sym m etry show us th a t for a crystal to be piezo-elec- 
trically  active it m ust belong to a crystal class th a t has no center of sym
m etry  (the Pentagonalicositetredral class of the cubic system, however, 
although i t 'h a s  no center of sym m etry cannot be piezo active) . 2 This 
m akes tw enty  classes of possible piezo activ ity  and twelve classes th a t could 
no t possibly be active. A bout 90%  of the crystals found in nature fall in 
those classes having centers of sym m etry.

A lthough the mineralogical data  are incomplete in their assignm ent of 
m inerals to  definite classes in the seven systems, the existing d a ta  give a 
s ta rt in the choosing of m inerals likely to have useful piezo-electric 
properties.

All available d a ta  were gone through to obtain  the following list of m in
erals classified by crystal structures. As m any of the non-centric ones as 
were obtainable in the U nited S tates were tested  by the m ethod of Geibe 
and Scheibe3 (resonance in a therm ionic oscillator circuit). W henever the 
authorities differed on the classification of a m ineral it was so examined if 
obtainable.

In  the m ineral list, each m ineral is num bered according to the num ber of 
the class in G ro th’s Physikalische K ristallographie, as follows: (*) indicat
ing classes of possible a c tiv ity :

1 Dana— A System of Mineralogy, Ford—D ana’s Textbook of Mineralogy; Groth— 
Chemische Kristalographie; Landölt Börnstein— Tabellen; International Critical Tables; 
Zeitschrift fur Kristalographie.

2 W. Voigt, Kristal physik.
3 Z eits/  Physik  33, pg. 761 (1925).
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*3 Sphenoidal]
4 Dom atic \ Monoclinic system
5 Prismatic J

*6 Bisphenoidal'l
*7 Pyramidal j- Orthorhombic system  

8 Bipyramidal j

*9 Bisphenoidal 
*10 Pyramidal 
*11 Scalenohedral 
*12 Trapezohedral 

13 Bipyramidal 
*14 Ditetragonal Pyramidal 

15 Ditetragonal Bipyramidal

Tetragonal system

*16 Pyramidal 
17 Rhombohedral 

*18 Trapezohedral 
*19 Bipyramidal 
*20 Ditrigonal pyramidal 

21 Ditrigonal Scalenohedral 
*22 Ditrigonal Bipyramidal

*23 Pyramidal ]
*24 Trapezohedral 

25 Bipyramidal \
*26 Dihexagonal Pyramidal 1

27 Dihexagonal BipyramidalJ

*28 Tetrahedral-Pentagonal-Dodecahedral
29 Pentagonal Icositetrahedral
30 Dyakis-Dodecahedral 

*31 Hexakis-tetrahedral
32 Hexakis Octahedral

Rhombohedral system

Hexagonal system

Cubic system

In  addition to the above classification, the following list of m inerals is 
annotated  with the following symbols:

A =  active by test 
I =  inactive by test 

R =  unavailable or rare
M =  mineral occurs only massive, amorphous or 

in other unsuitable form 
S =  crystal always very small 

H  =  mineral is always non-homogeneous 
U =  unstable
C =  electrically conducting 
? =  class not absolutely certain

Actinolite 
Adelite 
Aegirite 
Aenigmatite 
Aeschynite 
Alabandite 
Alamosite 
Albite 

lgondonite 
ctite

CLASSIFIED LIST OF M IN ER A L S

5 Allanite 
5 Allemontite 

5?I Allophane 
2 Almandite 
8 Altaite 

*311 Aluminite 
Alunite 
Alunogen 
Amblygonite

5
2

H
5?SI Amesite

5 Amosite M
21 Ampangabeite 8?UI
M Amphibole 5?HI
32 Analcime 32
32 Ancylite 8
M Andalusite 8
21 Andesine 2
M Andorite 8

2 Andradite 32
5 Anemousite 2
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Anglesite 8
Anhydrite 8
Ankerite 17
Annabergite 5
Annerodite 8
Anomite S
Anorthite 2
Anorthoclase 2
Anthophyllite 8
Antigorite 5?H
Antlerite M
Apatite 251
Aphrosiderite ?I
Aphthitalite 21
Apophyllite 15
Aragonite 8
Ardennite 8
Ardunite M
Arfvedsonite 5
Argen tite 32
Argentojarosite I
Argyrodite 32
Arrhenite H
Arseniosiderite 8
Arsonolite 32
Arsenophyrite 8
Ascharite M
Astrakanite 5
Astrophyllite 8?I
Atacamite 8
Auerlite 15
Augite 51
Aurichalcite M
Automolite 32
Aventurine 2
Axinite 2

Babingtonite 2
Baddeleyite 5
Baldaufite PR
Barkevikite 5
Barite 8
Barytocalcite 5
Bastnäsite I
Baumhauerite 5
Bauxite M
Beaverite PS
Bechilite M
Beckelite 32PS
Bem entite 8PI
Benitoite *221
Beraunite I
Bertrandite *71
Beryl 27
Beryllonite 8
Berzelianite M R
Berzelite 32PI
Betafite 32
Bindheimite M
Binnite 32 PI
Biotite 5
Bischofite 5

Bismite 21PI
Bismuthinite 8
Bismutite M
Blödite 5
Blomstrandine 8PMI
Boleite 15 PI
Boracite *7A
Borax 5
Borickite M
Bornite *111
Boulangerite 8
Bournonite 8
Braunite 15
Breithauptite *201
Britholite 27PS
Brochantite 8
Bromyrite 32
Brookite 8
Brucite 21
Brushite 5
Bunsenite 32
Bytow nite 2

Cabrerite 5
Cacoxnite M
Calamine *7A
Calaverite 5
Calciothorite M
Calcite 21
Caledonite 8
Calomel 15
Campylite 25
Cancrinite 27
Canfieldite 32
Cannizzarite PI
Carnallite 8
Carnotite I
Carpholite 5
Caryocerite 21
Cassiterite 15
Castorite 5
Caswellite I
Catapleite 5
Celestite 8
Celsian 5
Cenosite 8PI
Cerargyrite 32
Cerite 8
Cerrusite 8
Cervantite 8?
Chabazite 21 PI
Chalcanthite 2
Chalcedony 8PM
Chalcocite 8
Chalcolamprite 32
Chalcophyllite 21 PI
Chalcopyrite *11C
Chalcosiderite 2
Chalcostibite 8
Chamosite M
Chiastolite 8
Childrenite 8PI

Chillagite 10?
Chloanthite 30
Chlorastrolite H
Chlorite 5
Chloritoid 5
Chlormanganokalite 21
Chloropal M
Chloraphoenicite I
Chlorospinel 32
Chondrodite 5
Chromite 32
Chrysoberyll 8
Chrysolite 8
Cinnabar *181
Claudetite 5
Clausthalite M
Cleveite 32
Clinochlor 5
Clinoclasite 5
Clinohedrite *4A
Clinohumite 5
Clinozoisite 5
Cobaltite *28C
Cohenite M
Colemanite 5
Collinsite I
Collophanite M
Coloradoite M
Columbite 8
Connellite 25
Cookeite M
Cordylite 21
Cornetite PI
Corundum 21
Corynite 281
Cotunnite 8
Covellite *18?I
Crestmoreite M
Cristobalite M
Crocidolite M
Crocoite 5
Cronstedtite *16A
Crookesite M
Cryolite 5
Cryolithionite 32
Cuprite 32
Cuproscheelite I
Cyanite 2
Cyrtolite I

Dahllite M
Danburite 8
D atolite 5
Dawsonite M
Dechenite 8
Delessite PSI
Dellafosite I
Delorenzite 8
Delvauxite M
Demantoid 32
Deschloizite 8
Desmine 5
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Deweylite M
Diamond 31 ?I
Diaphorite 8
Diasporę 8
Diopside 5
Dioptase 17
Dixenite ?SI
Dolem ite 17
Dom eykite 8
Douglasite 5
Dufrenite 8
Dufreneysite 5
Dumortierite 8
Dysanalyte 32
Dyscrasite 8

Edingtonite *6A
Eleonorite ?R
Ellsworthite M R
Elpidite 8
Embolitę 32
Emerald 27
Emmonsite ?SI
Em plectite 8
Enargite 8
Enstatite 8
Eosphorite 8?HI
Epidesmine 8?SI
Epididymite 8
Epidote 5
Epistilbite *4?A
Epistolite 5
Epsomite *6A
Erikite 8
Erythrite 5
Erythrosiderite 8
Euclase 5
Euchroite 8?I
Eucolite 21
Eucairite M
Eudialyte 21
Eudidylite 5
E ulytite *311
Euxenite 8

Fairfieldite 2
Fassaite 5
Faujasite 32
Fayalite 8
Ferberite 5
Fergusonite *101
Ferrierite I
Florencite 21
Fluocerite 27
Fluorite 32
Forsterite 8
Forshagite M
Fouquerite I
Fowlerite 2
Francolite 25
Franklinite 32
Freibergite *31C

Freyalite M
Frieseite 8
Fritzscheite 15
Fuchsite I

Gadolinite 5
Gageite I
Gahnite 32
Galena 32
Ganomalite I
Garnet 32
Gastaldite 5
Gay-Lussite 5
Gedrite 8
Gehlenite 15
Germantite 32
Gersdorffite 30
Geyserite M
Gilsonite M
Gismondite 5
Glaserite 21
Glauberite 5
Glaucodot 8
Glauconite M
Glaucophane 5
Gmelinite 17
Goethite 8
Goslarite *61
Graphite 21
Greenockite *20IS
Griffithite M
Grossularite 32
Guanajuatite 8?
Gummite M
Gymnite M
Gypsum 5

Hackmanite I
Haidingerite ?S
H alite 32
H alloysite M
Hambergite 8
H ancockite 5?S
Hanksite 27
Hardystonite M
Harmotone 5
H atchettolite 32?I
Hauerite *281
Hausmannite *111
Hauynite *311
Hedenbergite 5
Hedyphane M
H eintzite 5
Hellandite 5
H eloite *28?R
H elvite *311
H em atite 21
Hercynite 32
Herderite 8
Herrengrundite 5
Hessite 32
Hetaerolite M

H eulandite 5
H ielm ite 8?I
H ieratite 32
Hillebrandite M
H iortdahlite 2
H isingerite M
H odgkinsonite 5?I
H oeferite M
H okutolite H
H olm quistite 5?H I
H opeite 8
H owlite M
Huebnerite 5
Humite 8
Hussakite *13
Hutchinsonite 8
Hyalophane 5
Hydroboracite 5
Hydromagnesite 5
Hydrozincite M
Hypersthene 8

Ilmenite 17
Ilminerutile 15
Ilsemannite M
llvaite 8
Inesite 2
Iodembolite 32 ?I
Iodobromite 32
Iodyrite *26?I
Iolite 8

Jadeite 5
Jamesonite 5?SI
Jarosite 21
Jefiersonite 5?I
Jenkinsite M
Jezekite 5?
Johnstrupite 5
Jordanite 5
Joseite M

Kainite 5
K alinite 30
Kaolinite 5
K asolite I
K elihauite 5
Kentrolite 8
Kermesite 5?SI
Kieserite 5
K laprotholite 8
Klebelsbergite ?S
K nopite 32PI
K obaltm anganerz M
K oenenite 21
K oppite 32
Kornerupine 8
Krennerite 8
K roehnkite 5
K unzite 2
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Labradorite 2
Langbanite 17
Langbeinite *28A
Langite 8
Lanthanite 8
Lapis-lazuli H
Laum ontite 5
Laurionite 8
Laurite *28
Lautarite 5
Lavenite 5
Lawsonite 8
Lazulite 5
Lazurite 5
Leadhillite 5
Lehnerite I
Lehrbachite M
Leonite 5
Lepidolite 5
Lepidomelane H
Leucite *31 ?I
Leucophanite *6A
Leucopboenicite 5?I
Libethenite 8
Limonite M
Linarite 5
Linnaeite 32?
Licroconite 5?I
Liskeardite M
Lithiophilite 8
Loeweite 15
Loellingite 8
Loparite I
Lorandite 5
Loranskite 8?
Ludlamite 5?I
Ludwigite M

M agnesite 21
M agnetite 32
M agnetoplumbite I
Malachite 5
Malacon I
M allardite M I
Manganhedenbergite 5?I
M anganite 8
M anganophyllite I
M anganosite 32
M anganotantalite 8?
M arcasite 8
Margarite 5?RI
Margarosanite 2
M argasite 5
M arialite 13
Marignacite 32
Marmolite M
M arshite *311
M artite 32?I
M ascagnite 8
M atlockite 15?I
M aucherite i5?r
M eionite 151

M elanite 32
Melanocerite 21
M elanophlogite ?SI
M elanterite 5
M elilite 15
M eliphanite *9?A
M ellite 15
M endozite 30
M enilite M
M erwinite I
M esolite 5
Metacinnabarite *311
M eta Torbernite I
M etavoltine ?SI
M iargyrite 5
Microcline 2
M icrolite 32
M icroperthite ?HS
M icrosommite ?SI
M iersite *31R
Milarite 27*
M illerite *201
M imetene 25
M im etite 25, 231
Minium ?S
M irabilite 5
M izzonite 13
M olybdenite 27
M olybdite 8
M onazite 5
M onticellite 8
M ontmorillonite M
M ontroydit 8
M orensonite 6
Morganite 27
Mosandrite 5
M ossite 15
M ottramite M
M uellerite M
M uscovite 5
M uthm annite *7R

Nadorite 8?I
N agyagite 8
Natrolite 8
Natron 5
Naum annite 32
Nem alite M
Neotan talite 32
N eotocite M
Nephelite *231
Nephrite M
N eptunite 5
Nesquehonite 8?I
N iccolite *201
Nickolsonite 8
Nickelbluete 5
Nickeleisen 32
N iter 8
Nocerite 21PSI
Northrupite 32

Noselite *311
Nowm eite M

Ochrolite I
Octahedrite 15
Okenite M
Oligoclase 2
Olivenit'e 8
Olivine 8
Omphacite M
Onofrite 31
Opal M
Orpiment 8
Orthoclase 2
Osmiridium 21
Otavite 21
Ottrelite 2?I

Pachnolite 5
Pandermite 5
Paragonite 5
Parahoepite 2
Paralaurionite 5
Paratakamite 21?
Paravavxite I
Pargasite 5
Parisite 21
Patronite M
Pearceite 5
Pectolite 5
Penninite 5
Pentlandite 32
Percylite 32?I
Periclase 32
Peristerite 2
Perovskite 8?
Perthite ?H, S
Petalite 5
Petzite 32?
Pharmacolite 5
Pharmacosiderite *311
Phenacite 17
Phillipsite 5
Phlogopite 5
Phosgenite 15
Phosphoferrite M
Phosphophyllite 5
Phosphosiderite I
Phosphuranylite M
Pickeringite M
Picotite 32
Picromerite 5
Piedmontite 5
Pinakiolite I
Pinguite M
Pinite M
Pinnoite *101
Pirrsonite *7
Pisolite M
Pitchblende 32
Plagionite 5?I
Plattnerite 15



Pleonast
Plumbojarosite
Polianite
Pollucite
Polybasite
Polycrase
Polydym ite
Polyhalite
Polym ignite
Powellite
Prehnite
Priorité
Prismatine
Probertite
Prochlorite
Proustite
Pseudobrookite
Pseudomalichite
Psilomelane
Psittacinite
Ptilolite
Pucherite
Pum pellyite
Pyroargyrite
Pyrite
Pyroaurite
Pyrochlore
Pyrochroite
Pyrolusite
Pyromorphite
Pyrope
Phyrophanite
Pyrophyllite
Pyropissite
Pyrosmallite
Pyrostilpnite
Pyroxene
Pyroxmangite
Pyrrhotite

Quartz
Quenselite
Quercyite
Quisqweite

Ralstonite
Rammelsbergite
Raspite
Realgar
Rhabdophanite
Rhodochrosite
Rhodolite
Rhodonite
Rhom ite
Richterite
Richardite
Riebeckite
R inkite
Rinneit
R ipidolite
Risorite
Riversideite
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32 Rom eite
21 Roscoelite
15 Rosenbushite
?I Rowlandite
5 Ruby
8 Rumpfite

32? Rutherfordine
5?I Rutile

8
13C Safflorite
*71 Sal-ammoniac
8?I Salite

8 Samarskite
M Sanidine

5?I Sapphirine
*20C Sarcolite

8?S Sartorite
M Sassolite
M Scheelite
M Schefferite
?S Schirmerite

8 Schizolite
I Schorlomite

*201 Schreibersite
30 Schrockingerite
21 Schrotterite
32 Schwartzengergite

*20?I Schwetzite
8?HI Scolecite

25 Scorodite
32? Sem seyite

17 Senarmontite
8 Sepiolite

M Serpentine
I Serpiente
5 Shortite
5 Siderite
2 Sillimanite

*20?C Sipylite
Skemmatite

*18A Skutterudite
I Smaltite

M Smithsonite
M Sodalite

Sodaniter
32 Spencerite

8 Spessartite
5 Sphalerite
5 Spinel

M Spodumene
21 Spurrite

I Staffelite
2 Stannite
2 Staurolite
I Steenstrupine

M Stephanite
5 Sternbergite
5 Stibiconite

21 Stibiotantalite
5 Stibnite

32?I Stichtite
M Stilbite

32?I Stilpnosiderite
?S Stolzite

5 Strengite
M Stromeyerite
21 Strontianite
M . Struvite

5 Sulfoborite
15 Sulfur

Sulvanite
8 Sussexite

*28 Svanbergite
5 Sychnodym ite
8 Sylvanite
5 Sylvite
5 Symplesite

*10?I Syndalphite
5?S

9
Synganite

Z
131 Tachyaphaltite

5 Tachyhydrite
M Talc

2 Tantalite
32 Tapiolite
M Tarbuttite

8 Tasmanite
M Teallite
?S Tengerite

*31 Tennantite
*4A Tenorite

8 Tephroite
5?I Tetradymite
32 Tetrahedrite
M Thalenite

5 Thaumasite
8?S Thenardite
*7A Thermonatrite

21 Thomsenolite
8 Thomsonite

*101 Thorianite
H Thorite
30 Thortveitite

*381 Thuringite
21 Tiemannite

*31?I Tiger-eye
21 Tilasite

5 Titanite
32 Titanmagneteise

*31A Topaz
32 Topazolite

5 Torbernite
5?I Tourmaline
M Trechmannite

*111 Tremolite
8 Tridym ite

21 Trimerite
*7RI Triphylite

8 Triplite
M Triploidite

*7A Tritom ite
8?I Troegerite

I Troihte
5? Trona
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Troostite 17
Tschefikinite M , H
Tschermigite 30
Tungstenite M
Tungstite 8
Turgite I
Turquois 2
Tychite 32
Tyrolite M
Tysonite 27

Ulexite M
Ullmannite 30
Uralite PHI
Uraninite 32
Uranocricite 8?
Uranophone M
Uranopilite M
Uranosphaerite M
Uranospinite 8?
Uranothallite 8
Uranothorite M
Uranotile 2
U tahite ?S
Uvanite 8?S
Uvarogite 32

Valentinite 8
Vanadinite 251

Variscite 8?S
Vauxite I
Vermiculite I
Vesuvianite 15
Villiaumite 32?I
Vivianite 5
Volborthite I
Voltaite 32PI
Vonsenite 8?I

Wad M
W agnerite 5
Walpurgite 2
Warwickite I
W avellite I
Wernerite *101
Whewellite 5
W hitneyite M I
W iikite I
Wilkeite I
Willemite 17
W ilsonite I
Witherite 8
W ittichenite 8
Woehlerite 5
Wolfachite 8
Wolframite 5

7 M A T E R IA L S 151

W ollastonite 5
W ulfenite *10
W urtzite *20A

Xanthoconite 21
Xanthophyllite 5 PI
Xanthoxenite 5PS
Xenotim e 15

Yttrialite M
Yttrocerite M
Yttrofluorite 32
Yttrokrasite 8
Y ttrotantalite 8

Zeratite M
Zaophyllite I
Zeunerite 15
Zincite *19?I
Zinkenite 8
Zinwaldite 5
Zircon 15
Zirkelite 32
Zoisite 8
Zorgite M
Zunyite *31AS

Of the 830 m inerals listed 70 belong to classes th a t  allow piezo-activity 
b u t only 17 are found to be active by  the Giebe and Scheibe test. (Our te s t 
of Iodyrite  was negative b u t Greenwood and Tom boulian4 found it to be 
active; on the o ther hand, we found Scolecite to be active while they  report 
it inactive.) I t  m ay be th a t others of the  rem aining 56 classes have such 
small piezo-electric constants as to be undetectable. O thers m ay be in
correctly classified as to  sym m etry.

Of these active m aterials, quartz  is the m ost im portant. Because of its 
excellent mechanical properties (stability, etc.) as well as for its relative 
cheapness it seems destined to rem ain one of the m ost im portan t piezo m a
terials.

Tourm aline is also im portan t because of the high m agnitude of its elastic 
moduli in certain directions; however, it cannot be obtained in large pieces 
of satisfactory homogeneity.

Sphalerite is very difficult to handle because of its m any cleavage planes, 
and appears to give little  promise of becoming practically  useful. I ts  ac tiv 
ity  is quite marked.

Homogeneous crystals of calamine appear to be very rare, so th a t w ork
able crystals large enough for ordinary piezo-electric application are u n 
obtainable. M ost of the m aterial occurs massive.

4 On Piezo Electricity— Greenwood and Tomboulian—Zeits. f. Krist. Jan. 1932.
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Epsom ite gives a m arked response b u t the crystals are generally small and 
t ey do not w eather well. There is some possibility, however, th a t they 
can be m ade artificially.

Boracite gives a m arked response, b u t boracite alters slowly. I ts  imper
manence m ay bar it for some uses.

S tib io tan ta lite  occurs only in th in  scales, and the necessary cuts must be 
m ade in the m ost wasteful way. Tw inning is p reva len t and  the composi
tion varies widely.

Scolecite occurs only as small crystals a few m illim eters in diameter and a 
centim eter or so in length, uniform ly twinned.

Iodyrite has been found to be active by other investigators. I t  is 
electrically conductive, very soft and  no t very common.

S truv ite  is soft, unstable, and  occurs only in small crystals.
Z unyite occurs only in m inute crystals.
Langbeinite slowly changes its crystal structure. I t  may be made a r 

tificially so m ay be of some use if it can be kep t from alteration.
Leucophanite and  M eliphanite are related  minerals. Neither seems to  

occur in good (i.e., homogeneous and untw inned) crystals of usable size.
W urtz ite  does no t appear very active b u t good crystals were no t 

obtainable.
T iem annite crystals were also unobtainable, but fragments of m assive 

tiem annite responded. C rystals m ight respond more energetically if they  
were obtainable, b u t m inerals th a t are too difficult to get would n o t be of 
p ractical use.

E pistilb ite occurs only in small specimens, uniformly twinned.
T he m ineral clinohedrite is strongly active bu t crystals are very  rare.
C ronstedtite and E dingtonite are very weakly active. C rysta ls of these 

are very rare.



The Fundamental Equations of Electron Motion 
(Dynamics of High Speed Particles)

By L. A. MacColl

I .  I n t r o d u c t io n

In  work relating to the m otion of electrons and other particles it is fairly 
common to assume th a t the particles obey the laws of N ew tonian dynam ics. 
T h a t is, briefly, it is assumed th a t the  rectangular coordinates (x, y, z) of 
the particle under consideration satisfy the differential equations

m x = X , m y = Y , m'z — Z,

where m  is the mass of the particle (assum ed constant), X , Y , and Z  are the 
com ponents of the  applied force, and the dots indicate differentiation with 
respect to the tim e t.

However, it is well recognized now th a t the above equations are not 
strictly  correct, and th a t they merely represent an approxim ation which is 
adequate when the speed of the particle is sufficiently small com pared with 
the speed of light. The system  of dynam ics based upon the correct equa
tions 1  (which will be exhibited presently) is commonly called relativistic 
dynamics, no t because any knowledge of the theory of rela tiv ity  is essential 
to its understanding and use2, b u t because it is in agreem ent w ith the theory 
of rela tiv ity  (which N ew tonian dynam ics is not), because it was first de
veloped in connection w ith work on the theory of relativ ity , and  because 
even yet v irtually  all of the expositions of the subject are to be found in 
books and papers dealing prim arily  w ith the theory of relativity .

Ju s t where the dividing line should be set between cases in which New
tonian dynam ics is an adequate approxim ation and cases in which it is 
necessary to use relativistic dynam ics is, of course, a ra the r vague question 
which cannot be answered sim ply and definitely. We m ay note, however,

1 It  is not the purpose of this article to discuss questions of fundamental physics, or 
the physical validity of any particular equations. For purposes of discussion, we assume 
outright that relativistic dynamics is at least more nearly correct than is Newtonian  
dynamics.

2 The theory of relativity can be described briefly as a theory of the relations between  
the descriptions of phenomena in terms of different systems of reference. We shall not 
be concerned with this theory, because we shall be employing the same reference system  
throughout m ost of our discussion. In the final section of the paper we shall consider 
purely geometrical transformations of the coordinate system. These transformations, 
however, involve nothing that is really characteristic of the theory of relativity in the 
usual sense.

153



154 B E L L  S Y S T E M  T E C H N I C A L  J O U R N A L

th a t  according to  relativistic dynam ics the m ass of a five thousand volt 
electron is abou t one per cent greater than  the m ass of an  electron a t rest. 
F rom  th is we can infer th a t, while N ew tonian dynam ics m ay be adequate 
for m any purposes in our studies of electron m otion, we do no t have any 
g reat am ount of m argin, and th a t it will be necessary to use relativistic 
dynam ics whenever we wish to obtain  really good results concerning the 
m otion of even m oderately high speed electrons.

T his article is purely expository. I ts  purpose is to  set forth the funda
m ental equations and  theorem s of relativ istic particle dynam ics in a clear 
and concise form, unencum bered w ith any  m ateria l relating to the theory of 
re la tiv ity  proper. A lm ost all of the m ateria l is to be regarded as already 
known, b u t apparen tly  it is only to be found in an inconvenient and scattered 
form. The incom plete b ibliography a t  the  end of the paper gives references 
to some of the more accessible sources of th is and other related material.

I I .  T h e  E l e m e n t a r y  D i f f e r e n t i a l  E q u a t io n s  o f  M o t io n

Our discussion m ight be begun in any one of a num ber of ways, and  no 
doubt the different approaches would appeal unequally to different readers. 
Considering the natu re  and  purposes of th is article, the author has deem ed 
it best to  begin by  w riting down a t once the differential equations of m otion 
of a particle (according to relativistic dynamics) in their m ost elem entary  
form. Then, for the purposes of this discussion, these equations will have 
the s ta tu s  of a fundam ental assum ption. I t  need hardly be said th a t  the  
equations are no t w ritten  down arbitrarily . On the contrary, they  represen t 
the consensus of m odern opinion as to the laws under which particles really  
do m ove . 3 The grounds, experim ental and theoretical, for this opinion are 
set fo rth  in various of the  works cited in the bibliography.

F or the tim e being, un til the contrary is s ta ted  in the final section, we 
employ a fixed rectangular coordinate system. Instead  of denoting  the 
coordinates of the particle by  x, y, and z, as we have done provisionally  in 
the In troduction , we shall denote them  by  Xi, x2, and x 3. T hen  x 1; x 2, and  
x 3 denote the com ponents of the velocity of the particle. ’ T he com ponents 
of the force acting on the particle will be denoted by  X h X 2, and  X s. F or 
the  tim e being we need only note th a t the force m ay depend  upon  the  
coordinates, the  velocity, and the tim e; la ter on we shall in troduce some 
more explicit assum ptions about the force. The sym bol c will be used to 
denote the speed of light in vacuo.

3 The validity of these laws is not unrestricted. I t  is lim ited on the one hand by the 
quantum phenomena which become appreciable on the atomic scale, and on the other hand 
by certain phenomena revealed by the general theory of relativity which become 
appreciable on the cosmic scale.
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We assume th a t the particle moves, under the influence of the force (X h 
X 2, X 3), so th a t its coordinates satisfy the system  of differential equations

d m 3 x n / 1=  X n, ( 1 1  =  1, 2, 3), (1)
dt \  — (v2/ c 2)

where m 3 is a positive constan t characteristic of the particle, and v2 is an 
abbreviation for the expression x / 1 +  x 22 +  x 32.* The positive value of the 
square root is the significant one; and wherever square roots appear in the 
subsequent work it will be understood, unless the contrary  is sta ted , th a t 
the positive values are intended.

A few rem arks m ay help bring out the significance of the foregoing assum p
tion and its relations to the corresponding fundam ental assum ption of 
N ew tonian dynamics.

We call the constant mo the rest-mass of the particle, and  we assume (in 
accordance w ith the experim ental evidence) th a t m 0 is identical w ith the 
mass of the particle which is used in N ew tonian dynam ics. In  relativistic 
dynam ics the q u an tity  m  defined by  the equation

m  =
a /  1  — (v2/c 2)

is called the mass of the particle. We note th a t  as v/c  approaches zero the 
mass approaches the rest-m ass (whence the appropriateness of the la tte r 
term ), and th a t as v/c  approaches u n ity  the m ass increases w ithout lim it.

Consider the vector having the com ponents pi, p2, p 3 defined by the 
formulae

* -  m o±n  ( 2 )
V I  -  (z>2/c 2)

We call th is vector the momentum  of the particle. The m om entum  is equal 
to the velocity of the particle m ultiplied by the  mass.

Now equations (1) assert th a t the tim e-rate of change of the m om entum  
of the particle is equal to the applied force.

We have already observed th a t as v/c  approaches zero the  relativistic mass 
of a particle approaches the N ew tonian mass. We now note th a t as v/c  
approaches zero the com ponents of the relativistic m om entum  approach 
the values

pn -  m o  X n ,  (2')

* We might merely say that v is the speed of the particle. However, for our immediate 
purposes, it is important not to lose sight of the fact that v is a certain particular function  
of the components of velocity.
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which are precisely the  com ponents of the m om entum  according to the 
N ew tonian theory.

Finally, as v/c  approaches zero, the differential equations of m otion (1) 
approach the forms4

j t { m x n) =  X„, (10

which are the Newtonian differential equations of m otion.
T hus we see th a t N ew tonian dynam ics is in effect a simplified approxim ate 

form  of relativistic dynamics which is valid  when the  speed of the particle 
under consideration is sufficiently sm all com pared w ith the  speed of light.

L et us carry out the indicated differentiations in equations (1), and then 
solve the resulting equations for the quan tities m 0x h m 0x2, m 0x 3. The work 
is straightforw ard, and need not be given here. W e obtain  the  following set 
of form ulae:

maxi =  ( 1

m ax 2 — ( 1

2 —2n—1/2
V C )

2 —2\—1/2 V C )

•2\ —1/2

Xi ±i ± 2  c 2 ± 1  xsc 2

x 2 1 -  (¿I2 +  ¿3 V 2 ¿2 x3 C~ 2

x 3 ¿2 X3C 2 1 -  (Xi +  x2V 2
1 - /. 2 1 . 2\ -2 (x2 +  x3 )c X 1 X1 X3 C 2

± 1  ± 2  c~2 x 2 X2 ± 3  C~ 2

X\ ± 3  C~ 2 x 3 1  -  (¿I2 +  X22)c~ 2

1 - (X22 +  X3 V 2 X1X2 c 2 Xi

¿1 X2 C~2 1 - (xi +  X32)c~ 2 x 2

Xi X3 C~ 2 ± 2  ± 3  C~ 2 X3

(3)

m 0Xa =  (1 — v c  )

These equations are, of course, the differential equations of m otion  (1) 
w ritten  in a new, b u t equivalent, form.

If, a t  some particu lar instant, the particle is moving parallel to th e  xi-axis, 
so th a t x 2 =  x 3 =  0, the equations (3) reduce at that instant to the  form s:

) X i
=  X ,

mo x 2
=  X 2,

m 0 x s
=  X 3(1 — Z>2C- 2 ) 3/2 (1 — v2c~2) in  (1 — j,2c- 2) 1/2

These equations show th a t a particle of rest-m ass m a, m oving w ith  speed v, 
responds to a force parallel to the velocity as would a N ew tonian  p artic le5 
of mass

n l  = ( 1  -  v h - y * ’
4 If this conclusion is not entirely evident, the reader is referred to equations (3), from 

which the conclusion follows at once.
5,I.e. an ideal particle which obeys the laws of N ewtonian dynamics.
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and th a t the particle responds to a force perpendicular to the velocity as 
would a N ew tonian particle of mass

ma
m t =

( 1  -  »*r*)l/2‘

F or this reason, it was usual in the early work on relativistic dynam ics to 
ascribe two masses to a particle: the l o n g i t u d i n a l  m a s s  m ( , and the t r a n s v e r s e  

m a s s  m t . However, in general th is procedure leads only to inconveniences, 
and it has been alm ost entirely abandoned.

This concludes our discussion of the elem entary differential equations of 
m otion. W ithout any fu rther general theory of relativistic dynam ics it is 
possible to solve m any interesting and im portan t problems. F or instance, 
it can be shown easily th a t the trajectory  of a particle  subjected to a force 
which is constant in m agnitude and direction is a catenary  (ra ther than  a 
parabola, which is the curve predicted by  N ew tonian dynam ics) . 6 In  the 
following sections we shall discuss some of the less elem entary parts  of the 
subject.

I I I .  T h e  L a g r a n g ia n  E q u a t io n s

In  the foregoing the com ponents of the applied force have been any func
tions of the coordinates, the com ponents of the velocity, and the tim e. 
However, in problem s concerning the m otion of electrons, and for th a t 
m atte r in m any o ther physical problem s also, we are usually concerned w ith 
forces of a som ewhat special kind. T hroughout the rem ainder of the article 
we shall assume th a t the force belongs to th is special class.

We consider four given functions of the coordinates and time, nam ely

V (xh x2, x 3, t ) ,  A n(xi, x2, x 3, t ) ,  [n =  1, 2, 3), 

and  we assume th a t the com ponents of the force are given by  the form ulae

dV  dA i , . 
X i =  -  — -  —  +  x2

OX i  d t

d A 2 dA i 
_ d x \  d x 2 _

X 2 =

I  _  . \ d A 1 _  d A 31 
J  3 _ dx3 dxi J  ’

d V  _  dAa ra_£3 _  d A f  \ _  . I"d A ,  _  M j l
dx2 dt 13 |_ dx2 dx3 J  '*1 L dxi dx2\ '

y. _ _ d V _ d A 3 p i l l  _  d A i ]  _  . I"dAz _  d A »]
<9^3 dt 1 (_ dx3 dxi J  2 L dx2 dx3 J  '

L et us suppose, for purposes of illustration, th a t we are considering the 
m otion of an electron. Then the physical in terpretation  of our assum ption

6 L. A. M acColl, American Mathematical Monthly, Vol. 45 (1938), pp. 669-676.
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concerning the force is the following. V{x1, x2, x 3, t) is the po ten tia l energy 
of the electron in an electrom agnetic field; th a t is

V (xlf x2, x 3, t) =  — etp(xi, x2, x 3, t),

where e is the absolute value of the electronic charge, and  <p(x1 , x2, x3, t) 1S 
the scalar po ten tia l of the field. The functions A n(xh x 2, x 3, t) are related 
to the com ponents an(xh x2, x 3, t) of the vector po ten tia l of the field by the 
equations

A n(x i, x2, x 3j t) =  — ean(xh x2, x 3, t).

The term s — d A n/d t  are — e tim es the contributions of the vector potential 
to  the com ponents of the electric force. The q u an tity  d A 3/d x 2 — dA 2/d x 3 

is — eBu where is the xi-com ponent of the m agnetic induction; and 
sim ilarly for the quantities d A i/d x 3 — d A 3/d x i  and dA 2/dx \ — dAi/dxz. 
In  o ther cases also, equations (4), which m ay degenerate considerably, can 
be in terpreted  w ithout difficulty.

Now we define a  function L (x i, x2, x 3, x h x2, x 3, t) of the coordinates, the
com ponents of the velocity, and the tim e, as follows:

L  — — moc2( l  — v2c~ 2) 112 — V  +  Xi^4i +  x2A 2 +  ¿ 3^ 3- (5)

We call this the Lagrangian function.
We w rite the equations

(« =  1 ,2 ,3 ) ,  (6 )
at dxn dxn

carry  ou t the indicated differentiations, and readily verify th a t the resulting  
equations are identical w ith those obtained by substituting the expressions 
(4) in equations (1). Hence, equations (6 ) are merely a form of the  differ
ential equations of m otion. W e call equations (6 ) the Lagrangian equations. 
The chief im portance of these equations is due to the ease w ith  w hich th ey  
enable us to  use coordinate systems which are not rectangular. T h is will 
be discussed in the  final section.

In  the N ew tonian case, i.e. the case in which the speed of the  partic le  is 
small com pared w ith the speed of light, the Lagrangian function  reduces 
approxim ately to  the form

L  = —m 3c +  ( ± 1  +  x 2 +  x3 ) — V +  ¿ 1  A i  +  x 2 A 2 +  x 3 A 3 . (5 ')

* These relations between the A ’s and the components of the vector potential, and 
between the partial derivatives of the A ’s and the com ponents of the m agnetic induction, 
are based upon the use of the M .K.S. system of units. If we measure the electrom agnetic 
quantities in other units, certain constant proportionality factors m ay appear in the 
relations.



If we employ the function (5') in equations (6 ), we do indeed get the New
tonian differential equations. Since the constant term  —m 0c2 is of no 
effect in the form ation of the differential equations of motion, it is ordinarily 
om itted  in w riting the N ew tonian form of the Lagrangian function.

I V . H a m il t o n ’s  C a n o n ic a l  E q u a t io n s

L et us write

pn A n — 7Vn. (7)

Solving equations (2) for x h x2, x3, we get the result 

x n = cpn [ma c +  p\ +  p 22 +  pz]  1/2
(8 )

=  c(irn — A n)[mo c -f- (tt\ — A i ) 2 +  (w2 — A 2 ) 2 -f- (7r3 — A 3)2] 1/2.

Also, it is readily seen that the differential equations (1) can be written, 
with the aid of equations (7) and (8), in the form

dV  . d A i . d A 2 . dAz
7Tn —  —  5 V  +  X 2  ----  +  £ 3  T-----oxn oXfi c>Xji oxn

(9)
=  —   C [ tw o  c  +  (7 T l —  A i ) 2 +  (7T2 —  A 2 ) 2 +  (7T3 —  A 3) 2] 1 /2 .

Now let us define a function H (xh x2, x 3, irh ir2, 7r3, t) as follows:

H  = c[mo c +  (77x — A i ) 2 +  (ir2 — A 2) 2 +  (-k2 — A z f) 11“ -f- V. (10) 

Then equations (8 ) take the forms

dH , s
Xn =

and equations (9) take the forms

dH / ,
’ (12)

The function H  is called the H am iltonian function. The six equations 
( 1 1 ) and  ( 1 2 ), which are equivalent to the three equations ( 1 ), are called 
H am ilton’s canonical equations of m otion. These equations are of great 
im portance in all of the deeper theoretical work in dynamics.

An easy calculation shows th a t we have the identity

H +  L = TTi±i +  7T2X2 +  7T3 X3. (13)
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I n  the  N ew tonian case the H am iltonian  function given b y  (10) reduces 

approxim ately to  the  form

H  =  m 0c +  ¡(in  — A { f  +  (7r2 — A i?  +  (tt3 — A s)2] +  ¥ •  (^9 ^
IfYl 0

The equations (11) and  (12), w ith H  given by  (10'), are equivalent to the 
N ew tonian differential equations of m otion (1'). H ere again the constant 
term  moc2 is of no effect, and it is ordinarily om itted  in writing the New
ton ian  form  of the function H. The N ew tonian forms of the functions H  
and  L  satisfy the iden tity  (13), w hether or n o t the constant terms moc2 and 
— m 0c2 are included.

V . S t a t ic  F ie l d s  o f  F o r c e : T h e  E n e r g y  I n t e g r a l ; N a t u r a l  F a m il ie s

o f  T r a j e c t o r ie s

B y equations (11) and (12), we have the relation 

dH  dH  . XT' T dH  . , OH . "
- 7 r =  -VT +  2 ^  a — x n +  T— TVnat at n=l [_OXn OTTn

dt n= 1 l_dxn dwn d-ITn, dxn

In  particu lar, if no one of the functions V, A i, A  2, A 3 involves the tim e 
explicity, we have d H /d t =  0, so th a t  the value of H  remains constan t 
during the m otion of the particle. T h a t is, under the condition s ta ted  we 
have

moc2[l — r2<T2]-1/2 +  V{xi, Xi, %) =  constant. (15)

In  the N ew tonian case equation  (15) reduces approxim ately to  the  form

mo c +  v2 -)- V (xh Xi, xz) =  constant,

which is equivalent to the equation

v +  V(xi, x i , X3) =  constant. (15')

I t  is well known th a t this equation is a consequence of the  N ew tonian
differential equations of motion.

T he left-hand m ember of equation (15') is the  energy of th e  partic le  in

dH
dt

(14)



N ew tonian dynam ics, the first and second term s being the kinetic energy 
and  the po ten tia l energy, respectively. The equation itself is called the 
energy in tegral .7 Similarly, we call (15) the  energy integral in relativistic 
dynam ics, and we call the expression

2 r ,  2 - 2 i - l / 2  , T rmoc [1 — v c J +  V

the relativistic energy. This energy is the sum of three p arts : the proper 
energy m 3c2, the relativistic kinetic energy

. . 2 f1  2  — 2 - I - 1 / 2  2moc [1 — v c J — m 0c ,

and the potential energy V.
The to ta lity  of possible trajectories of a particle in a sta tic  field of force 

forms a five-param eter family. We now see th a t if the field of force is 
sta tic  and of the k ind we are considering now, the five-param eter fam ily of 
curves consists of °o1 four-param eter subfamilies, each of which corresponds 
to a different value of the energy of the particle. Each of these four-param 
eter subfamilies is called a na tu ra l fam ily of trajectories. We proceed 
to derive the differential equations defining a na tu ra l family.

If the constant in the right-hand m em ber of equation (15) is denoted by 
the symbol E , we have the relation

¿ i[l +  *22 +  * ' 2] 1/2 =  c[l -  m V  (E  -  V y T  , (16)

where

x'z =  d x i/d x i, x 3 =  dx3/dx i.

Hence,

dt =  c“ '[l +  x 2 +  *32]1/2[1 -  ( £  -  v r T 112 dx  1.

From  this, and the two equations
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d m 0 x 2 _  _ d V  . [”dA z _  d A 2~1 _  .
dt ( 1  — v2 c~ 2) 112 dx 2 3 3 dx2 dx3 J  Xl

fd A i _  d_Ai"|
|_ dXi dx2 J  ’

_ dV , \ 8 A i _  _  . [d A , _  d A fl
dt ( 1  — v2 c~ 2) 112  dxz Xi |_ dxz d x i j  Xi \_dx2 dx3 J ’

m 0 x  3

it follows th a t we have the following system  of differential equations defin
ing the na tu ra l fam ily of trajectories corresponding to the to ta l energy E:

7 In the theory of differential equations, an equation relating the unknowns involved  
in a system of differential equations, their derivatives of orders less than the highest orders 
appearing in the system, the independent variable, and one or more arbitrary constants, 
is called an integral of the system of differential equations.
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n i n i n[1 +  X2 +  x 3
- 1/2 d

= £ - [ ( £ -  V ) -  m U  
ax 2

2 4-11/2

i f 1 I n _L /21—1/2 /  ' r ^ 3  M 2"l ®1
+  «[! +  »  + * , ]  v* ‘ L * ä | a » J - - L * s _ t e .

|B - F § ^ c 4t B  
.  1 + * ”  +  *”  J  /

[ 1  +  £ 2 "  +  ^ 3 2 ] 1 /2

(17)

=  — [ ( £ - F ) 2 - ^ c  
dx3

2 411 /2

+  c[l +  ac2 +  ^3 ] - 1/2 /  d A i  d / l a ” ! / r <9 / 1 3  ___

\  _ dx3 <9xi J ' 2 |_ d% 2

dAi
dx3

The equations which correspond to (17) in the  N ew tonian case are most 
readily obtained by  going back to the N ew tonian differential equations of 
m otion and employing the integral

m 0v2/ 2 +  V  = E.

An easy calculation, which is entirely  parallel to the foregoing, gives us the 
following system  of equations:

ri i /2 i ' 2i—1/2 d ( j  f  E  — V  "]1/2\  _  <9 ( t^ i /2
[1 +  Xi +  x 3 \ —  ( x 2 I—I— 72—— 7-2 J ~  NZT \E  ^  V)

dxi V Ll +  x2 +  x3 J  /  dxo

J i"dA_3 _  d A jl  _  [ ^ 2  _  A4i‘
° |_ dx2 dx3 J  |_ d%i dx-2 _+  [2m„(l +  +  a-32)]“1/2 ( 4  I "T 3

[ 1  +  #2  +  X,%
, 2 l - l / 2

dx 1 u  r  £  „  j  n T ) = ¿ ( e -  y ) 1*
\  Ll +  *2 +  X 3 J  /  0 X3

/ i ”<L4i dAs”! ^  I”<9̂ 3 dA¡ 
\|_ dx3 dxi J 2 [_ dx2 dx3 _

(170

/ 2 \ l - l / 2
+  [2 wo(l +  X2 +  x% )]

On comparing the systems of equations (17) and (170, we get the follow
ing useful theorem.

I f  the constants E , E*, m 0, m 0*, k, and the functions (of xh x2, x h) V, A h A  2, 
A  3,  V*, A * ,  A * ,  A 3* are such that we have identically

(E  -  F ) 2 -  m \c  =  k \ E *  -  V*),
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dAt _  dAi = k _  M il
dxy dx2 c(2m0* ) 112 L axi dx2 J ’
dAi _  dAs =  k I”d_A? _  3/1*1
dx3 3xx c{2 m 0* ) 112 |_ dx3 dxi J  ’

the natural fa m ily  of trajectories of a relativistic particle8 {of rest-mass mf) 
moving with relativistic total energy E  in  the field of force derived from  the 
functions V, A \, A 2, A 3 is identical with the natural fa m ily  of trajectories of a 
Newtonian particle {of mass m * )  moving with Newtonian energy E * in  the 
field of force derived from  the functions V*, Ai*, A * ,  A * .

In  p articu lar, the  conditions of the theorem  are satisfied if

k = c{2moy 2, E*  =  c~2{2m0)~ 1 {E 2 — m lc*), m 0* = m 0,

V  = V* =  0, A f  =  A  i, A  2* =  A  2, A 3* =  4 , .

Hence, we have the corollary:
In  the case of an electrified particle moving in  any static magnetic field the 

natural fa m ily  of trajectories corresponding to any value of the energy given by 
relativistic {Newtonian) dynamics is identical with the natural fa m ily  of 
trajectories corresponding to a certain other value of the energy given by New
tonian (relativistic) dynamics.

The equation

E* = c~ \2 m 3y \ E 2 -  m \c )

establishes a one-to-one correspondence between the physically significant 
{E  ^  m 3c2 and  E* ^  0) values of the relativistic energy E  and the New
tonian  energy E*. F rom  this fact and the preceding corollary we get the 
following fu rther result:

I n  the case of an electrified particle moving in  any static magnetic field the 
total five-parameter fam ily  of trajectories given by relativistic dynamics is 
identical with that given by Newtonian dynamics.

Of course, these peculiar properties of m otion of an electrified particle 
moving in a sta tic  m agnetic field are explained physically by  the fact th a t 
the m agnetic forces do no work, so th a t the speed of the particle, and 
consequently also its mass, rem ain constant during the motion.

V I . S o m e  F o r m u l a e  f r o m  t h e  C a l c u l u s  o f  V a r ia t io n s

This section is devoted to the derivation of some formulae from the 
Calculus of V ariations which will be needed in the fu rther discussion of the

8 I.e. a particle obeying the laws of relativistic dynamics.
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dynam ics of a particle. All constants, variables, and  functions considered 
here are understood to be rea l .9 10

L et F(t, x, y , z, p , q, r) be a function of the seven argum ents indicated,^
which, together w ith all of its partia l derivatives of the  first three orders, is 
continuous in a region R  defined as follows:

the a’s, b’s, c’s, and d’s, being constants.
L e t x{t), y{t), z(t), <p{t), \p{t), and co{t) be continuous functions with con-

L et T\ and T 2 be constants, and let and t2 be param eters, such th a t

I t  can be shown w ithout difficulty th a t the integral exists and is a differen
tiable function of e, 77, 6 , t u  t 2. We are interested in form ulae giving the  
values of d i/d e , d l/d t), d l/d d , d l / d t i ,  d l / d t 2 a t the point e = r } = 9  =  ti =  
h  =  0 .

9 Since this section is purely mathematical, the constants, variables, and functions do 
not necessarily have any special physical significance.

10 We treat the case of a function of seven arguments in order to  fix the ideas, and 
because this is a case we shall m eet in Section VII. However, the discussion applies 
essentially to other cases as well. In particular, in Section V II we shall also deal w ith  a 
case in which F has only five arguments, 2 and r being absent.

d\ < t < a2, 

W <  x  < b2,

R :  ci <  y  < c2, 

di <  z < d2, 

p, q, and  r unrestricted,

tinuous first derivatives, and  let e, 17, and  9 be param eters, independent of t, 
such th a t we have the relations

bi <  x(t) +  e<p(t) < b2,

ci <  y{i) +  v H ł) <  C2, {ai < t < (h).

di <C z{t) -f- 9ù)(t) <f d2,

ai <C Ti -(- ti <  T 2 -|- t2 <  0 2 . 

We now consider the integral 

7(e, 77, 6 , th t2)

F(t, x  +  tip, y  +  rjp, z +  9oj, x ' +  e<p', y ' +  77̂ ',  z' +  0o/) dt.



By a well known theorem  concerning the differentiation of definite 
integrals w ith respect to param eters , 1 1  we have

d l  rr»+‘*r  d d 1
*  ~  L + „ l v w + ^ > +  r  w + t ?J * +  #" ' )
d l
—  =  - F f r ,  +  k , X(T ! +  ¿0 +  €¥>(7! +  | ,  • • ■, z'{T!  +  k )  +  e(S(Ti  +  k)\ ,  

d l
—  — F[Ti  4 - ¿2 , ^ ( r 2 +  k )  +  €95(r2 +  & ) , • • • ,  z ' ( r 2 +  ¿2) +  3 a / ( r 2 +  &)].

The form ulae for dl/drj and dl/dd  are similar to th a t for 37/de, and need 
no t be w ritten  down.

In  particular, if [3//3e]o, etc. denote the values of the derivatives a t the 
po in t e =  i) =  d = k  =  k  =  0, we have

[Cl,=L [?’s +̂  ¿] f(>' *’-•i,}
[ C .  =  I ,  [ *  Ty +  * ' I ' ]  F<<' * ’ ” ' ' 2>) "■

[ C L  “  / , ,  ["  S  +  ¿ ]  F{>' * - • • • -  *6 6 8 )

[ ~ ] ,  =  - F [ r „ * ( r , ) ,  •••  , A n ) ] .

[CL = ?[r>, *<n), .̂ n)].
The first three of equations (18) can be transform ed to advantage, as 

follows. In teg rating  by parts , we obtain  the formula
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I ' /  F(l’ ■ ‘,)dl ~ [r  F(‘'
_  L . v  I t  5 ?  F { t '  * ' ' "  ’ o  < # ,

rJri

and similar formulae for the integrals 
* r 2

and
•r2f 2 3

/ co' — , x, ■■■ , z ' )  dt.
J  Ty OZ

11 The theorem is given, often in the form of two separate theorems, in m ost works on 
Advanced Calculus and the Theory of Functions of Real Variables. See the bibliography.
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rJriKl.= i?<i’ 

ifrC i'*-'-'2''!’
+  i y ^ r y ~ i l w } F(-‘ - ’l' - - - ’ / ) ‘I‘’ (19)

rm
+ C"w[l

An im portan t special case is th a t in which t\ and t2 are zero (so th a t the 
lim its of in tegration  are fixed), and

v (T i)  =  <p(T2) =  H T i)  =  i ( T 2) =  L ( f |  =  o(T 2) =  0.
In  th is case we have in general

, ,  e, o. o ) -  / ( o ,  o , o, o , o) -  ,  £' J  [g - %\ i t

+  o(e, t], 6),

where o(e, 17, 6 ) denotes a term , the  exact form of which is un im portan t, 
which is such that the expression

o(e, rj, 6)

approaches the lim it zero as e, 77, and 6  tend simultaneously toward zero.
In  particular, if the functions x{t), y(t), z(t) satisfy the system of differen

tial equations

f l f o  ^  3 F  _  3F  d dF  _  dF  _  ,
d td x ' dx ’ d td y ' dy ’ dt dz' dz ’ J

we have (for all choices of the functions tp, p ,  co subject to the conditions 
stated)

7 ( 6 ,  77, 6 , 0, 0) -  7(0, 0, 0, 0, 0) =  o(e, 77, 6 ). (21)
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Also, it can be shown w ithout difficulty th a t in order th a t we have (21), for 
all such choices of tp, \p, u, it is necessary th a t *, y, and z, satisfy the  equations

The last result can be sta ted  in the following sum m ary, and no t quite 
explicit, form : If, and only if, the functions x{t), y{t), z(i) satisfy equations 
(2 0 ), the  integral

is s ta tionary  w ith respect to infinitesimal variations of the functions x(t), 
y{t), z(t) which leave the term inal values unaltered.

The problem  of finding functions which render the values of definite 
integrals sta tionary  is the chief subject of the Calculus of Variations.

T he equations (20) are called the Eulerian equations of the Calculus of 
V ariations problem  of m aking the value of the integral (22) sta tionary , or, 
as we usually say, of maximizing or minimizing the integral.

V II. H a m il t o n ’s P r in c i p l e  a n d  t h e  P r i n c i p l e  o f  L e a s t  A c t io n

We im m ediately recognize equations (6 ) as the Eulerian equations of a 
problem  in the Calculus of V ariations. Thus we have the following principle 
{Hamilton'’s principle):

The particle moves, under forces of the type (4), so that the value of the integral

with ti and 12 held fixed, is stationary with respect to infinitesimal variations of 
the functions xn{t) which leave the in itia l and final points unaltered.

The precise m eaning of this is determ ined by the discussion given in 
Section VI.

H am ilton’s principle leads to the relativistic or N ew tonian differential 
equations of m otion, according as we use in it the function L  given by (5) 
or by  (5')-

A little  inspection suffices to show th a t the system  of equations (17) is 
also the system  of Eulerian equations of a problem  in the Calculus of

* In brief, suppose that — —  — —  were not zero for some value of t. Then if we should 
atdx dx

choose a function 1p(t) which was (say) positive in the neighborhood of that value, and zero 
elsewhere, the integral

would have a value other than zero. We shall not give the actual proof here; it is to be 
found in the works on the Calculus of Variations cited in the bibliography.

(20).*

(22)



V ariations. T hus we get the so-called principle of least action, which can be 
sta ted  as follows:

The particle moves, in  a static field of force of the type (4 ) , and with the 
prescribed total energy E , in  such a curve that the value o f the integral

/ ([1 +  +  Xz ]1/2[(E  — V ) 1 c 2 — m l c2]1/” +  A \  +  A i x 2 +  A zxf) ^X]’

with the lim its o f integration held fixed, is stationary with respect to infinitesimal 
variations of the trajectory which leave the end points unaltered.

W e have a  precisely sim ilar principle in N ew tonian  dynamics, but here 
the  integral in question is

[ ( ° 2 ([1 +  X2 +  x 3 )in [2 m fE  -  T )]1/2 +  A , +  A 2x2 +  A zxf) dxi.

The last two integrals can be w ritten  more symmetrically, but not quite 
so explicitly, as follows:

C  ([(* -  yf‘-  -  + *£+■ **+■*£)*.

where Pi and  P 2 denote the end points of the trajectory, and ds2 =  d x i +  
dxl +  dx 3.

V III. T h e  H a m il t o n -J a c o b i  T h e o r y

L et us write
p 12

W  =  / L[xi(t), xfi t) ,  x3(t), x[{t),  x2(/), x3(/), t] dt. (2 3 )
Jh

We have already studied the varia tion  of W  when h  and t2 are held fixed, 
and  the functions xn(t) are varied in such a way th a t the term inal values are 
unaltered; and  we have shown th a t under these circumstances the varia tio n  
of IT vanishes, to the first order of small quantities, in the na tu ra l m o tio n . 12 
In  the  following we shall s tudy  the variation of IT under som e o th er 
conditions.

Specifically, we shall s tudy  the quan tity  AIT defined by  equation  (23) 
and  the equation

IT +  AIT = L[xi( t)  +  ¡¡ft),  • • • , ¿fi t )  +  £(<), ¿1 dt,

12 I.e. a motion satisfying equations (1).
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where the functions xn(t) represent a  na tu ra l motion, the £„(/) are small 
functions, and Ad and Ah  are small param eters.

I t  follows from the results of Section V I th a t we have (to w ithin term s 
of the second order in small quantities ) 13

A W  = A h , xz{h), h\

— A h L [x i(h ), ■ ■ ■ , x's(b), h]

+ t r # i  u t jn=l \ _O X n J t = t 2 n = 1 [ _OXn J t = t i

= A h L [x i(h ), • • • , x%(h), h]

— A h L [x i(h ),  ■ ■ • , x'z{h), h]
3

+  2 Z W n(h)^n(h) — 7T„(b)£n(h)].
71=1

L et us write

(Axn) 2 =  xn(h +  A¿2) +  £«(¿2 +  Ah) — xn(h) = ^n(h) +  x n(h) Ah,

(Axn)i = x n{t\ +  Ad) +  £n(h +  Ah) — xn(h) — £n(h) +  x n{h)Ah,

so th a t (Axi)2, (Ax2)2, (A x s) 2 are the coordinate differences of the term inal 
points of the varied and unvaried curves, and similarly (Axi)i, (A x2) i , (Axi)i 
are the coordinate differences of the initial points. Then we have the 
formula

A IT  =  (^L[xi(h), ■ • ■] — 22 Trn(h )x n(h)^J Ah

— (^L[xi(h), ■ ■ •] — 22 7r» (h )x l(d )^  Ah

3

~f" nipl) (A x „ )2 7Tn(h) (A.t n)l]j
71 =  1

which, by equation (13), can be w ritten in the form 

AIT =  - H [ Xl(h), ■ ■ •] Ah +  H [xi(h), • • •] Ah
3

+  2Z W n{h){Axn)i ~  TTn(h){Axn)\]- (24)
71=1

Now, the integration in (23) being taken over a na tu ra l m otion of the 
particle, the value of IT depends upon the initial instant, the initial coordi-

13 This is also the sense in which the following equations are to be understood.
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nates, the  initial com ponents of velocity, and  the  final instan t. I t  lS 

necessary now to consider W  as depending upon the following equivalent s e t  

of eight variables: the initial and final in stan ts  t\ and  fe, the  c o o r d i n a t e s  

(*1 1 , *21, *3 1) of the initial point, and  the coordinates (*i2, *22, *32) of the final 
point. R egarding W  in th is m anner, we a t once ob ta in  the f o l l o w i n g  

relations from equation (24)

dJ l =  - H  w  =  ,  (25)
dh  ’ dxn2 n2’

d W _  d W  _  (26)

where H 2 denotes H[xi(t2), ■ ■ ■ , 7n(4), • • • , ¿2] and  # 1  denotes #[*i(4), >
iri(fi), • ■ ■ , 41-

L et us now consider the p artia l differential equation
n  TTT

- +  H {x \ , x2 , x3 , d W /d x i d W /d x 2 , d W /d x » , t) = 0. (27)
at

The preceding work shows th a t the function W  we have been considering 
(w ith xn, *21, *3 1, 4  regarded as param eters, and  w ith the symbols *12, *22, 
* 32, 4  replaced by  *1 , *2, * 3, i respectively) is a  particular solution of this 
equation. We shall show th a t the complete solution of this equation 
possesses rem arkable properties in connection w ith dynamical problems.

The com plete solution of equation (27) is a function of *1 , *2, *3, 4 and  
of four a rb itra ry  constants, of which one is merely additive, and can be 
neglected for our purposes. L e t the solution be w ritten

W  = W (x h *2, *3, t, ai, a 2, a 3),

where the a ’s are the three essential a rb itra ry  constants.

We w rite the equations

^  =  A ., (28)
OCin

where the /J’s are fu rther a rb itra ry  constants. These equations im plicitly  
determ ine the *’s as functions of t and  the six arbitrary  constants a h  • • • , /?s. 

W e also w rite the equations

d IT
sr . -  • <29>

These equations determ ine three functions irn of the x’s, the  a ’s, an d  t.
In  v irtue  of equations (28), the 7r’s are ultim ately functions of t, th e  a ’s, and
the /3’s.
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There is no reason to  foresee a priori th a t the functions x 3{t, a 3, • • • , @3), 
■ ■ ■ , ir3(t, £ 3) determ ined in this way, by  m eans of the com plete
solution of equation (27), satisfy the differential equations of m otion (11) 
and  (12). N evertheless, they actually  do satisfy those equations, as we 
proceed to show.

By equations (28), we have the relations

0 =
d2W

+  e
d2 W

dt dandt ' " 1  dan dxm 

On the o ther hand, by (27) and (29), we have14

d f d W  . TT. .1
d  =  —  —  +  H (x  1 , X 2, X3, 7Tl, 7T2, 7T3, t)

(30)

d2W  , y '  d #  dirm
dan dt m= 1 dirm dan

d ^ V  +  dH  d V
dandl 71-— 1 d7rm dotji dx^

(31)

The determ inant

d2W
dai dx\

d2W
daz dxi

d2W  
doti dx3

d W  
da3 dx-¿

is not zero. F or if it were, we would have a relation of the form 

$ [dW /dx 1 , d W /d x 2, d W /d x 3, x h x2, x 3, t\ =  0, (32)

independent of the a ’s. Now equation (32) is obviously distinct from (27), 
since it does no t involve dJF /d t. Hence, the vanishing of the determ inant 
would imply th a t the function W (x 3, x3, x 3, t , a1} a2, a 3) satisfies two d istinct 
p artia l differential equations of the first order. This, however, is impossible 
when W  is the  com plete solution of (27); for an essential p a r t  of the concept 
of the com plete solution of a differential equation is th a t the elim ination of 
the  a rb itra ry  constants, from  the solution and  the equations obtained by  
differentiation, shall result in the given differential equation and no other.

I t  follows, therefore, from (30) and (31) th a t

dH
dlTrr.

We also have, by  (29),

TTn -
d2W  

dxn dt +  E
d2W  

dXm dXn +  E
d2W  dHd2W

dxn dt m=i dxm dxn dirm (33)

14 Since the function W (xlt x i: x 3, t, on, a 2, <23) satisfies equation (27) identically in the 
x ’s, t, and the a ’s. This remark applies also in the case of equation (34).
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On the  o ther hand, we have

n =  j f . p ^  +  g 1 M f w  ' J r .  W
0xn L ^  _J dxndl dXn m= 1 d%n

B y (33) and  (34), we have the second set of canonical equations

. _  dH
Tin ~ •OXn

This com pletes the dem onstration.
If H  does no t involve the tim e explicitly, we can w rite

W  = S  -  E t, (35)

where E  is an a rb itra ry  param eter, and S  is a solution of the differential 
equation

H[xi, %2j x$, d S /d x i, dS/dxz, dS/d%i[ =  E. (36)

The com plete solution of (36) contains three a rb itra ry  constants (besides 
the  param eter E ), of which one is m erely additive, and can be neglected. 
I t  is easily seen th a t the solution of the canonical equations determined in 
the w ay described above, using the function W  given by (35), and treating E  
as one of the ads, represents a m otion of the particle  with the total energy E.

All of th is theory  holds both  for the relativistic case and for the N ew 
ton ian  case, the  only difference being in the forms of the differential 
equations (27) and  (36) in the two cases.

IX . C u r v i l i n e a r  C o o r d in a t e s

In  all of the  foregoing we have em ployed rectangular coordinates, because 
they  afford the sim plest and m ost d irect expression of the basic physical 
facts. However, in the solution of particu lar problems it is often m ore 
convenient to use o ther systems of coordinates. For this reason, we shall 
now form ulate the  more im portan t equations in terms of general curvilinear 
coordinates. In  this work, as in all work w ith general coordinate system s, 
we shall encounter concepts and relations which can be handled  m ost 
perspicuously by  m eans of the m odern tensor calculus. A ctually , the  
am ount of tensor calculus we shall use is very slight, and no extended p re 
lim inary discussion is necessary in order to make the form ulae intelligible. 
I t  will suffice to give occasional explanations of the notation , and  of some 
of the concepts, as we proceed. F u rth e r information is to  be found in the  
works cited in the bibliography.

F irs t consider the Lagrangian equations, which, as we have seen, are 
m erely the E ulerian equations which follow from  H am ilto n ’s principle.
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Now H am ilton’s principle expresses a fact concerning the m otion of a 
particle  which is, by  its very nature, independent of the choice of coordinates. 
Hence, the L agrangian equations (6) hold in any coordinate system. H ow 
ever, the  form  of the  function L  depends upon the particu lar coordinate 
system , and we m ust discuss the change of the form of the function resulting 
from  a transform ation of the coordinate system.

In  accordance w ith the common practice in the tensor calculus, we shall 
now denote the coordinates by the symbols x ,  x ,  .r3, instead of by the 
symbols .r1; x2, x 3.

In  rectangular coordinates the differential distance ds between the points 
(.v1, x 2, x 3) and  (x 1 +  dx1, x 2 +  dx2, x 3 +  dx3) is given by the simple form ula

ds2 =  dx1* +  dx2* +  dx32,

b u t th is is highly special; in general coordinates we have 
3 3

ds' =  5Z gmn(x\ x ,  xz) dxm dx  , (37)
m=\ n=l

where the g’s are functions which depend upon the particu lar coordinate
system  under consideration. I t  is understood th a t gmn =  gnm . Hence
forth , we shall w rite (37) in the form

ds2 =  gmnfa1, x 2, x 3)dxmdxn, (38)

and  we shall observe th is general rule throughout: W hen the same literal 
index occurs twice in  a term, once as a subscript and once as a superscript, 
that term is understood to be summed fo r  the three values o f the index.

W e now have the  result

v2 =  [ds/dt] 2 — gmnix1, x 2, x 3) x mx n,

and

m 0c2( 1 — v2c- 2) 112 =  m0c2[ 1 — c~2gmnx mx n]112.

The function V (x1, x 2, x 3, t) is a scalar. T h a t is to  say, when the coordi
nate  system  is changed, the first three argum ents of the function are replaced 
by  their expressions in term s of the  new coordinates, and  so we obtain  a 
function which is of a new analytical form, b u t which has the same value 
as the  original function a t  each po in t of space.

Now we consider the  expression

A 1X1  +  A 2x 2 +  A 3x 3.

In  rectangular coordinates th is is the  scalar product of the vectors (A  1 , 
A 2, A s) and  (x 1, x 2, x 3). The expression retains its form  and in terpretation



under changes of the coordinate system, provided (as the notation impHes) 
(A i, A 2, A 3) is treated as a covariant vector.10

W ith  these understandings as to  the significance of the symbolism, we 
can now w rite down the following general expressions for the Lagrangian 
function L  in the relativistic and  N ew tonian cases, respectively,

¿ 2 r.4 —2 • m .wil/2 Tr 1 a=  —m 0C LI — C gmnx  x  \ — V  +  A mx ,

L 2 , mo .771 .71 jr I A •m
=  — MoC +  — granX X  — V +  A mX .

These hold for any coordinate system ; and from  th e  appropriate one of these, 
and  the  Lagrangian  equations

d dL _  5L =
dt dxn dxn ’

we obtain  the relativistic or N ew tonian differential equations of motion in 
any coordinates.

Now le t us consider the H am iltonian canonical equations.
We have already agreed to  consider (A\, A 2, H 3) as a covariant vector. 

We now m ake the same convention in regard to  (xi, 7r2, ir3). Then it read
ily follows th a t  the  equations

S  C40)dxn

16 Suppose that with a point P  (which m ay be either a special point or a typical point), 
and with each coordinate system, we have associated an ordered triple of numbers.

If the triples of number (ah a2, ai) and (ap , a 2', a3') associated, respectively, with any 
two coordinate systems (x1, x2, x3) and x1' , x2' , x3 ) satisfy the relations

dxn
amf = n

OXm

the numbers (au a2) ai) are said to be the components of a co variant vector in the coordinate 
system  (x1, x2, t f ) .  (It  is understood, of course, that the partial derivatives are evaluated  
at the point P .)

On the other hand, if the triples of numbers (a1, a2, a3) and (a1', a2', a3') associated w ith  
the typical coordinate system s (xl, x2, x?) and (x1', x2' , x3') satisfy the relations

dxm' 
am' =  ——  an, 

dxn

the numbers (a1, a2, a3) are said to be the com ponents of a contravariant vector in the 
coordinate system  (**, x2, x3) .

These concepts agree only in part w ith the ones used in the elementary theory of 
vectors. From our present standpoint, the only vectors used in the elem entary theories 
are those which are defined w ith reference to rectangular coordinate system s. W hen other 
coordinate system s are used (e.g. cylindrical coordinates), the vectors, defined in terms of 
rectangular coordinates, are merely resolved along the tangents to the coordinate curves. 
T he components obtained in this way are not the same as the com ponents considered in 
the tensor calculus, which we are using here.
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are tensor equations; and since they hold when the coordinates are rec
tangular, they hold for all coordinate system s.16

We let gmn denote tim es the cofactor of the element gmn in the deter
m inant

gn gu gi3 
g21 g22 g?3
gzi g32 g33

Now we write

H  =  c \m \c  +  gmr(wm -  A m)(7T„ -  A „ ) f n  +  V  (41)

for the relativistic case, and

H  =  m 0c2 +  (2 m o Y 'g ™ (jm -  A m)(irn — A n) +  V  (41')

for the N ew tonian case. We see th a t these expressions specialize into the
ones given earlier for the  H am iltonian  function when the coordinates are 
rectangular.

H , L ,  and  irnx n are all scalars. Consequently, the equation

H  +  L  =  irnx n (42)

is a  tensor relation; and since it holds when the coordinates are rectangular, 
it holds for all coordinate system s.

The Lagrangian  equations can be w ritten  in the form

<«>

L et us consider the varia tion  of the function L  resulting from small 
variations of the x ’s and  x ’s. By (40) and (43), we have the relation

X T  d L  X n  J L  d L  X + nôL  =  —  Sx +  ¿¡.x
dxn d xn

=  7r„ Sxn +  T n 8 x ‘  ̂ ^

=  S(Trn Xn) +  (Tvn bxn — x n ôirn).

I t  follows from (42) and (44) tha t the variation of H  resulting from small 
variations of the x’s and the 7r’s is given by the formula

«
8H =  x nSirn — Trn8xn.

16 The argument is explained in detail in the works on the tensor calculus cited in the 
bibliography.
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From  this it follows th a t we have the H am iltonian  canonical equations

.» _  dH  . _ d H
d-Kn ' n d xn ’

in any coordinate system.
We have already seen how to s ta te  H am ilton’s principle in term s of general 

coordinates.
In  the  relativ istic case the principle of least action takes the form: The 

particle moves, in  a static field of force of the type (4), and with the prescribed 
total energy E , in  such a curve that the value of the integral

dxm dxnl | r !  J L  2 2, 1/2 , 4 ¿ A dJ
I L  [{~E ~ v ) c  ~ m ° c] + A m w ) d x '

with the lim its of integration held fixed , is stationary with respect to infinitesimal 
variations of the trajectory which leave the end points unaltered. The corre
sponding form  of the principle for the N ew tonian case is obvious.

We are now in a position to dispose very quickly of the problem of formu
lating  the H am ilton-Jacobi theory in term s of general curvilinear 
coordinates.

T he general form  of the H am iltonian  function being given by (41) (for 
the relativistic case) or (41') (for the N ew tonian case), we can at once write 
down the partia l differential equation

~  +  H (x 1, x2, x3, d W /d x \  d W /d x 2, d W /d x 3, t) =  0. (45)
ot

L et

W  =  W (x 1, x 2, x s, t, a 1, a 2, a 3)

represent the com plete solution of (45), w ithout the irrelevant additive 
constan t of integration.

O ur chief problem  is th a t of proving th a t the functions xn(t, a 1, a 2, a 3, 

f t  , f t  , f t ) ,  TCn(t, a 1, a 2, a 3, f t  , f t  , f t )  determ ined by  the equations

d W  d W  _
dan Pn ’ dxn 7r” ’

where the f ts  are fu rthe r a rb itra ry  constants, satisfy the canonical equations

_  dJ L  • _  _ d H
d7r„ ’ * dxn ’

Now, referring to  the proof given in Section V III for the special case of 
rectangular coordinates, we see a t  once th a t nothing in the  proof depends
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upon the special forms which the H am iltonian function and equation (45) 
assume in those coordinates. Hence the proof already given applies imme
diately to the present general case.

Similar rem arks apply also to the case in which H  does not involve the 
tim e explicitly, and in which we write

W  =  5  — Et,

where 5  is the com plete solution (w ithout the additive arb itra ry  constant) 
of the equation

H { x \  x2, x3, d S /d x \  d S /d x 2, d S /d x 3) =  E.
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C H A P T E R  I

Quartz Crystal Applications 

By W. P. MASON

1 .1 . I n t r o d u c t io n — P u r p o s e  o p  S e r i i  .

TH IS  paper is the  first one of a series of papers dean 'g  with quartz 
crystals, their applications in oscillators, filters, and transducers, and 

the m ethods of producing them  from  the na tu ra l crystal. This series was 
prepared  first to m ake available to  the W estern E lectric Co. and other 
m anufacturers of quartz  crystals some of the specialized knowledge on 
these subjects th a t has been acquired a t  the Bell Telephone Laboratories. 
Sufficient in terest has been expressed in th is series to m ake it desirable to 
publish them  in serial form.

T h is  first paper in the  series is a general in troductory  paper covering 
the  application of crystals to  oscillators, filters and  transducers. An appen
dix is given which discusses the elastic and electric relations in crystals and 
gives recent m easurem ents of the elastic constants, their temperature coeffi
cients, and the piezoelectric constants of quartz . T his paper is followed 
by more detailed papers by Messrs. Bond, W illard, Sykes, McSkimin, and 
F air which give consideration to quartz  crystallography; determination of 
o rientation  by  optical m ethods, X -ray  m ethods, and etching methods; the im
perfections occurring in quartz  crystals; modes of m otion and their calcu
lation; the dim ensioning of crystals to avoid undesirable resonances; and 
the use of crystals in oscillators.

1 .2  E a r l y  H i s t o r y  o f  P i e z o e l e c t r ic it y  a n d  i t s  A pp l ic a t io n s

T he d irect piezoelectric effect was discovered by the brothers Curie in 18 8 0 . 

T hey  m easured the  effect first for a quartz  crysta l by  putting  a weight on the 
surface and m easuring the charge appearing on the  surface, the m agnitude 
of which was proportional to  the applied weight. A simple model for dem on
stra ting  th is effect can be m ade by using a large piece of Rochelle salt cu t 
w ith its length 45° from  the Y  and Z  crystallographic axes and placing tinfoil 
electrodes norm al to  the X  axis. If these electrodes are connected to  a 
neon lam p, and  the crystal is compressed by  h ittin g  it with a ham m er, a 
charge is generated on the surface and a voltage applied to the lam p sufficient 
to  b reak  it down. In  fac t as m uch as 2 0 0 0  volts can be generated b y  strik ing 
the crystal hard .

178
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T he converse piezoelectric effect was predicted in 1881 by the French 
physicist L ippm ann on the basis of the principle of conservation of elec
tric ity . I t  was verified in the  same year by  the brothers Curie. In  this 
effect a crysta l is strained  when a  voltage is applied to  it. T he effect can 
be dem onstrated  by  a m odel which consists of two th in  pieces of Rochelle 
sa lt poled so th a t  one expands when the voltage is applied and  the other 
contracts. T he result is—as in a bim etallic therm ostat— the crystal bends. 
F or crystals 10 m il inches th ick  and  4 inches long, a ninety-volt b a tte ry  
applied causes a displacem ent of a  quarte r of an  inch or more of the end of 
the unit. Reversing the voltage reverses the direction of the displacem ent. 
T he Curies constructed a bim orph u n it of th is type out of quartz  and used it 
p ractically  to  m easure voltage by  m easuring the  displacem ent of the end 
of the crystal. B y connecting the leads of an  electrom eter to the term inals, 
they  could m easure force applied by  m easuring the am ount of charge gen
erated  a t  the term inals.

Outside of th is use which was quite m inor, the piezoelectric effect rem ained 
a  scientific curiosity un til the  w ar of 1914-1918. I t  did inspire, however, 
considerable scientific speculation. Lord K elvin in 1893 proposed a model 
for explaining the piezoelectricity of quartz  and was able to calculate 
approxim ately the value of the piezoelectric constant. T his model is 
discussed briefly in the next section. H e also constructed and dem onstrated 
a “ piezoelectric pile” m ade from small spheres of zinc and copper, to illus
tra te  the  effect. A t abou t the  same tim e (1890-1892) Voigt published a 
series of papers followed by  a  book “ Lehrbuch der K ristall P hysik” (1910) 
in which the stresses, strains, fields and polarizations of piezoelectric crystals 
are related in m athem atical form. These m athem atical expressions (which 
are discussed fu rther in the appendix) form a basis for the developm ent of 
the properties of oriented crystals as discussed in section 1.5.

D uring the w ar of 1914-1918, Professor Langevin in Paris was requested 
by  the French G overnm ent to  devise some way of detecting subm arines 
by acoustic waves they  produce in w ater. After try ing several devices he 
finally found th a t piezoelectric quartz  plates could be used for th a t purpose. 
H is device, which is shown in Fig. 1.1, consisted essentially of a mosaic of 
quartz  which has the property  th a t  when a  voltage is applied the crystal 
will expand and send ou t a longitudinal wave. Similarly, if a wave strikes 
it, the wave will set the quartz  in v ibration  and generate a voltage which 
can be detected by  vacuum  tube devices. Langevin did no t get his device 
perfected till after the war so it  was no t used a t  th a t tim e to detect sub
marines. Similar devices have, however, been used in th is war. L angevin’s 
original apparatu s was used extensively as a sonic dep th  finder. In  this 
use a pulse is generated which is recorded directly  on a moving record and
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is also sent ou t into the ocean. I t  strikes the bo tto m  and  is reflected bacr 
causing ano ther m ark  to appear on the record. K now ing the  difference m 
tim e and the velocity of sound in sea w ater, the distance to  the bottom can 
be m easured. A typical record is shown in Fig. 1.2. T he top  record shows 
the contour of the  sea bo ttom  while the  second record shows the r e f l e c t i o n s  

from  a school of fish.
A t abou t the same tim e, Nicolson a t  Bell Telephone Laboratories was 

experim enting w ith Rochelle salt, ano ther piezoelectric material having a

Fig. 1.1— Ultrasonic transmitting apparatus

m uch larger piezoelectric effect than  quartz. He constructed  and  dem on
stra ted  loud speakers, microphones, and phonograph pick-ups using Rochelle 
sa lt.1 H e was also the first one to control an oscillator by  m eans of a crystal 
— in th is case Rochelle sa lt—and has the prim ary crysta l oscillator p a te n t.2 
N icolson’s circuit is shown in Fig. 1.3. The crysta l is effectively in a p a th  
between the  resonating coil in the output and  the grid, since the  electrode

1 “The Piezoelectric Effect in the Composite Rochelle Salt Crystal” A. M . Nicolson, 
P r o c .A .I .  E. E. 1919, 38, 1315.

2 See Patent 2,212,845 filed April 10, 1918; issued Aug., 27, 1940.
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3 is in the direction of the sm allest piezoelectric effect in Rochelle salt 
and contributes little  to the action. If term inal one to the tapped coil is 
a t  the top of the coil, the circuit although employing a three electrode 
crystal connection, effectively reduces to B  in which the crystal is in the feed
back p a th  from p la te  to grid. On the other hand, if the tap  is effectively 
a t  the bo ttom  of the coil, the crystal is between grid and ground and feedback 
occurs through a d istributed  capacity  from p la te  to grid. B oth of these

Fig. 1.2— Ocean contour curves

circuits B  and C  are widely used in oscillators of Pierce. Prof. G. W. 
Pierce published a circuit similar to circuit B ,  having a two electrode 
quartz crystal connected between grid and p la te .3 

In  1921, Professor Cady a t W esleyan U niversity first showed4 th a t quartz

3 “Piezoelectric Crystal Resonators and Crystal Oscillators Applied to the Precision 
Calibration of W ave M eters,” G. W. Pierce, Amer. Acad, of Arts and Sciences Oct 
1923, 81-106.

4 “The Piezoelectric Resonator” W. G. Cady, Proc. I . R. E. 1922, 10 83.
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crystals could be used to  control oscillators and  th a t  m uch m ore stable 
oscillators could be obtained in this fashion. These were la te r applied to 
controlling the frequency of broadcasting sta tions and  radio transm itters m 
general and abou t 1925 M r. W . A. M arrison applied them  to ob ta in  a very 
constan t frequency and  tim e standard , which is now used considerably by 
the Bell System , by  radio broadcasting system s, and  by  power companies. 
T he oscillators were subsequently im proved by  using crystals with small 
tem perature coefficients as described in  Section V. A t the  present time

Fig. 1.3— N icolson’s oscillator circuit

crysta l controlled oscillators are used very widely in radio m ilitary and 
com mercial applications.

A nother large use for quartz  crystals is their use in providing very selective 
filters. P robably  the first use of a  crysta l to  select a narrow frequency 
range was m ade by  Cady.4 Using the  very  sharp maximum in cu rren t 
through a crysta l a t  its resonant frequency, C ady proposed the use of such a 
crysta l as a wave standard . T h is is equivalent to the use of a c ry sta l 
as a  tuned  circuit. B y incorporating a crystal in a three-winding tra n s
form er and  balancing ou t the  sta tic  capacity  of the crystal by  an  auxiliary  
condenser, W. A. M arrison5 im proved the selecting ability  of a  c ry sta l used

5 P atent 1,994,658, filed June 7, 1927, issued M arch 19, 1935.



as a narrow  band filter. A t abou t the same tim e, L. Espenschied,6 taking 
advantage of the knowledge of the equivalent electrical circuit of a crystal 
given previously by Van D yke,7 showed how to combine other electrical 
elem ents w ith crystals in ladder form  to ob ta in  band-pass filters. I t  was 
not, however, un til the crystals were com bined with auxiliary coils and 
condensers into the form  of resistance com pensated la ttice type netw orks8 
th a t much progress was m ade in achieving the wide pass-band characteris
tics necessary for telephone and radio com m unication. Such filters have 
provided very selective devices which are able to  separate one band  of 
speech frequencies from another band different by  only a small frequency 
percentage from  the desired band. T his p roperty  m akes it possible to space 
channels close together w ith only a small frequency separation up  to  a high 
frequency, and such filters have had  a wide use in the high-frequency carrier 
system s, and in the coaxial system  which transm its more than  480 conver
sions over one pair of conductors. In  radio system s such filters have been 
used extensively in separating one side band  from the other in single side
band systems.

In  conclusion we can say, th a t the science of piezoelectricity was born 
about 62 years ago, lay  dorm ant for nearly  40 years, b u t during the last 25 
years has advanced a t  such a ra te  th a t it can be regarded as one of the foun
dation  stones of the  whole com m unication art.

1 .3 . T h e o r y  o f  P ie z o e l e c t r ic  M a t e r ia l s

Piezoelectric crystals are of in terest in com m unication circuits because 
they possess three properties. These properties are: (1) the piezoelectric 
effect provides a coupling between the electrical circuit and the mechanical 
properties of the crystal; (2) the in ternal dissipation of m ost crystals and 
particularly  quartz  crystals is very low, and the density  and elastic constants 
of the crystals are very uniform, so th a t a crystal cu t a t  a given orientation  
always has the same frequency constan t; and (3), a t  specified orientations 
crystals can be cu t which have advantageous m echanical properties such 
as a small change in frequency w ith a change in tem perature, or a free
dom from secondary modes of motion. I t  is the purpose of th is section to 
discuss the first property, the coupling between the electrical and me
chanical properties of the crystal.

T he piezoelectricity of quartz  and other m aterials is due to the fact th a t

6 Patent 1,795,204, filed Jan. 3, 1927, issued August 8, 1933.
7 K. S. Van Dyke; Abstract 52, Phys. Rev. June 1925; Proc. I . R. E. June 1928.
8 See “Electrical W ave Filters Employing Quartz Crystals as Elem ents,” W. P. Mason,

B. S. T . J ., Vol. X III , p. 405, July 1934; “Resistance Compensated Band Pass Crystal 
Filters for Unbalanced Circuits,” B . S. T. J ., Vol. X V I, p. 423, Oct. 1937; “The Evolution  
of the Crystal W ave Filter,” O. E. Buckley, Jour. A pp. Phys., Oct. 1936; and Patents 
1,921,035; 1,967,249; 1,967,250; 1,969,571; 1,974,081; 2,045,991; 2,094,044.
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a  pressure which deforms the crystal la ttice causes a  separation  of the cen- 
ters of g rav ity  of the positive and negative charges thus generating a dipole 
m om ent (product of the value of the charges by  their separation) in each 
molecule. How th is separation can cause a coupling to  an  electrical circuit 
is illustrated  by  Fig. 1.4 which shows a crystal w ith m etal electrodes normal 
to the direction of charge separation. If we short-circuit these electrodes 
and apply  a stress which causes the centers of g rav ity  of the charges to 
separate, free negative charges in the wire will be draw n tow ard the electrode 
in the direction of positive charge separation, and free positive charges in 
the wire will be draw n to  the electrode in the direction of negative charge 
displacem ent un til the crystal appears to be electrically neutral by any test 
conducted outside the crystal. W hen the stress is released the charges in 
the wire will flow back to their norm al position. If, during the process, 
we connect an  oscillograph in the short-circuited wire, there will be a pulse 
of curren t in one direction when the stress is applied and a pulse in the oppo-
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Fig. 1.4— M ethod for transforming mechanical energy into electrical energy in a crystal

site direction when the stress is released. By pu tting  a resistance in th e  
connecting wire and applying a sinusoidal stress to the crystal, an  a lte rn a tin g  
curren t will flow through the load and consequently mechanical pow er will 
be changed in to  electrical power. Using the converse effect, a source of 
a lternating  voltage in the electrical circuit will produce an  a lte rn a tin g  stress 
in the crystal, and if th is is working against a mechanical load, the  electrical 
energy will be changed into mechanical energy.

To apply  th is concept to quartz  let us consider Fig. 1.5, which represen ts 
the approxim ate arrangem ent of molecules in a quartz  molecule. L ord  
K elvin’s explanation of the piezoelectricity of quartz  is th e  following:

“ T h e d iagram  (F ig . 1.5A) show s a  crystalline m olecu le surrounded b y  six  
nearest neighbors in a p lane perpendicular to the o p tic  axis of a  q u artz crysta l. 
E ach  silicon  a tom  is represented by +  (plus) and each  o x y g en  d ou b le  a to m  -  
(m in u s). T h e  co n stitu en ts of each cluster m ust be su p p osed  to  be held  to geth er  
in  stab le  equilibrium  in v iture of their chem ical a ffin ities. T h e  different clusters, 
or crysta llin e m olecu les, m ust be supposed to  be re la tiv e ly  m obile  before tak in g
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p osition s in the  form ation  of a crysta l. B u t we m ust suppose, or w e m a y  suppose, 
th e  m utu al forces of a ttraction  (or chem ical a ffin ity ), b etw een  th e  silicon  of one  
crysta llin e m olecu le and the oxygen  of a  neighboring crysta llin e m olecu le, to  be 
in fluentia l in  d eterm in ing the  orien tation  of each  crysta llin e m olecule, and  in 
cau sin g  d isturbance in the re la tive  p osition s of the a tom s of each m olecu le, w hen  
th e  crysta l is strained  b y  force applied  from  w ithou t.

“Im ag in e now  each  double atom  of oxygen  to  be a sm all n eg a tiv e ly  electrified  
particle , and each  atom  of silicon  to be a p article electrified  w ith  an equal q u a n tity  
of p o sitiv e  e lectr ic ity . Suppose now  such  pressures, p o sitiv e  and  n eg a tiv e , to  
be applied  to  th e  surface of a portion  of crysta l as shall produce a sim ple elon gation  
in th e  direction  perpendicu lar to  one of the  three se ts of rows. T h is  strain  is 
in d icated  b y  th e  arrow heads in  F ig . 1.5A and is realized to  an exaggerated  ex ten t  
in F ig. 1 .5B.
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Fig. 1.5— K elvin’s model of quartz molecules

“T h is second  d iagram  show s all th e  a tom s and th e  centers of all the  crysta llin e  
m olecules in the  p osition s to  w h ich  th ey  are brought b y  the  strain . B o th  diagram s  
are draw n on the  su p p osition  th a t the  stiffness of the  rela tive configuration  of 
atom s of each  m olecu le is sligh t enough  to  a llow  th e  m utu al a ttraction s b etw een  
th e  p o sitiv e  a tom s and  the  n eg a tiv e  a tom s of neighboring m olecules to  k eep  them  
in line through  the  centers of th e  m olecules, as F ig . 1.5A show s for the  und isturbed  
con d ition  of th e  sy stem s, and F ig. 1 .5B  for the sy stem  sub jected  to  the  supposed  
elongation . H en ce tw o of th e  three d iam eters through  a tom s of each  crysta llin e  
m olecu le are a ltered  in d irection , by  the elon gation , w hile the  d iam eter through  the  
third pair of a tom s rem ains unchanged , as is clearly  show n b y  F ig. 1.5B  com pared  
to  F ig . 1.5A.

“ R em ark , first th a t the rows of atom s, in lines through  the  centers of the  cry sta l
lin e  m olecu les, perpendicular to  the direction  of the  strain , are sh ifted  to  parallel 
p osition s w ith  d istan ces b etw een  the  a tom s in them  unchanged . H en ce th e  a tom s  
in  th ese  rows con trib uted  n oth in g  to the  electrical effect. B u t in parallel to  these  
row s, on each  side of th e  center of each m olecule, w e find tw o pairs of a tom s w hose  
d istan ces are dim inished.
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“ T h is produces an electrical effect w hich , for great d istan ces from  th e m olecule, 
is ca lcu la ted  b y  th e  sam e form ula as the  m agnetic  effect of an in fin itesim al bar 
m agn et w h ose m agnetic  m om en t is n um erically  equal to  th e  p rod u ct of the  q uantity  
of e lec tr ic ity  of a  single atom  in to  th e  sum  of th e  d im in u tions of the  tw o distances 
b etw een  th e  a tom s of th e  tw o  pairs under consideration . H en ce, d enoting by i 
th e  num ber of crysta llin e m olecu les per u n it bulk  of th e  crysta l; b y  b the radius o 
th e  circle of each  crysta llin e  m olecule; b y  q the  q u a n tity  of e lec tr ic ity  of each or e 
six  a tom s or doub le a tom s, w h eth er  p o sit iv e  or n ega tiv e; b y  0 the  change of direc 
tion  of each  of th e  tw o d iam eters through  atom s w hich  experience change of ^iri ĉ 
tion ; and  b y  n the  electric  m om en t d evelop ed  per u n it vo lu m e of the crystal, y 
th e  stra in  w h ich  w e have been  considering and w h ich  is show n in  F ig. l.S B ; we nave

H =  N q Y b d  cos 30° = l ^ i N b q d

K elv in’s model shows some of the sym m etry  properties of quartz. The 
axis m arked X  is the X  or electrical axis of the crystal. The Z  or optic axis 
is norm al to the plane of the paper. T he Y  or m echanical axis is the axis

(A) (B)

Fig. 1.6— Longitudinal and shear strains applied to a quartz molecule

along which the stress is applied. I t  is obvious th a t if we ro ta te  the direc
tion of the applied stress by  1 2 0 °, a similar separation of charges a t  righ t 
angles to  the stress will occur. There are then three electrical axes and  three 
m echanical axes so th a t the optic axis can be regarded as an  axis of threefold 
sym m etry  for the crystal.

As can be shown from an  extension of K elvin’s m odel there are two o ther 
types of stresses th a t  will produce a charge separation norm al to  th e  axis. 
Suppose th a t we stress the crystal along the X  or electrical axis as shown by 
Fig. 1.6A. Applying the same reasoning as before, we see th a t  the  apex 
molecules are separated farther ap a rt w ithout changing the  separation  
between the o ther molecules. T his results in a  separation  of th e  centers 
of g rav ity  of the positive and negative charges, w ith the negative charges 
m oving tow ard the left and the positive charges m oving tow ard the  right. 
The separation is still along the electric axis, b u t is in the  opposite direction
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to th a t caused by a stress along the  F  axes. A detailed analysis shows 
th a t the  value of the electrical separation m om ent (dipole m om ent) for a 
stress along either axis is the same value b u t the sign is reversed. A longi
tudinal stress then can only produce a charge m om ent along the  X  or 
electrical axis which is the origin of the nam e electrical axis.

If, however, we introduce a different kind of stress known as a shearing 
stress, a separation of centers of charges can occur along the mechanical or 
F  axis of the crystal. A simple shear stress is one in which forces ac t normal 
to the direction of space separation ra the r th an  along it as shown, for exam
ple, by  the two opposed arrows norm al to the m echanical axis in Fig. 1.6B. 
Such a shear does no t occur in nature, b u t ra the r a pure shear which consists 
of two simple shears which are directed in such a way as to produce no 
ro ta tion  of the molecule as a whole abou t its axis. If we resolve these 
force com ponents along directions 45° from  the crystal axes, a pure shear is 
equivalent to an  extensional stress along one 45° axis and a compressional 
stress along the other 45° axis. Such a stress would cause the charges to  be 
displaced from their norm al position, as shown in the figure. T his causes 
the center of positive charge to be displaced downward along the m echanical 
or F  axis of the crystal while the center of negative charge is displaced up 
ward along the m echanical axis.

These three relations can be w ritten  in the form

P x =  ~ d n X x +  dnYy  ; P v =  2dnX y (1.2)

where P x is the polarization or charge per u n it area developed on an  electrode 
surface norm al to the X  axis due to the applied longitudinal stresses X x 
and Y y, while P y is the polarization norm al to the F  axis caused by  the shear
ing stress X y . du  is the piezoelectric constant and equations (1.2) show 
th a t the m agnitudes of all these effects are closely related. In  addition 
to these three m ajor piezoelectric effects, quartz  has two smaller effects 
which, since they are connected w ith the d istribu tion  of molecules in the F Z  
and X Z  planes, cannot be dem onstrated  by the figures given previously. 
The com plete piezoelectric relations are then

P x =  - d n X x +  dn Y v -  duYz  ; P v =  du Z x +  2dn X y (1.3)

where Y z and Z x are respectively similar shearing stresses exerted in the F Z  
and  Z X  planes respectively. The best values for the dn  and ¿ 14  constants 
are respectively

du  =  - 6 .7 6  X 10~ 8 du =  2.56 X 1(T8 (1.4)
dyne dyne

as obtained by recent m easurem ents for a num ber of X  cu t and ro ta ted  X -cut 
crystals discussed in appendix A.



Q uartz is no t the only type of crystal which is piezoelectric. In  fact 
there are hundreds of crystals th a t exhibit th is property . W hether a 
crysta l is piezoelectric or no t and  the relation  between the  stresses and 
charge displacem ents depend on the sym m etry of the crystal. Whenever 
there is a center of sym m etry; th a t is, when the properties of the crystal 
are the same in bo th  directions along any  line, no piezoelectric effect can 
occur. T his is illustrated  by  the simple arrangem ent of atom s shown by 
Fig. 1.7. I t  is obvious th a t no sym m etrical application of forces can separate 
the center of g rav ity  of the charges and hence such a crystal will not be
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Fig. 1.7— Crystal with a center of symmetry

piezoelectric. C rystals can be classified into 32 possible classes on the  basis 
of the sym m etry they  exhibit; and of these 32 classes, 20 are piezoelectric 
and 12 are not. As illustrated  by the model for quartz , the  response to 
different types of force depends solely on the type of sym m etry  existing in 
the crystal.

1.4. E l e c t r ic a l  I m p e d a n c e  a n d  L o w  D i s s i p a t i o n  i n  C r y s t a l s

T he first crystal used by Cady in controlling oscillators, was a crysta l cut 
w ith its m ajor faces perpendicular to  the X  or electrical axis and  w ith its 
length along the F  or m echanical axis. R eferring to  Fig. 1.5B, we see th a t a 
stretch  along the F  axis will produce a charge d isplacem ent along the  E
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or X  axis. Conversely, a voltage applied along the X  axis will produce a 
charge displacem ent and consequently a mechanical stress along the Y  axis 
which will set up a longitudinal wave along the mechanical axis. As shown 
by  Fig. 1.8, the type of m otion resulting when the crystal is free to  move on 
the ends is one in which the center is s ta tionary  and the ends move in and 
out. T he crystal can then be clamped a t  its center or m ounted from leads 
soldered to electrodes deposited on the surface.

In  using a crystal in an electrical circuit it is desirable to  have an electrical 
equivalent circuit which will represent the electrical im pedance as measured 
from the term inals of the crystal. Such a circuit9 is shown in Fig. 1.8. In

Fig. 1.8— Longitudinally vibrating crystal and electrical equivalent circuit

th is representation  Co is the sta tic  capacity  of the crystal which would be 
m easured if the crystal were held from moving. Ci is the stiffness of the 
crystal transform ed into electrical term s through the piezoelectric effect of 
the crystal, while L\  is the effective mass of the crystal also transform ed into 
electrical term s. T he resonant frequency of the crystal is determ ined by 
the Y oung’s m odulus and density  of the bar according to the usual form ula:

+ 00

-oo

[-05in— ) 1—|
f A G I V E N  BY S O L V I N G

(1.5)

9 Circuits of this type for representing the electrical impedance of a crystal were first 
derived by Van Dyke; see reference (7). The method of deriving them from Voigt’s 
equations is discussed in the appendix.
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where F 0 is the value of Y oung’s m odulus along the bar, p the  density , and 
I  the length of the bar.

A significant feature of the equivalent circuit is th a t  there is always a 
definite ratio  between Co and  Ci for a given crysta l cu t. T h is is really a 
m easure of the  ra tio  of electrical to m echanical energy stored in the crystal 
under an  applied constan t voltage. T he reactance characteristic of the 
netw ork is shown by  Fig. 1.8 as a function of frequency. T he reactance 
s ta rts  ou t as a  negative reactance a t  low frequencies, becomes zero a t the 
resonant frequency f B , becomes positive and  very  large a t  the anti-resonant 
frequency f A , then  again becomes a  negative reactance.. D ue to the high 
ra tio  of Co to  Ci existing in a crystal the separation  betw een f A and /«  be
comes very  small. F or example, for an  A T  crysta l th is ratio  is around 200 
and  the separation of f A f ro m /«  is only a quarte r of a per cent in frequency. 
Since it can be shown th a t an  oscillator will only oscillate on the positive 
reactance p a r t of the crystal characteristic, the narrow  separation between 
resonant and an ti-resonant frequencies explains w hy a  crystal can ac t as 
such a  good stabilizer for an  oscillator. As long as the crystal resonance 
itself does no t change w ith tem perature or o ther conditions, the very sharp  
reactance frequency characteristic will no t allow the oscillator frequency 
to  change m uch w ith a change in oscillator voltage, tube conditions, or an y  
o ther changes which are likely to  cause a change in frequency for a coil and  
condenser controlled oscillator.

S tric tly  speaking, a resistance should be added in series w ith the  induc
tance L\  to  represent the in ternal losses in the crystal, the loss of energy 
a t  the clam ping points and  the loss of energy due to setting  up  of air waves 
by  the crysta l motion. However, the value of this resistance an d  the  
am ount of energy lost is very  small in a crystal com pared to w hat th e  losses 
are in purely  electrical elements. A dem onstration which shows th is 
effect and  shows th a t  m ost of the losses of a well m ounted longitud inally  
v ib rating  crystal are acoustic losses caused by se tting  up  air w aves in the  
v ic in ity  of the crystal, can be m ade by  using two oscillators, one a fixed 
oscillator and the o ther one controlled by a resonant circuit or a  crystal. 
T he fixed oscillator m ay be set a t  99 kilocycles and  the  c ry sta l oscillator 
controlled by  a 100-kc crystal. The two will bea t together giving the  1000- 
cycle note. W hen the  b a tte ry  is taken off the crystal oscillator, i t  continues 
to oscillate till the energy bu ilt up  in the crystal is d issipated  in th e  in te rnal 
dissipation of the crystal. A good electrical circuit which has a  ra tio  of 
reactance to  resistance, or Q of the coil of 300 dies down alm ost in s tan tan e
ously. F or a crystal m ounted in air i t  takes ab o u t half a second to  become 
inaudible. T his corresponds to  a Q of 30,000 where Q is defined as the  ra tio  
of the reactance of the coil Li  of Fig. 1.8 to  the  resistance. F or a  crysta l 
m ounted in a vacuum  a m uch higher Q is obtained due to  the elim ination of 
the loss of energy by  acoustic rad ia tion . F or such a crysta l i t  takes eight



seconds to  die down which corresponds to a Q of 330,000, which is about 
1 0 0 0  tim es as great as th a t for a good electrical circuit.

1 .5 . M o d e s  o f  M o t io n  a n d  C r y s t a l  O r ie n t a t i o n  t o  P r o d u c e  L o w  

T e m p e r a t u r e  C o e f f ic i e n t  C r y s t a l s

As m entioned previously the first crystal cu t used in oscillators was a longi
tud inal v ibration  along the Y  or mechanical axis excited by a field applied
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ZERO T EM PERA TU RE COEFFICIENT 
O SC ILLATORS AND F ILTERS

HIGH FREQUENCY AT, BT 
LOW FREQUENCY CT.DT, ET .FT  

AT +35° 15'
BT -49 °
CT +38°
DT -52 °
ET  +66°
FT  -57 °

ZERO COUPLING ( s ’ = o)
-18° FILTERS 
1-3-5-7 HARMONICS

ZERO TEM PERATURE 
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0 ° OSC ILLATORS 
FUNDAMENTAL AND 
SECOND HARMONIC
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AND F ILTERS DOUGHNUT

ZERO TEM PERATURE 
COEFFICIENT

A MT LONGITUDINAL CRYSTAL 
B NT FLEXURE CRYSTAL

LOW TEMP. COEFFICIENT 
+5° F ILTERS

Fig. 1.9— Oriented quartz crystal cuts in relation to the natural crystal

along the electrical or X  axis. This mode gives a good resonance free from 
other modes and a modification of it is now used in crystal filters. This 
modification, as shown by  Fig. 1.9, (—18.5° filter crystal) consists in ro tating  
the direction of the length by  18.5° from the Y  or m echanical axis, about the 
X  or electrical axis. As described previously10, the effect of this ro tation  is 
to  elim inate the coupling between the desired longitudinal mode and the 
undesired face shear mode, thus simplifying the m otion and elim inating an

10 “ Electrical W ave Filters Employing Quartz Crystals as Elem ents,” W. P. Mason 
B. S. T. Vol. X III , p. 405 July 1934 or patent 2,173,589.
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undesired resonance. However, to get a reasonably high frequency out 
of a  length v ibrating  type of cut requires too small a length to  be practical.

I t  was no t long before crystal oscillators were controlled by  thickness 
v ib rating  crystals whose frequencies were determ ined by  the thickness of 
the  crystals or by their sm allest dimension. Referring to Fig. 1 .6 A, we see 
th a t  the  same X  cu t type of crystal will generate a v ibration  along the elec
trical or X  axis when a field is applied along this axis. Since the thickness 
dim ension can be m ade very  small, a high frequency is obtainable. How
ever, when the sm allest dim ension is used to control the frequency, a diffi
cu lty  arises no t p resen t when the  largest dim ension is used to control the 
frequency, nam ely, th a t  harm onics and overtone modes of all the lower 
frequency types of m otion produce frequencies near the frequency of the 
thickness mode and it is difficult to  pick ou t the desired mode. T his was

Y

fex -  a  c o s  c o s  E n n f-t 

n=1-3' 5 ;
Fig. 1.10— H igh frequency shear mode of motion

especially true  for the thickness v ibrating  X  cu t crystal and  led to  its 
abandonm ent in favor of Y  cu t crystals v ibrating in shear.

As seen from  Fig. 1.6B, when a voltage is applied along the Y  or m echan
ical axis, a  shear v ibration  is produced which tends to change a square in to  
a rhom bus. For a large p la te  in which the edge dimensions are large com
pared  to  the thickness, the  m otion occurs as shown by Fig. 1.10. F or such 
a  p la te  the m otion is perpendicular to the thickness, which is the  d irection  
of transm ission of the wave, and hence a shear wave is som etim es called a 
transverse wave. T he frequency of such a wave can be shown to be

1  “  21 ( 1 ' 6 )

where t is the thickness of the p late, c66 is the  shear stiffness constan t and p 
the density . T he use of F  cu t p la tes considerably im proved the per



form ance of oscillators since the plates do not have as m any secondary modes 
of m otion as do the X  plates. T hey  have, however, one drawback. The 
frequency increases about 86 p arts  in a million for every degree Centigrade 
increase in tem perature. T his requires regulating the tem perature quite 
closely.

In  order to improve on the perform ance of the F  cu t crystal, investiga
tions were m ade by Lack, W illard and Fair, Koga, Bechm ann, S traubel 
and others11 on how the properties of such crystals varied as the orientation 
angle of cu tting  blanks from the na tu ra l crystal was varied. As shown by 
Fig. 1.9, the crystals investigated all had one edge along the X  or electrical 
axis w ith the norm als m aking positive and negative angles with the Y  axis. 
All of these crystals will have a com ponent of field along the F  axis, which
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ROTATION ON X AXIS -  •» 0 -------• - +  ROTATION ABOUT X AXIS
IN DEGREES IN DEGREES

Fig. 1.11— Frequency constant of oriented F cut crystals

will produce a shearing m otion until the angles of cu t approach 90 degrees 
from the F  axis. The smaller the angle A 2 the more strongly will the shear 
mode be driven. However, advantageous elastic relationships can be ob
tained by using oriented cuts. As shown by Fig. 1.11, Lack, W illard and 
Fair found th a t the frequency constan t of a ro ta ted  crystal expressed in kilo
cycle m illim eters varied with angle of cu t and th a t there was a m inim um  fre
quency a t  + 3 1  degrees and a m axim um  a t  —59 degrees. I t  was subse
quently  pointed12 out th a t these m inim um  and m axim um  points were signifi
can t angles in the elastic behavior of the crystal for they  were the angles for

11 “ Some Improvements in Quartz Crystal Circuit Elem ents,” F . R. Lack, G. W. W il
lard, I. E. Fair— B. S. T. Vol. 13, pp. 453-463, July 1934; R. Bechmann— H F  Techn. u. 
El. Ak. 44, 145 (1934); I. Koga— Rep. of Rad. Res. i. Jap.  6, 1 (1934); J. Straubel, Z. tech. 
Physik.,  35, 179, 1934.

12 See patent 2,173,589.
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which the high-frequency shear mode had  zero coupling w ith the trouble
some low-frequency shear mode system  of v ibrations. C rystals cu t a t  these 
angles have a m uch cleaner frequency spectrum  th an  Y  cu t crystals. Lack, 
W illard, and F air also found th a t  the tem perature coefficient of frequency 
varied w ith angle as shown by  F ig .  1.12. S t a r t in g  fro m  a  high positive 
value for the Y  cut, the coefficient becomes zero a t  an  angle of + 3 5 °  — 15 
and  —49°. T he first angle cu t is know n as the A T  cu t and  the second as 
the B T  cut. Since the A T  angle is nearer the F  cut, the piezo-electric con
s ta n t is larger and it is more strongly driven th a n  the B T .  On the other 
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Fig. 1.12— Temperature coefficients of oriented F  cut crystals

hand, the B T  has a higher frequency for the same thickness. B o th  crysta ls 
are near enough to the ^4C and BC  cuts so th a t the system s of low -frequency 
shear m odes are ra th e r weakly driven. On the o ther hand , the  shear m ode 
of bo th  crystals is ra the r strongly coupled to flexure m odes of m otion, as 
will be discussed by  M r. Sykes in a  la ter chapter, and  the  crysta l has to  be 
exactly dim ensioned in order th a t the flexure frequencies and  o ther d is tu rb 
ing frequencies will no t coincide w ith the desired shear mode.

O ther oriented shear crystals for lower frequency w ork are the  C T  and 
D T  crystals investigated by  W illard and  H ight. T h ey  are re la ted  to  the  A  T  
and  B T  crystals as shown by  Fig. 1.13. T he p la te  on the  righ t shows the
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m otion of an  A T  p late. If we were to increase the thickness dim ension un til 
the  p la te  was nearly  square, the A T  m otion would correspond to a face shear 
mode which should be controlled by the same elastic constants as the A T  
motion. A t the same tim e in order to drive the crystal efficiently we 
could decrease the w idth until it became the thickness. T his procedure 
would be the same as cu tting  a  crystal a t  righ t angles to the A T  and would 
suggest th a t by so doing we should obtain  a low-frequency shear crystal 
w ith a low coefficient. A ctually, W illard and H ight found th a t  a  crystal

Fig. 1.13— Relation of A T  and D T  low temperature coefficient crystals

a t  —52° or 87° from  the A T  would give a low coefficient. T his crystal was 
called the DT.  Similarly, a  crystal cu t a t  + 3 8 °  or 87° from  the B T  would 
also give a low coefficient and this has been called the CT.  I t  can be shown 
th a t a com ponent of the voltage applied along the m echanical axis will 
drive the shearing type of motion. T he C T  is larger for the same frequency 
and  more strongly driven than  the DT.  I t  is extensively used in controlling 
oscillators in the frequency range from 200 to 500 kilocycles.

Q uite a  few other crystal cuts have been discovered as shown by  Fig. 1.9.
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A nother im portan t cut is the G T , 13 which has a  very  constan t frequency 
over a wide tem perature range. As shown by  Fig. 1.14, all zero tem perature 
coefficient crystals are zero coefficient a t  one tem peratu re  only and usually 
v a ry  in a square law curve abou t th is tem perature . T he G T  crystal repre
sented an  a ttem p t to get a crystal in which the frequency rem ained constant 
over a wide tem perature range. As can be seen from  the figure, when prop
erly ad justed  this aim  is a tta ined , for the frequency does no t vary  more than  
one p a r t in a million over a 100-degree C entigrade range of tem perature.

T his crystal m akes use of the fac t th a t a face shear v ibration can be 
resolved into two longitudinal v ibrations coupled together. As shown by
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Fig. 1.14— Temperature frequency characteristics of a number of low temperature
coefficient crystals

Fig. 1.15, if we cu t a crystal a t  an angle of 45 degrees from  th a t  of a shear 
v ib rating  crystal, an  expansion occurs along one axis and  a  contraction  
along the other indicating th a t a face shear can be resolved in to  tw o longi
tud inal modes th a t are coupled together. Now since it can be shown th a t  
all pure longitudinal modes for blanks cu t in all possible directions in  a 
quartz  crystal will have zero or negative tem peratu re  coefficients,14 it  follows 
th a t  if we have a shear v ibrating  crystal w ith a positive coefficient, th a t

13 “A New  Quartz Crystal Plate, Designated the GT, W hich Produces, a Very Constant 
Frequency Over A Wide Temperature Range,” W. P . M ason, Proc. I. R. E.,  V ol., 28 pr. 
220-223, M ay 1940

14 This can be proved as discussed in the appendix by combining the Voigt expressions 
for the elastic relations in a crystal w ith the measured temperature coefficients of the six 
elastic constants.

- _
< A f

n
>*■

f s

'

N  <s > •v/V \ ~ S t ~ ~

y

/
v q í  /  

/
/ d o u g h n u t

/ x i i . J

\ '
\

\  V

/ Í !
\

\
\ s  

; \

; B T\ X/
i

V L O N G  BA 
/ \  ALONG 

h T ' T  ST  HA 
/ ^ 2 ND HA

R ,LE N G T H  \
X AXIS

RM ONIC y'  
RM ONIC A

7 \

\

\
\ \1 /

!
r / \

e t \
f t



Q U A R T Z  C R Y S T A L  A P P L I C A T I O N S 197

coefficient m ust have been caused by the coupling between the two modes. 
As a result of th is observation it follows th a t if we have a shear v ibrating 
crysta l w ith a positive tem perature coefficient and cu t another crystal a t 
45 degrees from th is crystal, the strong coupled mode which corresponds to 
the shear v ibration  will also have a positive tem perature coefficient. As 
we grind down on the side, the two modes become farther ap a rt in frequency 
and less closely coupled. Then, since they bo th  will have a negative coeffi
cient if separated far enough, it follows th a t for some ratio  of axes, one of the 
m odes will have a zero coefficient. T his was tested  ou t for a series of orien
ta tions near the C T  and D T  w ith the results shown in Fig. 1.16. Positive 
angle crystals had  zero coefficients a t  ratios of axes varying from 1 to .855

Fig. 1.15— Relation between a face shear mode and two coupled longitudinal modes

depending on the angle while negative angle crystals had  zero coefficients 
a t  ratios from  .64 to 1.0. For positive angle crystals i t  was the higher fre
quency mode th a t was the stronger and could be given the zero coefficient, 
while for the negative angle crystals it was the lower frequency mode th a t 
was the  stronger and corresponded to the face shear mode.

Several of the positive angle crystals were m easured over a tem perature 
range w ith the results shown by  Fig. 1.17. For angles above 51 ° -3 0 'th e  
cu rva tu re was positive, while for angles below 51°-30' the curvature was 
negative. R ight a t  51°-30' the large square law curva tu re term  disappeared 
and  the frequency was constant to one p a r t in a million over a  100-degree 
C entigrade range centered a t  50°C. as shown by  Fig. 1.18. Some fu rther 
experim ents showed th a t this flat range could be m oved around a b it by
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changing the angle of cu t and the ratio  of axes sim ultaneously. T o go from 
— 25°C. to +  75°C. w ith a  m id-range a t  25°C., a  crysta l cu t a t  51 -7.5

Fig. 1.16.— Relation between angle of cut and ratio of width to length for zero tem 
perature coefficient for G type crystals

Fig. 1.17— Temperature frequency relations for various angles for G type crystals

w ith a ratio  of axes of 0.859 is required. T he G T  c rysta l has been used 
quite extensively in frequency and tim e standards and  in filters m eeting 
rigid phase requirem ents.
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Fig. 1.18— Temperature frequency characteristic for GT  crystal

v a l u e  o f  <n
130 120 110 100 90 80 70 60 50 40

a n g l e  o f  r o t a t io n  a r o u n d  TH E  X A X IS

Fig. 1.19— Temperature coefficients of long thin rotated X  cut crystals. Angle of 
rotation measured between length and Y  axis. D ots are measured points. Solid line 
calculated from temperature coefficients evaluated in the appendix.



Two o ther cuts no t previously described are shown also by  Fig. 1.9. T hey  
are the M T  low coefficient longitudinally  v ib rating  crysta l and the  N T  low 
coefficient flexurally v ibrating  crystal. B oth  of these are related  to  the 
+ 5 °  X  cu t crystal of Fig. 1.9. As shown by  Fig. 1.19 a long th in  5° X  cu t 
crysta l is the best length direction for an  X  cu t crystal to  ob ta in  a low- 
tem peratu re  coefficient. F igure 1.19 plo ts the tem perature coefficients for 
long th in  oriented X  cu t crystals, and  th is d a ta  is used in the appendix to  
derive the tem perature coefficients of the six elastic constants. However, 
as the  w idth  of the  crysta l is increased the tem perature coefficient becomes 
highly negative as shown by  Fig. 1.20.
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0 01 0 2  0.3 0.4 0.5 0.6 0.7
RATIO OF WIDTH TO LENGTH

Fig. 1.20—Temperature coefficient of a + 5 °  X  cut crystal (ip =  0°; 6 =  90°; \p =  85°) 
as a function of the ratio of width to length. Ratio of thickness to length =  0.05.

T his change of coefficient occurs due to the fact th a t as th e  c ry sta l w idth  
is increased, the  face shear mode of m otion becomes m ore strongly  excited 
and  contributes to  the elastic constant. T hen  since the  tem p era tu re  coeffi
cient of the shear elastic constan t is highly negative for th is  o rien ta tion  
the  tem perature coefficient of the + 5 °  X  cu t crysta l becom es m ore h ighly  
negative as the w idth is increased.

T he M T  longitudinally  v ibrating  crysta l em ploys a ro ta tio n  of the  plane 
of the  crysta l cu t abou t the Y '  or length axis. T he effect of th is ro ta tio n  is 
to  change the tem perature coefficient of the  shear m ode from  highly  nega
tive to  nearly  zero. The result is th a t the tem peratu re  coefficient becomes
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very  low and nearly independent of the w idth length ratio . T he N T  low 
coefficient flexurally v ibrating  crystal is similar to the M T  b u t requires a 
som ewhat higher ro tation  about the Y '  axis to produce a low coefficient.

T he M T  crystal has been used in narrow  band filters such as pilo t channel 
filters of the cable carrier system  and in oscillators having frequencies be
tween 50 kilocycles and 100 kilocycles. The N T  flexure crystal is capable 
of producing frequencies as low as 4 kilocycles, and can be used to produce 
filters and control oscillators in the frequency range from 4 kilocycles to 50 
kilocycles. C rystals of th is type have been used w ith the W estern E lectric 
frequency m odulation broadcast tran sm itte r.15 O perating in the region 
of 5 kilocycles, they m ain ta in  the frequency of the transm itte r to ± .0025  
per cent w ithout tem perature regulation. These two crystals will be 
described in more detail in a subsequent paper.

A P P E N D IX  A

V O IG T ’S ELA STIC  AND P IE Z O E L E C T R IC  R E L A T IO N S AND 
T H E IR  A PP L IC A T IO N  TO T H E  D E T E R M IN A T IO N  OF LOW  

T E M P E R A T U R E  C O E F F IC IE N T  CRYSTALS

A .l M a t h e m a t ic a l  E x p r e s s i o n s  p o r  P i e z o e l e c t r i c  R e l a t i o n s

As m entioned in the historical in troduction, Voigt form ulated a m a th e
m atical relation between the stresses, strains, polarizations, and electric 
fields existing in a crystal. For a general crystal devoid of sym m etry  these 
relations take the form

- x x =  sfi X x +  sf2 Y y +  sf3 Z z +  s u  Y z +  i f .Z ,

+  s f sXy  — d n E x — ¿ 2 1 E v — d%\Ez 

—yv = sL X x +  S22 Yy +  523 Z 2 +  524 Y z +  s!bz x

+  526 Xy — d nE x  — ¿22 Ey — ¿32 Ez

— Zz =  5 3 1 X 2: +  532 Yy +  533 Zz +  534 Y Z +  5 3 5 X2

+  5 3 6  Xy  — ¿ 1 3  Ex — ¿ 2 3  Ey — ¿ 3 3  E z

— yz =  Su X x +  542 Yy +  543 Zz -f- 544 Y z +  545 Z x

+  S4Q Xy  ¿ 1 4  E x ¿ 2 4  Ey ¿ 3 4  Eg

(A.l)
15 “A New  Broadcast Transmitter Circuit Design for Frequency M odulation,” J. F. 

Morrison, Proc. I .  R. E., Vol. 28, No. 10, Oct. 1940, pp. 444-449.
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Zx ~  s f i X x  +  Su Y  y +  +  Su Y  z +  S n Z ,

4* Su X y  — ¿16 Ex — ¿25 Ey ¿35 E z 

— Xy =  SfiiXj +  6̂2 Yy +  563 Z 2 4* -Î64 Yz 4~ SgôZx

S 66 Xy  — ¿16 Ex ¿26 Ey  ¿36 E z

P x — —d \ \ X x — ¿ 12  Y  y — d\zZz — ¿ 14  Y z di$Zx d m X y 4“ ki E x

Py =  —¿21 Xx  — ¿22 Y  y   ¿23 Zz — ¿24 Y  t ¿25 Z x ¿26 Xy  4~ K 2 Ey

P  z — —¿31 X  x — ¿32 Y  y — ¿33 Z z — ¿34 Y  z ¿35 Z x ¿36 Xy  4" ̂ 3 E z

where xx , yv , zz are the three longitudinal strains, yz , zx , xv th e  th ree shear
ing strains, X x , Y y , Z z the three longitudinal stresses Y z , Z x , X y the  three 
shearing stresses; P x , P y , P z the x, y  and z com ponents of the polarization , 
and  E x , E y , E ,  the x, y  and z com ponents of the electric field. Sn , • • ■ , ¿66 
are the  36 elastic compliances. T he superscript E  is added to  show th a t 
they  m ust be m easured when the field E  is zero or the crystal p la ted  and  short 
circuited. As shown from section C of th is appendix they  can be m easured 
from  the resonances of com pletely p la ted  crystals. F rom  the principle of 
conservation of energy it can be shown th a t  there is the general rela tion  
between the elastic compliances

Sij =  sfi  (A.2)

so th a t  the greatest num ber of com pliance m oduli is 21. In  equation  (A .l) 
the da are the piezoelectric constan ts m easured by  observing the  p ropor
tionality  between the  strains and  the applied fields in the absence of ex ternal 
stresses, /cf are the “ free” susceptibilities of the crystals in the th ree space 
directions m easured in the absence of stress. T he susceptibilities are related  
to  the “ free” dielectric constants i f f  by  the  equation

K Ï  =  i  4- 4tk Ï  (A.3)

In  addition  to  these equations we have also th a t  the  charge per u n it area Q 
on the surface is rela ted  to the field and polarization by

0 . - I  +  * .

E  K.F
== d u X x  dy i Y  y d ^ Z z  ¿ 14  Y  z d \ ^Zx — d \§Xy

Qz — j -  Pz4w

(A .4)

E  Xs
¿31 X x ¿32  Yy ¿33  Z z — ¿34  Y z — ¿35  Z x — ¿36 X y
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T hese equations hold for the  m ost general type of crystal. In  addition  
Voigt showed th a t if there was any  sym m etry existing in the  crystal, a num 
ber of the constan ts were zero and certain  relations existed between other 
constants. F or example quartz  has a trigonal sym m etry abou t the Z or 
optic axis, and  three digonal axes of sym m etry (the three X  or electrical
axes) abou t which it  is necessary to tu rn  through an  angle of 180° before
the original p a tte rn  is restored. Voigt showed th a t by expressing the rela
tions (A .l) in term s of ro ta ted  axes and imposing the sym m etry condi
tions, the following relations existed between the elastic and  piezoelectric 
coefficients

E  __  E  __  E  E  E  E  E  E  E  A
5 l 5  —  S l 6 —  5 2 5  —  5 2 6  —  5 3 4  —  5 3 5  —  5 3 6  —  5 4 6  —  5 4 6  —  U

E    E E    B  E  E  E    E
5 22  —  5 i i >  5 2 3  —  5 i 3 ; 5 2 4  =  — 5 i 4 ; 5 4 4  —  5 s b ;

E  r,  E  E  r,  /  E  E  \
5 6 6  —  - ¿ 5 i 4 ; 5 6 6  —  ¿ ( 5 l l  —  5 i 2 )

¿ 1 3  =  ¿ 1 5  =  ¿ 1 6  =  ¿ 2 1  =  ¿ 2 2  =  ¿ 2 3  =  ¿ 2 4  =  ¿ 3 1  =  ¿ 3 2  ( A . 5 )

=  ¿ 3 3  =  ¿ 3 4  —  ¿ 3 6  =  ¿ 3 6  =  0

¿ 1 2  =  — ¿ 1 1 J ¿ 2 5  =  — ¿ 1 4 ; ¿ 2 6  =  ¿ ¿ 1 1

F F
K l =  K 2

Hence the relations between the stresses, strains, polarizations and fields for 
quartz  reduce to  the sim pler forms

— xx = s f iXx  +  S \ iY  v -T 5i3Zz +  5n F z — dnEx

=  s i z X x +  s f i Y y  -T 5 i3Z z — 514F z ¿ 1 1 E 1

—  Zx =  S t fX x  + S\{Y  y + SzzZz

—  y z =  5 1 4  ¿ f a ,  —  sf iYy  - ( -  5 4 4  F z —  ¿ 14-E z

— z* =  sfiZx +  2sfiX y +  duEy

— xy =  2 s \ iZx +  2(5n — S ii )Xv +  2dnEy (A.6)

Qx =  Ex-rK ' -  d n X x  +  ¿ 1 1  Y v -  ¿ 1 4  Y z 
4 IT

Q y  =  +  ¿ 1 4  Z x  +  2  ¿ 1 1  X y

M s  
4  IT

T he superscripts have been left off the constants 5 1 3 , 533 and K 3 since it 
will be shown th a t  their values are no t affected by  the way in which they 
are m easured.
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E quation  (A.5) is no t the  only way of relating  the  elastic and  elec
tric quantities. F or example if we substitu te  the values of the  fields of the
last three equations of (A.6) in the first six equations, we can w rite

— xx = S\iXx -(- S\2 Yy -f- si$Zz 4~ SiiYz guQx

—Jv =  Si2Xx -(- i i iF ; ,  -|- SizZz — S \iY z 4" guQx

—  Zz =  S i i X x 4 “  X13  Yy +  SssZz

- y z =  & S  -  sQu Y y 4- sWYz §j guQ*

~  Su Z x 4" 2$i4Xy 4- gnQy 

—xy =  2suZx +  2{s\i — Sxi)Xy 4~ 2,gnQv (A.7)

E* I  B  QX +  m X \  I  Sn Yy 4- gu Yz
K Í

4ir
k !

Ey =  —¿Qy — g l i Z x — 2 gn Xy

Att
E* =  g  &

where

Q E  A i r d u  q E  ‘ i 4 7 r d n  q  _  e  A i r d n  d u

i n  =  su  -jpr 5 il2 =  512 " r > il4 — il4 r  F f—A i A i A i

q E 4irdu 4irdn Awdu
X44 — S u  1 g u  —  J g l i  — g p

T he superscript Q is added to show th a t these are the elastic com pliances 
th a t will be m easured when the free charge on the surface is zero. These 
elastic constants are the ones m easured when an  unplated  crysta l is p u t in 
an  airgap holder w ith a large air-gap since then no charge can flow to the 
surface of the crystal. The difference between the zero field and  zero charge 
elastic constants for quartz  is less than  1 per cent. F or rochelle salt, how
ever, they  m ay differ by  a factor of 4. For rochelle sa lt the principal piezo
electric constan t du  and the “ free” dielectric constan t K i  v a ry  w idely in 
value and phase angle w ith variations in tem perature and  frequency, w hereas 
the piezoelectric constan t gu which is p roportional to the  ra tio  of these two 
is nearly  a constan t for all frequencies and tem peratures, so th a t  the form u
lation  of equation (A.7) is more advantageous th an  th a t  of equation  (A.6). 
For quartz , however, bo th  forms are reasonably constan t. F u rtherm ore 
the elastic constants of equation (A.6) are those for a p la ted  crysta l which 
are usually the ones of in terest for a crysta l em ployed in an  oscillator or filter. 
H ence th is form ulation has been used in th is appendix.



B oth  the form ulation of (A.6) and (A.7) can be expressed in term s of 
the  strains ra th e r th an  the stresses. Since these are useful forms and are 
used la te r in th is appendix, they  are given below. E quations (A.8) are 
ob ta ined  directly  from equations (A.6) by  solving them  sim ultaneously to 
replace the  stra in  by  the stress, while equations (A. 10) are obtained in the 
same way from  equations (A.7).

X& =  cn'xx C\iyv -|- c\3zz 4~ cuyz — euEx

Yy =  C\iXx 4~ C\\yv 4~ ci3zz — Cuŷ  4" euEx 

Zz =  Cisxx 4~ C\3yy 4~ c33zz

F E  E  i E  7-iz — C\4Xx — Cuyy -f- Cuyz — CuE x

Zx =  C44ZX H- Ci4Xy 4" CuEy

— Xy =  Cu ZX 4" ^  11 ^ Xy +  Cll Ey  (A.8)

Q x  =  P x  =  -  *  1 4 -  e u X x  —  e n y j ,  4 -  e u y z 

F E  K?
Q* =  ^ + P y = i f - ei4z* r euxy

O =  —  4- P = P'3
^  4 r  * ,4ir

where the relations for the elastic constan ts are
E E  E E

r, E  S 3 3  , S 4 4  r, E  ^ 3 3  $ 4 4  $13m 1  — -  4- -3 - ;  ¿C12 — | — — a ; ci3  — -—  ;
a p a 13 a

E  | E  E E
•?n t  S12  E  _  ^ 1 1  S  5 12

, C4 4  — ,
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E
E

—  $ 1 4
C l4  —

~ J "  ’
C33 —

E E  E
E Cll — C 1 2  S 44

¿ 6 6  — 2 2/3 ’
« — ^33(^11 4- $12 ) — 2 ^1 3 ;

E  /  E  E  \  rt E 2
P  =  S u \ S l l  —  ^ 1 2 )  —  ¿ s  14 .

Conversely we can also w rite the useful relation
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F or the piezoelectric constants

fin =  ¿n(cfi — cf2) +  duCu ; ci4 =  2 dn cu  +  duCu ;

and  conversely

— d n  =  e n ( s f i  — i f 2) +  euSii ; — du  =  2enSi4 +  «14^44 ■

T he dielectric constan t K i  denotes the clamped dielectric constan t, i.e., 
the constan t m easured when the crystal is free from  strain . T h is is rela ted  
to the free dielectric constan t K \  by  the  equation

K \  =  K \  — 4ir[di4Ci4 +  2c?nen]. (A.9)

In  a sim ilar way if we solve equations (A.7) sim ultaneously, for the  stresses 
in term s of th e  strains, we have

— X x = C u X x +  Ci2yy +  C\zZz +  Ciijz — f u Q x  ;

— Y y =  c?2Xx +  cnyw +  Cn%z — c44yz +  fnQx  5

— Z z =  c^xx +  C\zyv +  C 33Z2 ;

— Y z =  CmXx — cu yy +  c4i y z — fuQx  ;

Zx = C44ZX C\4Xy d“ f l t Q y  )

X y    CliZx
f e i l  — C n \ ^  f  n  .
( ----- 2  J Xy JuQy ’ (A .10)

E x — —g Qx f n X x T  f n y y f u y z  j
K 1

Ey =  —p <2» +  fuZz +  fuXy ;

e - = y X -

where the c« constants are rela ted  to the constan ts as in equation  (A.8). 
T he piezoelectric relations are

/ 1 1  =  gn(cu — C12 ) +  guCu f u  =  2 guCii +  £14^44 j

or conversely

— gn  =  /ii(^ ii — 5 1 2 ) +  «14̂ 14 ; — gu =  2/nSi4 +  /u i4 4  ;

while the  dielectric relation between the free and  clam ped crystal
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E quations (A. 10) m ight also have been obtained directly  from equations 
(A.8 ) by  substitu ting  the charges from the last three equations in term s of 
the  fields. T his substitu tion  yields the additional relations

Siren2 (A.12)

(A.2). V a l u e s  o f  t h e  E l a s t i c  a n d  P i e z o e l e c t r i c  C o n s t a n t s

T he first and  one of the best determ inations of the  elastic constan ts of 
quartz  was m ade by  Voigt. Using sta tic  deform ations of unpla ted  crystals 
he determ ined the elastic constan ts to  be

W hether these are zero field or zero charge constants is no t known. If 
they  were m easured in a room with high hum idity , the polarization produced 
by  stra in  would soon be annulled by a current flow through the leakage re
sistance of the adsorbed m oisture, and the constants would be cf3- or sf}- . 
On the o ther hand  if the displacem ents were m easured in a very d ry  room, 
the leakage resistance is very small and  it m ay take hours to annul the polari
zation through a leakage current flow. In  th a t case the constants m easured

cu =  85.1 X 1010 dynes/cm 2; C\ 2 — 6.95 X 1010;

Cl3 =  14.1 X  1010; Cm =  16.8 X  1010 

C33 =  105.3 X  1010; C44 =  57.1 X  1010; (A .13)

From  these the  m oduli of compliance can be calculated and are

su =  129.8 X 10-14 cm2/d y n e ; s 12 =  —16.6 X  10~14; 

i n  =  - 1 5 .2  X  10-14; * 4  =  - 4 3 .1  X 10~14;

533 =  99.0 X  10-14; S44 =  200.5 X 10“ 14;

5 66 =  2 On -  *12) =  292.8 X IQ-14.

(A.14)



would be Cij or s®- . In  any case the difference was probably  less th an  the 
accuracy of m easurem ent.

L ater m easurem ents by  Perrier and M andro t for two of the constan ts in  
and i 33 give the values

su = 127.3 X 10-14; s33 = 97 X 10“ 14 (A.15)

By using the m easured resonance frequencies of know n m odes of m otion, 
the u ncerta in ty  of the type of elastic constan t can be rem oved, for the 
alternations occur so fast th a t the leakage resistance has little  effect. I f  a 
crystal is lightly  plated , it is shown in the next section th a t  the resonan t 
frequency of a length v ibrating  bar will be determ ined by  the zero field 
elastic constants if,- . On the o ther hand if an  unplated  crysta l is m easured 
in an air gap holder w ith a large air gap it has been shown th a t  the  fre
quency m easured will be determ ined by  the zero charge elastic constan ts 
s% or c^j . A careful m easurem ent of the elastic constan ts of q u artz  has 
recently  been m ade by  A tanasoff and H a rt2. Using thickness m odes for

1 The resonances of length vibrating crystals have been discussed by.Cady, “ The Piezo
electric Resonator and The Effect of Electrode Spacing on Frequency,” Physics,  Vol. 7, 
No. 7, July 1936, pages 237-259; and by the writer, “D ynam ic M easurement of The Con
stants of Rochelle Salt,” Phys. Rev., Vol. 55, pages 775-789, April 15, 1939; while the 
resonances of thickness vibrating crystals have been discussed by Cady (above paper) and 
Lawson “The Vibration of Piezoelectric P lates,” Phys. Rev., Vol. 62, July 1, 1942, pp. 
71-76. For a length vibrating crystal Cady shows that the resonant frequency for no air 
gap (plated crystal) is controlled by the constant 1 /s f i-  For a crystal w ith  a large air 
gap, the frequency is controlled by the constant.

lA f i  +  b c d J / K f s X  =  1 /i? ! ■

Starting with equations of the form (A. 10), the writer showed that the frequency of a bar in 
an air gap holder would be controlled by the constant l /s ® , while the frequency of a plated  
crystal is determined by

d l f 4ir N
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1 -
-0 -1  -Ml

For a thickness vibrating crystal for which the field is applied in the direction of w ave 
propagation, Cady and Lawson find that the resonant frequency is controlled by the elastic 
constant

4iren
K f~b rrC 1

where D  is the total separation between electrodes and t the thickness of ..the crystal. 
When the separation is infinite, the controlling elastic constant is e® +  4tte r f / R f  which, 
from equation (A .12) is . When the air gap is zero or D  =  t, the controlling constant is

4 ire 

+  * ? H )
which, for all practical purposes, can be taken as c ® for quartz.

2 “ Dynam ical Determination of the Elastic Constants and their Temperature Coeffi
cients for Quartz,” Phys. Rev., Vol. 59, N o. 1 (85-96), Jan. 1, 1941.
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relatively  th ick  pieces of quartz , and  determ ining the asym ptotic value for 
high order harm onics, they  obtained the elastic constants

Cn =  87.55 X  1010 dynes/cm 2; cn =  6.07 X 1010; ca  =  13.3 X  1010;

cm =  - C 24 =  17.25 X  1010; c33 =  106.8 X  1010; c* =  57.19 X 1010.

(A .16)

In  addition  they  came to the conclusion th a t c56 had a value of 18.4 X 1010, 
which was different from  the value of cu  as required by  theory. T heir 
m easurem ents were m ade w ith high harm onics in air gap holders so th a t the 
values m easured should determ ine the  cf,- constant. To explain the dis
crepancy found, Lawson3 has suggested th a t the  c% constants

c% =  cu  +  i ireueu/K?  (A.17)

do no t obey the same sym m etry  relations as the cf,- constants. T his sugges
tion does n o t seem to be borne ou t by  equations (A. 10), from which the sym 
m etry  relations of the cf, constants can be determ ined. If  we s ta r t  w ith a 
generalized form  of these equations applicable to any  crystal and apply  the 
sym m etry  relations for quartz , we find th a t i t  is still necessary to satisfy the 
symmetry' relations between the constants found previously and in particu lar

5̂6 =  Cli (A.18)

In  order to  investigate th is m a tte r  fu rther, and  to ob ta in  more reliable 
values of the  elastic constants, an  analysis has been m ade of a  num ber of 
m easurem ents previously obtained for oriented crystals. In  particu lar two 
families of oriented crystals were investigated. One fam ily was a  set of 
oriented X  cu t crystals v ib rating  longitudinally. T hey  were cut w ith their 
m ajor faces norm al to  the X  axis and  w ith their lengths a t  angles A 2 of from  
+ 4 3 °  to —79° w ith respect to  the  Y  or mechanical axis. T hey  were 
oriented sim ilarly to  the  + 5 °  and —18.5° filter crystals shown by  Fig. 1.9. 
W hen these crystals are 7 to  10 tim es as long as they are wide or th ick  it 
has been shown previously4 th a t their length resonances are determ ined 
very  accurately  by  th e  equation

f R ~  T f  \ / (A-19)
‘ • v y  V  p S  22 '

where ly is the  length of the crystal, p the density  and sir the inverse of 
Y oung’s M odulus along the length for a p la ted  crystal. T his is related  to 
the angle of cu t A 2 by the equation

E  E  4 i  i £  • 4 4 | r\ E  3 i  • iS22’ =  ill COS A 2 +  i 33 sm A 2 +  2su  cos A 2 sm A 2
(A 20)

+  (2ii3 +  S44) sin2 A 2 c o s 2 A 2

3 A. W. Lawson, Phys. Rev., 59, 838 (1941).
4 “Electrical W ave Filters Em ploying Quartz Crystals as Elem ents.” W. P. Mason

B. S. T.  / . ,  Vol. X III , pp. 405-452, July 1934. See Figs. 25, 31 and 32.
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Since the resonant frequency of the  p la ted  crystal was m easured, i t  was the 
zero po ten tia l elastic constan t th a t was determ ined. These crysta ls were 
lightly  p la ted  w ith alum inum  and  it  had  been previously shown th a t  the  
added p la ting  would affect the frequency by  considerably less th an  0.1 per 
cent. T he crystal orientations, their dimensions, the frequency constan ts 
and  the values of s i r  are shown by  T able I.

These m easured variations satisfy equation (A.20) for the  varia tion  of 
s i r  w ith angle very  well if we take

sfi =  127.9 X 10-14 cm2/d y n e ; s33 =  95.6 X 10 14;

s u  =  - 4 4 .6  X 10“ 14; (A.21)

s?4 +  L  =  175.8 X 10~14.

T a b l e  I

Angle of 
C ut, Az

Dimension, mm R esonant 
Frequency 

25 °C

Frequency 
Constant 
KC cms

Value of 5̂ 2'
Length W idth Thick

ness

- 7 9 .5 ° 24.03 2 .5 0 .502 130,700 314.1 9 5 .6  X  10~14 cm2/d y n e
- 1 8 .5 ° 20.00 2 .5 0 .502 127,710 255 .4 144.5
- 1 3 .1 4 ° 19.99 2 .97 .505 128,390 256.8 143.0
- 1 2 .3 3 19.98 2 .95 .500 128,590 257 .0 142.7
-  5 .6 20.02 2 .92 .500 132,130 264.5 134.7
-  1 .4 20.03 3 .02 .502 134,050 269 .2 130.2
-  .9° 19.97 2 .99 .502 135,240 270.5 128.9
+  .36° 20.03 3 .03 .508 135,890 272 .0 127.5
+  .54 19.96 2 .98 .506 135,920 272.1 127.3
+  1 .44 20.02 2 .98 .505 136,890 274 .0 125.7
+  2.61 19.97 3 .0 0 .505 138,400 276.5 123.3
+  4 .05 19.95 2 .97 .510 139,900 279 .0 121.2
+  11.8 19.11 3 .01 .500 154,600 295 .4 108.1
+  18.0 20.02 2 .95 .500 155,380 311.1 9 7 .5
+ 4 2 .6 20.00 2 .95 .500 174,750 349 .5 77 .25

T his gives three of the constants directly, and a relation between two more. 
T o obtain  the rem aining constants and to  test ou t the hypothesis th a t  there 
are seven elastic constants ra the r than  six, use has been m ade of m easure
m ents m ade for thickness v ibrating  shear crystals obtained by  ro ta tin g  one 
edge abou t the X  axis. These are the A T  and B T  series shown by  Fig. 1.9. 
As shown by  a former paper6, the frequency of such crystals depends on 
the edge dimensions as well as the thickness dimensions. However, as the  
edge dimensions become large com pared to the thickness dim ension the  
principal frequency approaches an asym ptotic value which is taken  as th a t  
for the infinite p late. For the A T ,  B T  and Y  cu t crystals these asym pto tic  
values have been determ ined to have the values shown by  T able II.

6 “Low Temperature Coefficient Quartz Crystals,” B. S. T. / . ,  Vol. X IX , pp. 74-93, 
Jan. 1940. See Fig. 5.
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If we m ake the assum ption th a t there are seven elastic constants and cf6 

:he frequency of this series of crystals will be“

where cu> =  eft cos2 A 2 +  ef4 sin2 A 2 — cf6 sin 2 A 2 (A.22)/ =  I  A A * « '
2 i  r ~p

T he determ ination  for the F  cu t gives directly

cfe =  40.5 X 1010 dynes per square cm. 

T he o ther two cuts give the values

eft =  18.2 X  10" c44 =  58.65 X 1011

To test ou t the hypothesis th a t cfe differs from cf4 or sf6 from 
can m ake use of equation  (A.8 ) w riting cf6 in place of cf4 . Then 
these equations sim ultaneously we find

E544 — C 66 ~~c=, 6 C44
( E E  E‘\ ’
(C 44 C66 —  C56 )

( E E  E‘\ ’\Cu C66 —  C56 j

T a b l e  I I

r E E
fC44 C66 e2\ C56 )

(A.23)

(A.24)

2sf4 we 
solving

(A.25)

C rystal Angle of C ut A i
Asym ytotic F re
quency constant 

KC mms
Vr,'ne of c E ' 66

A T + 3 5 °  15' 1661.5 2 9 .3 9  X  1010 dynes/cm 2
Y  C u t 0 1954 4 0 .5 0
B T - 4 9 ° 2549 6 8 .8 6

S ubstitu ting  in the values from (A.23) and (A.24) we find

s!i =  197.8 X 10“ 14 cm2/d y n e ; sf6 = - 8 9 .0  X 10-14;

if« =  2 ( in  -  if ,)  =  286.5 X K F14.

C om paring the  value of sf6 w ith  2su  given in equation (A.21) we see th a t 
they  are equal w ithin the experim ental error, so th a t these m easurem ents do 
not indicate th a t there are seven elastic constants b u t only the custom ary 
six. Using these values all the elastic constants can be evaluated as shown 
by  T able I I I .

M easurem ents have also been m ade to determ ine accurately  the piezo
electric constants. T his was done by  using the ratios of capacities of two 
standard  ro ta ted  X  cu t crystals for which these ratios have been accurately  
determ ined. As shown by  section C of th is appendix, the  ratio  of capacities 
r of a crystal is related  to the piezoelectric constan t dn  , the elastic constant 
s i 2 ' and  the free dielectric constan t i f f  by  the equation

r — ratio  of capacities
_ it2 / l  -  A

8 V &  )
(A.27)
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w here k the electrom echanical coupling is given by

( A ' 2 8 )r A i S22

T he two crystal cuts and their constan ts are given in T able IV. 
Only the num erical value and no t the sign are determ ined for ¿ 1 2

T a b l e  III

E lastic Compliance Moduli E lastic Stiffness Moduli

+ 1 = 127.9  X  10-14 cm2/d yn e /-®<U1 =  86 .0 5  X  1010 dynes/cm

if?. = - 1 5 .3 5 c 1 2 =  5 .0 5

■Sis = - 1 1 . 0 c 13 =  10.45

Si 4 = - 4 4 . 6 r E14 =  18.25

S33 = 9 5 .6 c 33 =  107.1

S 44 = 197.8 r EC44 =  58 .65

S66 = 2 (sfi —  s f2) = 286.5 r E66 -  c _  4 0 . 5

T a b l e  IV

Angle of C ut, Ai Ratio of 
Capacities

E'Value of J j 2 Value of Aff Value of ¿ 12

- 1 8 .5 °  X  cut 
0° X  cut

137
125

144.5
127 .9

4 .5 8
4 .5 8

6 .8 5  X  IO"8 
6 .7 6  X  IO"8

T a b l e  V

Piezoelectric
constant

Value in cgs electrostatic 
units

Piezoelectric
constant

Value in cgs electrosta tic 
un its

d n - 6 . 7 6  X  10-8 £ 1 1 - 1 8 . 5 5  X  10~8
¿14 2 .5 6  X 10-8 £14 7 .0 2  X  10-s
¿11 - 5 . 0 1  X 104 f n - 1 3 .8 5  X  104
¿14 -  .97 X  10“ / l 4 -  2 .6 8  X  104

T he varia tion  of ¿ 1 2  as a position of angle has been shown to  be6

dn  — — i [<¿11 ( 1 +  cos 2 A 2) +  du  sin 2A?\ (A.29)

T he two values of ¿ 1 2  of table IV  are satisfied by

dn =  - 6 .7 6  X  10-8; ¿i4 =  + 2 .5 6  X  ICO8 (A.30)

6 See “Electrical Wave Filters Em ploying Quartz Crystals as E lem ents,” W. P . M ason, 
B. S. T. Vol. X III , 405 (July 1934).
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F rom  these values and the elastic constants of T able I I I  we can calculate 
all the different forms of the piezoelectric constants. These are given in 
T able V.

( A .3 ) .  D e r iv a t io n  o f  E q u iv a l e n t  C i r c u i t  o f  C r y s t a l

T he electrical impedance and electrical equivalent circuit for a fully- 
p la ted  crystal can be derived from the piezoelectric relations of equation 
(A.6) taken  together w ith N ew ton’s law of m otion

d? £
Fy =  ma  =  (p d x d y d z ) —  (A.31)

di

where m  is m ass of an  elem entary volume dx dy dz, a the acceleration, and 
£ is the displacem ent of the elem ent in the y  direction. If we consider a 
long th in  X  cu t crystal w ith its length in the y  direction, the piezoelectric 
relations of in terest are

~ y y =  S n X x +  s u  Y y +  5i3 -  s f4 F 2 +

E  i f f  (A .3 2 )
Qx =  W . W  -  dn X x +  dn  Y v -  du  Y z .

47r

For a long th in  crystal w ith its long dimension in the F  direction we can set

X x =  Z z =  Y> =  0  (A .3 3 )

T his follows since the crystal is free from external forces, and hence these 
stresses on the edges of the crystal m ust be zero. On account of the small x
and  s dimensions, the ra te  of change of these stresses w ith x or z will have
to  be high in order th a t the stresses shall differ appreciably from  zero, and 
there are no mechanical strains causing a high stress gradient. T hen  for a
long th in  bar the piezoelectric equations can be w ritten

~ y y =  5n Y v +  d u E x)

F  I f f  (A .3 4 )
(?* =  ^  +  dn Yy.

L et us next consider a small cross section of the crystal w ith a dimension 
dy along the crystal length. The to ta l force on the section is a resu ltan t of 
the difference in stresses on the two faces or equal to

A V
L U Y Vl -  Yy21 =  dy =  Fy (A.35)

where Y y the stress is considered as a compressional force acting on the faces
of the  elem ent. B y N ew ton’s law of m otion (A.31) we have

- l M y d̂  =  l M y P %  or =  - p g  (A.36)



. dl ? =  - ^  =  5 * ^ ? .  (A.37)

For a com pletely p lated  crystal such as we are considering, the  po ten tia l 
gradient E x will be independent of the y  direction, since any  charge d is trib u 
tion will be equalized w ith the speed of light which is m uch higher th an  
the speed of sound in the crystal. T hen  equation (A.34) when differentiated 
by  y  becomes

_ 9 2£ _ 
dy dy2 11 dy

In troducing  equation  (A.36), the equation of m otion for a p la ted  crysta l 
becomes

d2£ e d2£ (& ae'\
8 y 2 =  S n P dt2- (A‘38)

For simple harm onic m otion the varia tion  of £ w ith tim e can be w ritten  in 
the usual form

£ =  £**", (A.39)

so th a t for simple harm onic m otion equation (A.38) becomes

- g - ? * - 0 (A -40)

where v the velocity of sound in the p la ted  crystal is given by  the form ula

»! =  A -  <a - « )
p ill

A solution of equation (A.40) w ith two a rb itra ry  boundary  conditions is

£ =  A  cos -  y  +  B  sin —  . (A.42)
v v

To determ ine the constants A  and B,  use is m ade of equation  (A.34). 
D ifferentiating (A.42)
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- y v =  ^  |^4 sin ^  y  — B  cos =  j® Y y +  du E x. (A.43)
_d£  

dy

W hen y  =  0 and y  — I  the bar length

Y y =  Y V1 and Y y =  Y V2 (A.44)

provided the crystal is driving a load. For m ost electrical cases the only 
load driven is an  air load and th is is usually very  small so th a t  it is custom ary 
to set Y Vl =  F„2 =  0. U nder these conditions

— -  B  =  dn E x and -  sin — — J3 cos — 1 =  du E x. (A.45) 
v v L v v _J
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Solving these equations for A  and B  and substitu ting  in (A.43) we have

— yv =  du E x f  ta n  ~  sin ^  +  cos — 1 =  Sn Y y +  du E x 
L 2 v v v J

or Y y =  ~
dn E x

E~
$11

COS
cu(y -  1 / 2 )

1 -
v

ml 
cos — 

2 v

(A.46)

1 he electrical im pedance m easured a t  the term inals of a p la ted  crystal is 
then  determ ined by substitu ting  the value of Y y in the last of equations 
(A.34) and  in tegrating  the charge Q over the whole surface. T he current 
in to  the  crysta l is then

i =  juQ =  yw4  f £x 
Jo

K [  _  d i l (  _ 

^  s f i

cos m(y — l / 2 )\
ml 

cos — 
2 v

dy

  JmEX lyj I

— jmEx 11

where K \ 0 =  K {  —

K [  _ d i l L - f t
ml I47T Sn

- \  2 v L

k r dn2
ml  

t an — 
2 v

47r E
i l l ml

2 v _

(A.47)

47T dr
i l l

is called the longitudinally clamped dielectric

constant, i.e. the  dielectric constan t th a t would be m easured if we suppress 
the  longitudinal s tra in  along the y  axis b u t no t the o ther strains. T he 
adm ittance of the crysta l then  is

î

E
i

E x It

jm la I
ml

rfLc , 2  tan  —E-i chi_ 2 v
4ir sfi ml

2 v J

(A.48)

T h is consists of two term s which represent parallel branches in the equiva
lent circuit. One of these is the capacitance

P p t t l c  p  pt? l c~ l w IJ\ - 1  . By, Yj\- l
c " -  T i i T  cgs um ts =  X  1 0 - flra d s  (A 49>
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T he other b ranch contains the impedance

]  - j f t s u f  X  9 X  10u
- j j t  s n  2v—  cgs unitg =  ----------- 2v----------------- ohm s (A.50)

' <*L l  du t a n -  tan .
2uJ 4»

T his branch will have a zero im pedance or will resonate when the  tangen t is 
infinite or when

2l M  =  1  o r / fi =  — =   % =  (A.51)
2 v 2 jR 2 1  2  W p s f ,

Hence for a fully p la ted  crystal it is the zero held elastic constan t th a t  
determ ines the resonant frequency.

N ear this resonant frequency, the im pedance of equation  (A.50) can be 
represented by  a  series capacitance and inductance having the values

^  l wl  8 du T psn U t X  9 X 10 io'v

Cl =  T  i - , f , x 9 x g "   S T ?  ( ’

T aking the ratio  between C0 and Ci we have

1 -

C o  =  =  7t 2 / A i L C  Sn
Ci 8 \  47t du2

(A.53)

j r F  E  K l  SU

where k the coefficient of electrom echanical coupling is equal to

t - i a j C p T  (A.54)
V A i

E
$11

These values are used in equations (A.27) and (A.28) to  evaluate the piezo
electric constants of quartz.

A .4 . U s e  o f  V o ig t ’s R e l a t io n s  i n  L o c a t in g  R e g io n s  o f  L o w  T e m p e r a 

t u r e  C o e f f ic i e n t  C r y s t a l s  f o r  S im p l e  M o d e s  o f  M o t io n

In  Section 1 .5 of the text, the sta tem en t is m ade th a t  all longitudinally  
v ibrating  crystals of quartz  have a zero or negative tem peratu re  coefficients. 
T his can be proved from V oigt’s relations for qu artz  and  a knowledge of 
the tem perature coefficients of the six elastic constan ts of quartz . Since 
the same m ethod can be used to locate the regions of low tem peratu re  coeffi
cient for o ther simple modes of m otion a short discussion of the m ethod is 
given here.

T he Voigt relations given in equation (A.6) give the values of the piezo
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electric and  elastic constan ts for crystals w ith their three edge dimensions 
along the three crystallographic axes. M ost low-coefficient crystals, how
ever, are  orien ted  crystals w ith one or more of their edges lying along 
directions n o t parallel to the crystallographic axes. T he theory of elasticity, 
how ever, provides m ethods for calculating the values of the constants for 
ro ta ted  axes. If the ro ta ted  axes X ' ,  Y' ,  Z '  are related to the crystallo
graphic axes X ,  Y,  and Z  by  the relation

X F Z
X ' A m x »1
Y ' A m 2 «2
Z ' A m 3 « 3

where A , • • • , are  the  direction cosines between the axes indicated, the 
theory  of elasticity  provided relations between the  stresses of the ro tated  
axes and  the stresses of the  crystallographic axes, between the strains of 
the  ro ta ted  axes and  the  strains of the  crystallographic axes, and  between 
the  field, polarizations, or charges of the ro ta ted  axes and the same quantities 
for the  crystallographic axes. T hen  if we express7 the relation between the 
stress, s tra in  and  fields for the  ro ta ted  axes, the elastic and piezoelectric 
constan ts are determ ined.

Tw o shorthand m ethods are also available for calculating the constants 
of ro ta ted  crystals. One m ethod8 is the m atrix  m ethod which is based 
upon the  fac t th a t relations in (A.6) can be expressed in a m atrix  equation

-  a =  ssX  +  dE  (A.56)

where e are the strain  com ponents, X  the stress com ponents, sE the elastic 
com pliance m atrix , d the piezoelectric m atrix  and E  the field components. 
B y applying the rules of m atrix  m ultiplication the s and d m atrices can be 
transform ed to  ro ta ted  axes having the direction cosines of equation (A.57) 
w ith respect to  the  crystallographic axes. The other m ethod is the m ethod 
of tensor analysis. E quations (A.6) can be expressed in  tire form 9

SijafiXafl djjpEy (A.57)

where «,■; is tire second rank  strain  tensor, X a$ tire second rank stress tensor, 
Sifafi th e  fourth  rank  com pliance tensor, E y the field vector, and dijy the third 
ran k  piezoelectric tensor. By employing the geometric rules for tensor

7 This method of determining the constants for rotated axes is discussed in a former 
paper ‘‘D ynam ic M easurements of the Constants of Rochelle Salt,” Phys. Rev., April IS, 
1939, Appendix I.

8 This method is discussed in a recent paper by W. L. Bond, ‘‘The M athematics of 
T he Physical Properties of Crystals,” B. S. T. J.,  Jan. 1943.

9 The tensor method of writing the elastic and piezoelectric relations is discussed by 
Atanasoff and Hart and by Lawson. See references (2) and (3).
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transform ation of axes, the com ponents of the ro ta ted  tensors are easily 
calculated and the elastic and piezoelectric constants for ro ta ted  crystals 
determ ined.

T he varia tion  of Y oung’s m odulus as a function of o rien tation  was first 
worked out by Voigt. In  term s of the I R E  angles specifying the o rien tation  
of a crystal p late, the i  compliance m odulus (inverse of Y oung s M odulus) 
is given by  the equation

sfi =  5 n(cos2 8  cos2 \p +  sin2 1/')2 +  (2si3 +  S44) sin2 8 cos ^

X  (cos2 8  cos2 +  sin2 if) +  S33 sin4 8 cos4 \p — 2su  sin 8  sin cos \p (A .58)

As discussed in C hapter I I  by  W. L. B ond , 10 the I R E  angles are m eas
ured as follows: T aking the X '  axis along the length of the crystal, th e  V  
along the w idth, and the Z '  along the thickness, the angle 8 is the angle 
between the Z  or optic axis and Z ' . <p is the angle between the projection  
of the Z '  axis on the X Y  plane and the X  axis, -while the skew angle is 
the angle between the length and the tangen t to the great circle which con
tains the Z  and Z '  axes and the length of the crystal X ' . A crysta l having 
its thickness along the X  axis (Y -cut crystal) will have the angles

$ =  90°; cp =  0°; i/' variable b u t equal to 90° when the length coincides 
w ith the Y  axis. U nder these conditions

T his equation has been m ade use of in evaluating the elastic constan ts of 
quartz  as shown by equations (A.20). For this equation A 2 was m easured 
from  the F  axis ra the r th an  from the Z  as in the I R E  angle and

Since from equation (A.19) the frequency of a long th in  crystal in longitudi
nal m otion is known to be

the  longitudinal frequency of any  oriented crystal can be calculated from  
equations (A.58) and (A.19).

I t  is the purpose of this section to show also th a t the tem peratu re  coeffi
cient of the longitudinal frequency of any  oriented crysta l can be calculated 
provided we know the tem perature coefficient of the six elastic constan ts of

5n =  Sn sin4 \p +  (2 si3 +  sf4) sin2 \p cos* \¡/

X [3 (cos <p cos 8 cos ^  — sin (p sin rf/f — (sin <p cos 8  cos \p ~  cos <psimp) ]

+  S33 cos4 — 2sf4 sin3 cos \p
(A.59)

A» = t -  90° (A.60)

(A.19)

10 M ethods for Specifying Quartz Crystal Orientation and their Determ ination by 
Optical M eans,” this issue of the B. S. T. J.



Q U A R T Z  C R Y S T A L  A P P L I C A T I O N S 219

quartz , and th a t regions of low tem perature coefficient crystals can be located 
for th is and  o ther simple modes of m otion for which the frequency can be 
calculated in term s of the elastic constants.

D ifferentiating  equation (A.19) w ith respect to t the tem perature

d f
dt

d f
dl

I
' 2 1 4

ps 1 1

+  dt_ , 1 
I  +  2

dp dsn
dtdt

- P i n  J
or

(A.61)

j  =  T f = - T ( -  \ [ T t  +  T tf[]

where T a the tem perature coefficient of the  q u an tity  a  is defined as the ra te  of 
change of a  w ith tem perature divided by the value of a.  T he tem perature 
coefficient of the  length i  = X '  is 7.8 p arts  per million per degree centigrade 
along the optic axis, and 14.3 p a rts  per million perpendicular to it. For a 
general o rien tation , the tem perature coefficient of length varies as

Tç =  14.3 — 6.5(sin2 9 cos2)/') (A.62)

Since the  to ta l mass rem ains the same when the crysta l expands, the tem 
p era tu re  coefficient of the density  is the negative of the sum of the coefficients 
of the th ree axes or

T p =  - 3 6 .4

H ence the tem peratu re  coefficient of frequency becomes

T f  =  3.9 +  6.5 sin2 9 cos2 \p

(A.63)

(A.64)

D ifferentiating  equation  (A.58) we have as the tem perature coefficient of a 
general orien tation

T/  =  3.9 +  6.5 sin2 9 cos2)/'

Sn  Tsf, (cos2 9 cos2 )/' +  sin2 )/')2 +  (2 SnTSls +  S u T sf t) X
sin2 9 cos2 )/-(cos2 9 cos2 ÿ  +  sin2 ÿ )  +  s33T H 3  X 

sin4 9 cos4 \p — 2 s u T eft sin 9 sin \p cos \p X
[3(cos <p cos 9 cos \p — sin <p sin ip) 2 — (sin <p cos 9 cos \p +  cos <p sin i/-)2]

5 u(cos2 9 cos2 \p +  sin2 \pf  +  (2ji3 +  i f 4) sin2 9 cos2 1p X
(cos2 9 cos2 \p +  sin" i/') +  i 33 sin4 9 cos4 ÿ

— 2sii sin 9 sin \p cos i/'^ icos <p cos 9 cos — sin <p sin if/ ) 2

— (sin <p cos 9 cos \p +  cos ip sin i/')2]_

(A.65)
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H ence since the elastic constants are definitely known, the  tem peratu re  
coefficient of any  longitudinally v ibrating  crystal can be ob ta ined  when 
the separate tem perature coefficients are evaluated.

T he tem perature coefficients appearing in equation (A.65) can all be evalu
ated  from  the tem perature coefficient angle curves for X  cu t ro ta ted  crystals 
shown by  Fig. 1.19. For an X  cu t crystal equation (A.65) reduces to

T f  =  3.9 +  6.5 cos21

' s n T s ^  sin4 yp +  (25i3r s, 3 +  5f4r sf4) sin" i/' cos2 yp

__________+  s33T S33 c o s 4 y p  -  2sEl i T sf i sin3 yp  cos yp

S n  sin4 yp  +  (2sł3 +  s4i) sin2 yp  cos2 yp

+  533 cos4 yp  — 25f4 sin3 y p  cos y p .

(A.66)

The value of is obtained directly  for A t  =  0 or yp  =  90°, for T /  — —2 
and  hence 5

=  11.8 (A.67)

T aking three other angles and solving for the rem aining constan ts we find

Tsfts?4 =  -5 3 1 0 ; (2s13TSl3 +  s?4Tsf4) =  45,130;

F S33533 =  17,400.
ÍA.68)

Inserting  the values found for the elastic constants, two tem peratu re  coeffi
cients are determ ined, and one relation is given between the others,

T,f .  =  + 1 1 9 ; r 833 =  182; ±  s 4 4 .1112 T s f3 228.2 (A.69)

T he values of (A.68) are sufficient to determ ine the tem perature coefficient 
of long th in  crystals cu t a t any angle, for inserting these values in (A.65) the 
tem perature coefficient for any oriented crystal in longitudinal v ibration  
is given by

T/  — 3.9 +  6.5 sin2 6  cos2 yp

+  755 (cos2 6  cos2 yp +  sin2 yp) 2 +  22,565 sin2 6  cos2 \p
(cos2 6  cos2 \p +  sin2 yp) +  8700 sin4 6  cos4 1p 

+  5310 sin 6  sin yp cos yp [3 (cos <p cos d cos \p — sin <p sin yp) 2

_______________________ — (sin <p cos 6  cos yp +  cos <p sin yp)2]
127.9 (cos2 6 cos2 yp +  sin2 yp) 2 +  175.8 sin2 6  cos2 yp

(cos2 6 cos2 yp +  sin2 yp) +  95.6 sin4 6  cosi yp 
+  89.2 sin 6 sin \p cos ^ [3 (cos <p cos 9 cos yp — sin (p sin yp) 2

— (sin cp cos 6 cos \p +  cos <p sin \p)2].

T he only regions of low tem perature coefficients are the regions for which 
the two big m iddle term s are small which requires th a t 6  —>■ 0, or yp —» 90°.

(A.70)
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T he first region would be a Z-cut crystal w ith its length somewhere in the 
A I p l a ^ a n d  would result in a tem perature coefficient of two p a rts  per 
million negative. Such a crystal is not of much in terest since there is no 
piezoelectric constan t for driving it. T he other region —* 90° would also 
resu lt in the length being near the X V  crystallographic plane, b u t would 
allow the m ajor surface to be m ade perpendicular to the X  axis and hence 
would allow the crysta l to be driven piezoelectrically. By allowing ip to 
be slightly greater than  90°, the fourth  term  in the num erator can be m ade 
slightly negative and of a value greater than  the two positive term s. T his 
resu lts in the + 5 °  X -cu t crystal having nearly a zero coefficient and this 
angle is the m ost favorable one for a low coefficient longitudinal mode of 
m otion. All o ther directions have a negative tem perature coefficient.

T he rem aining tem perature coefficients of the six elastic constants can be 
eva lua ted  from  Fig. 1.12, and equation (A.22). The frequency tem perature 
coefficient can be expressed by the eq u a tio n :

T f  — 3.9 +  6.5 cos2 6

1 Tcee T cf s sin2 9 +  cf4 T cf 4 cos2 d +  T cf„ cf4 sin 2 d l  (A-‘T )
9 E  • 2^ L cq 6 sm

+
+  Æ  cos2 9 +  cu  sin 29

since in term s of the  I R E  angles the series of crystals is given by <p =  —90; 
9 =  90 — + 2 ; \p =  90°. T aking  the A T , B T ,  and F -cut, whose coefficients 
have accurately  been determ ined, we have

T a b l e  VI

C rystal
C ut Value of A i Value of d T f T c

66
E'

c66

A T + 3 5 .2 5 ° 54 .75° 0 - 1 2 . 0 29 .39  X 1010 dynes/cm 2
V 0 90 + 8 6 164.2 40 .50
B T - 4 9 139 or - 4 1 0 - 1 5 . 2 68 .86

F rom  these d a ta  and equation (A.71), the three tem perature coefficients can 
be evaluated  as

T c* =  164.2; T c f4 =  165.7; T c f4 =  + 90 .2 (A.72)

To convert these into com pliance tem perature coefficients we have to 
m ake use of the relations of equations (A.8)

•?66 =  2 (Æ  -  sf*) =
C44

~Ë Ë TA >
C 4 4 C 6 6  —  C l  4

S  44

Jl4 —  C14

><■>/ «  E
Z {C 44 C 6 6  —  C1 4  )

E
£66

~Ë Ë E'1
C44 £66 ~  £14



D ifferentiating these w ith respect to t, we have

T e
1  «66

$11
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=  T  rE —X C4 4
E  E

2 cu
? +  7 * , ) ]  +  i r + i — ^

C44 C66 — Cl4 C44 C66 —  C l 4

74.®± ci 4

________ T,B
E  E  811

i l l  — il2

E
i l 2

—  T„EE  12

T . b1  «14

-S11 ~  ^12

{T& +  7 e* ) l  +
2cf4

(A .73)

T , e1  Ci 4E g----------- J 2 K1 e f t  4“ 1 c f s J  I T  e E  £ 2 X cl 4
C44C66 — Cl4 -J C44 C66 C14

74® =  74®1  8 H x «6 6
d,d, (r<f_ +  nfi)j  + 2Æ

S B  S2
-C4 4C66 — Cl4

-  7**p 2 'L C14E E  E ‘‘  -  C1 4
C44 C66 — C14

T a b l e  V II

Tem perature
Coefficient

P resent _ 
D eterm ination

Previous
"Determination

Bechmann

'j-'E +  1 1 .8 +  12 +  11 .5

rpE
Sn

Tc -?13

-1 3 5 2 -1 2 6 5 - 1 1 2 5

- 2 9 4 .8 - 2 3 8 - 1 4 8

j'E

T<•$33

+  120 +  123 + 1 1 3

+ 1 8 2 + 2 1 3 + 1 8 0

rĵ E
$44

+ 1 9 5 .4 +  189 + 1 7 5

rĵ E
$66

- 1 3 4 .2 - 1 3 3 .5 - 1 1 9

T a b l e  V III

Tem perature
Coefficient

Present
D eterm ination

Previous
D eterm ination

AtanasofE 
& H art Bechmann Koga

j E
C ll

- 4 6 . 5 - 5 4 - 4 9 . 7 - 4 8 - 6 1 . 1

'j'E
Ci 2

T r  c 13

-3 3 0 0

- 6 9 7
-2 3 5 0

- 6 8 7

-3 0 0 0

- 5 8 0

-2 1 1 5

- 5 3 0 __
ij-iE

C u
+ 9 0 .2 + 9 6 +  107 + 8 2 +  110

T rC33
- 2 0 4 .5 -2 5 1 - 2 1 3 - 2 0 8 —

rpE
C 44

- 1 6 5 .7 - 1 6 0 - 1 6 9 - 1 5 1 - 1 9 9
ij-iE

Cm
+  164.2 +  161 +  170.1 + 1 4 4 +  199

Inserting  the num erical values for the elastic constants and  the  tem pera ure 
coefficients we have

T ,  * =  .8837.* +  .10717,* =  -1 3 4 .5 ; 7,® =  121.4;

7 .® =  195.4
(A.74)
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T h e  value of T sf t provides a check on the accuracy of m easurem ent since 
it  h as  been m easured in two ways. T he agreem ent is w ithin abou t 2 per 
cen t which shows the  probable accuracy of the m easurem ent. Com bining 
the  coefficients of (A.69) w ith those given by  equation (A.74), the complete 
tem peratu re  coefficients are given in Table V II together w ith previous 
determ inations11,1“. T he present determ ination  differs from  a previous 
determ ination  by  the  w riter due to the use of the elastic constants found 
here ra th e r  th a n  V oigt’s constants.

4  he tem perature coefficients of the cfj elastic constants are easily obtained 
from  the  s constan ts by  em ploying the relations of equation  (A.8). These 
resu lt in the  tem perature coefficient values for the c constants given in 
T ab le  V III.

B y using the  elastic constan t data , the tem perature coefficient da ta , and 
the equations of transform ation  for ro ta ted  axes it is possible to calculate 
the  frequency and tem perature coefficient of any  simple mode for any 
o rien tation . Exam ples are given for a  face shear mode and a thickness 
shear m ode in a previous paper “ Low T em peratu re Coefficient Q uartz 
C rysta ls .” 13 T h is paper shows contour m aps for low tem perature coeffi
cient crystals of these types.

11 The first determination of the temperature coefficients of the writer was given in a 
paper “Electrical W ave Filters Em ploying Quartz Crystals As Elem ents,” B. S. T. J  
July 1934, p. 446. A redetermination using better temperature coefficient data was given 
in a paper “Low Temperature Coefficient Quartz Crystals,” B. S. T. J. ,  Jan. 1940. The 
present determination uses the same temperature coefficient data but slightly different 
elastic constants which results in slight changes in the temperature coefficients.

12 A partial determination of the coefficients was made by Koga, Rep. Rad. Research, 
Japan 6, 1 (1934). Other complete determinations are R. Bechmann, Hoch: lech. U. Elek. 
Akus.  44,145 (1934) and Atanasoff and Hart, Phys. Rev., Vol. 59, No. 1, Jan. 1, 1941, 
pp. 85, 96.

13 B. S. T. J . ,  Vol. X IX , 74 (Jan. 1940).



C H A PT E R  II

M ethods For Specifying Quartz Crystal Orientation and 
Their Determination by Optical M eans

By W. L. BOND

2.1 Q u a r t z  a n d  i t s  A x e s  

T he chem ist describes quartz  as silicon dioxide, SiC>2, crystallized in 
hard , b rittle , glass-like, six sided prisms, often w ith pyram idal term inations; 
m elting po in t 1750° Centigrade, density  2.65, hardness on M olds scale 7. I t  
transform s from  alpha to beta  quartz  a t  573°C under atm ospheric pressure. 
U nder stress it  transform s a t  lower tem peratures. A lpha qu artz  is in
soluble in ordinary acids b u t soluble in hydrofluoric acid; and in h o t alkalis.

A t first glance we m ight say th a t  i t  had hexagonal sym m etry  b u t if we 
etch two ad jacen t pyram id faces we find th a t the microscopic etch  p its  
are of different shape, hence the faces cannot be equivalent. I t  has three 
axes of two-fold sym m etry and one axis of three-fold sym m etry. L e t us 
also rem ark th a t it does not have a center of sym m etry  or a  six-fold axis,. 
Figure 2.1 shows us th a t the three two-fold axes are perpendicular to  the  
three-fold axis and  are 120° apart. If they were no t like this, they  would 
no t be self-consistent.

As we examine more and more quartz  crystals we find th a t  there is a 
tendency for pyram id faces to be a lternately  large and  small, the  larger 
faces being brighter than  the smaller faces. Also the etch p its  of alternate 
faces are similar. (The etch p it study is a powerful tool in determ ining 
crystal sym m etry.) F u rther, two other “ k inds” of faces are qu ite  
commonly found. If we draw  such a crystal as though equivalent faces 
were of equal size we get such a p icture as Fig. 2.2. I t  is an  idealized figure 
used to illustrate the sym m etry of quartz. The prism  faces are m arked 
m, the six faces m arked r “ constitu te the prim ary rhom bohedron”— the 
ones we called the large brigh t pyram id faces. T he crystallographer 
th inks of these six faces as pieces of the faces of a rhom bohedron. (A 
crystallographer’s rhom bohedron is like a cube stood on one corner, then 
the  opposite corner pushed in a little towards the other, or pulled aw ay 
from  it. H e thinks of it always as standing on this corner, as Fig. 2.3.) 
T he z faces constitu te  a second rhom bohedron—the secondary rhom 
bohedron or m inor pyram id faces. The s and a; faces illu strate  a  fu rth er 
property  of quartz. Figure 2.3 differs from its m irror image so th a t  we

224
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m ight expect to find two kinds of quartz  th a t are related  to each o ther as 
one’s righ t hand  is rela ted  to his left. We do find them  and call them  
righ t-hand  q uartz  and  left-hand quartz  respectively. T hey  are illustrated  
m  Fig. 2.4. These conventional figures are shown in m any texts b u t no one 
has seen such perfect quartz  crystals. T hey  are draw n possessing ju st 
these faces and  no others m erely to illustrate  the sym m etry  of quartz  and 
its  occurrence in right-handed and left-handed forms.

T hese figures are also useful in defining how a b lank shall be cu t from 
one k ind of quartz . I t  is found th a t if a crystal be compressed w ith forces

A 3

Fig. 2.1— Hexagonal axis system

parallel to  a pair of sides of the hexagon an  electric polarization takes place 
in the  direction  of the forces. T he edge “ modified” by  the presence of 5 
and  x  faces becomes negative. If we allow these charges to leak off and 
then  suddenly release the m echanical forces the “ modified” edge becomes 
positively charged as the crystal expands. T his is true for both right- 
hand  and  left-hand crystals.

L e t us now ta lk  abou t right-hand quartz . Since expansion is con
sidered as a positive stra in  (contraction as negative) it  is decided to take 
th e  positive end of the electric axis as pointing tow ards the modified edge. 
T h is gives us a positive charge a t the positive end of the electric axis when 
a positive stress (tension) is applied along th is axis. This positive direc



tion of an  electric axis is taken  as the positive x  axis of a righ t-hand  xyz 
rectangular coordinate system. T he z axis is taken  along the axis of the 
hexagonal prism , and  since the x  axis is an  axis of two-fold sym m etry  v e

226 B E LL  S Y S T E M  T E C H N I C A L  J O U R N A L

can take either end of the prism  as the direction of + 2 . We then  choose y  
to  form  a  right-handed coordinate system. (In  a right-handed system  if a 
right-handed screw tu rns  abou t the 2  axis in the sense x  to  y  i t  w ould ad-



vance in the positive z direction.) T he y  axis will always lie directly  under 
a m ajor rhom bohedral face.

We could define the x, y  and z axes for a left-hand crystal as form ing a 
left-hand system . Though th is is a useful conception in m athem atical
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7T HAND RI GHT HAND
J UARTZ QUARTZ

t ? : ~  o  A

studies, we can dodge this “ double s tan d ard ” by a simple device. For use 
as a crystal circuit element, left-hand quartz  can be used ju s t as well as 
righ t-hand  quartz . In  designing such an  elem ent it suffices to think al
ways in term s of right-hand quartz  and issue specifications for this kind 
only, using always right-hand coordinate systems. If now for left-hand
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z

Fig. 2.5— Simple crystal cuts

Fig. 2.6— Simply rotated cuts



S P E C I F Y I N G  Q U A R T Z  C R Y S T A L  O R I E N T A T I O N 229

crystals we m ark  the negative end of the electric axis as positive we can 
trea t it exactly as though it were a right-handed crystal.

The first plates used were x and y  piezo ids (squeezing solids). For 
these simply described cuts one does no t need to know the quartz  “ handed
ness.” These crystals had large frequency tem perature coefficients. 
B u t when Lack, W illard and Fair brought out the low tem perature coeffi
cient AT plate, its more complicated orientation required the right-left 
differentiation. The AT, the subsequent BT, CT, D T , etc., were thought 
of as y-cuts ro tated  through various angles about the edge th a t coincided 
with x. For example, the A T was a + 3 5 J °  cut, or was a y  p la te  ro ta ted  
3 5 |°  about x) the B T  was a —49° cut. Their orientations are illustrated 
in Fig. 2.6.

As more complicated orientations were designed to give even be tte r 
tem perature coefficients a t  extreme frequencies the description became more 
difficult, requiring the specification of two or three angles. M any schemes 
for specification have been devised b u t the In s titu te  of Radio Engineers is 
recommending the adoption of a system  we shall call the I .R .E . system.

The crystal designer has the problem : “ How shall I  orient the length, 
w idth and thickness of a piezoid w ith respect to the x, y  and z axes so as to 
give the required electrical properties? He thinks in term s of fixed x, y  
and z axes, variable piezoid edge directions. The crystal cu tter has the 
converse problem. “ How shall I  orient the x, y  and z axes of the crystal 
so th a t fixed saws will give the required surfaces?” For this reason the 
m ost convenient orientation angles from the designer’s viewpoint m ay 
not be the simplest from the cu tte r’s viewpoint. Also the translation 
from  one set to the other m ay no t be simple.

T he early m ethods of orientation specification were somewhat chaotic. 
T here was no overall plan of w hat angles were to be specified and from 
w hat axes they  were to be measured. Each group of crystals was a law 
unto  itself.

T h e  I.R .E . O r ie n t a t io n  A n g l e s

T he relations between the x, y  and z axes of the crystal and the length, 
w idth and  thickness of the piezoid are given in Fig. 2.7.

The position of Fig. 2.7 m ay be considered as a result of turning the piezoid 
through the successive angles </>, 6, \p starting  from an initial position length 
parallel to x, w idth parallel to y  and thickness parallel to z as in Fig. 2.8. 
F irs t the crystal is turned through angle <j> about z in the direction shown 
in Fig. 2.7. Then it is lowered through angle 6 about an  axis parallel to the 
width direction, again in the direction shown in Fig. 2.7. Finally it  is skewed 
through an  angle \p about an  axis parallel w ith the thickness direction in 
the sense shown in Fig. 2.7.
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z

Fig. 2.7— The I.R .E . orientation angles

Fig. 2.8— The initial position 0, 0, 0 for the I .R .E . ang

X
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T h e  I .R .E . A n g l e s  f o r  a  F e w  S t a n d a r d  P ie z o id s

Name <t> e *
z 0 0 0
X 0 90 90

- 1 8 °  Filter 0 90 108
+ 5 °  “ 0 90 85

y 90 90 90
A T - 9 0 5 4 | 90
B T - 9 0 - 4 1 90
C T - 9 0 52 90
GT - 9 0 38° 52' ± 4 5 °

M T 6 ° 40' 50° 28' 79° 36'
N T 9° 25' 40° 40' 7 7 ° 40'

2 .2  O r ie n t a t i o n  b y  N a t u r a l  F a c e s

W ith well faced m ateria l one can do an  accurate job of orienting w ithout 
X -rays if he knows the faces of quartz  thoroughly.

The quartz  rhom bohedral faces are highly perfect and polished, the 
major often more so than  the minor. W ith two such faces a device like 
tha t illustrated in Fig. 2.9 could be used to give an orientation accurate to  a 
m inute or two. An adjustable base, symbolized here as a ball and socket, 
is adjusted so th a t the eye centers the lamp filament image on the cross 
hairs, first for one face, and then, turning the base about on the reference 
table it is adjusted for another face. W hen the images all pass through 
center as the base is tu rned  on the table the optic axis is perpendicular to 
the table. W hen any  one image is centered, the electric axis is perpendicu
lar to the plane of the paper. T his w ith the already m entioned fact th a t 
AT plates are cu t near a m inor face and B T ’s near a m ajor, allows us to 
cut the crysta l accurately.

Although the rhom bohedral faces are highly perfect the prism  faces never 
are. On the prism  face, true prism  faces th a t are very short in the z direc
tion alternate  w ith short rhom bohedral faces to give the general contour 
a slant. These “ steps” give the face a striped look. The stripes are known 
as growth lines or striations. T hey  are parallel to x  and can be used to 
find x  to a degree or so. If we sight on striations on two adjacent faces 
we can locate the optic axis to nearly the same accuracy since the optic 
axis is perpendicular to the striations on all faces.

There are several indications th a t help us find, from the prism, where 
the m ajor rhom bohedron would be in the absence of such faces. Some 
crystals grow in the form shown in Fig. 2.10. T hey  are sym m etrically 
doubly term inated  and a very narrow  prism  is found under the m ajor 
rhom bohedron, a wide face under the minor. Hence given a portion like 
th a t enclosed in the do tted  line we could deduce the complete orientation.

Some crystals grew ou t a t  righ t angles to a wall and because they  grew



L A M P

orientation by reflection of light from faces

LENS

Fig. 2.9— Optical

Fig. 2.10— A type of quartz growth 
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along a z axis in one direction only, the  x  axis does not appear to  be one of 
two-fold sym m etry. Such a crystal is illustrated  in Fig. 2.11. H ere the 
prism faces under a  m ajor rhom bohedron are tapered and bright, the 
prism faces under a m inor are relatively parallel sided and very dull. The 
bright prism faces are much more nearly parallel to the optic axis th an  the 
dull ones. Again, given a portion of the prism we can deduce the orien
tation.

2 .3  F l a t  L a y  C u t t in g

F la t lay cu tting  takes advantage of the fact th a t, although tapering 
quartz  prism s have their faces non-parallel to  the z axis the prism  faces are 
parallel to the x axis. A crystal is cemented prism  face down, to a m ount
ing plate. T he m ounting p late is tilted  and turned on a base p la te  to render 
the optic axis parallel to the long edge of the base plate. T his is done in 
a conoscope. Now the edges of the base plate are the x, y, z axes of the 
crystal.

T he crystal can now be cut directly  into wafers for dicing into A T ’s, 
B T ’s etc. by  m ounting on an angle bracket as shown in Fig. 2 .1 3  or cut into 
X  sections from which AT or BT bars shall be m ade by  merely sawing down 
the length. Again z sections can be cu t by  cross cutting. Good z sections 
can be m ade in th is way in the to ta l absence of faces. These sections can



Fig. 2.12— Optical adjustm ent for the sawing of Z sections or direct crystal blank slabs
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then  have the ir x  axes determ ined by  etching and X -rays and cu t up  by  the 
Z  section cu tting  m ethod.

B y turn ing  the  base p la te  on the angle bracket and dicing the wafers a t 
an  angle any  orien tation  can be obtained.

2.4 Z  S e c t io n  o r  V e r t ic a l  C u t t in g

H aving a  true  Z  basal section it  is first m arked for the -\-x axis. The 
sim plest procedure is to use the sta r m ark ; for right-hand quartz  (R.H.Q .)

Fig. 2.14— Marking the “sense” of righthand and lefthand sections

the  rays should po in t tow ard the plus electric axis, for left-hand quartz 
the  rays should po in t tow ards the negative electric axis.

T he section is now placed on the carriage p late, one ray  pointing towards 
the operator (which ray  is decided on the basis of the economy of quartz).



Fig. 2.16—The rotation A2

Fig. 2.17— The slab after the rotations.Ai and A2

Fig. 2.18— M aking the A3 rotation  
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T he section is then  ro ta ted  clockwise on its base, through angle A \  as in 
Fig. 2.15 and  cem ented in th is position.

T he carriage p la te  is then  transferred  to a diam ond saw angle b racket of 
t i l t  A 2, as in Fig. 2.16, and the  crystal is sawed into slices slightly thicker 
th a n  the  required final thickness t.

T he operator tu rn s these slices down flat on the table of a dicing saw as 
in Fig. 2.17 by  ro ta ting  the slices 90° clockwise abou t the axis A A ,  then  turns 
the slice through angle A 3 as in Fig. 18 and m akes a cut. The p la te  is fin
ished as shown in Fig. 2.18.

Since the angle b racket is no t reversible, negative A 2 angles are cu t by 
adding ± 1 8 0 °  to  A \  and reversing the sign of A%.

T h e  A A n g l e s  e o r S o m e  St a n d a r d P l a t e s

Cut A\ Az Aa
X 90° 0 0

y 0 0 0
z 0 or 90° 90° 0 or 90°

- 1 8 90° 0 +  18°
+ 5 90° 0 - 5
A T 0 35J 0
B T 180° +49° 0
CT 0 38° 0
D T 180° 52° 0
GT 0 51° 7' ± 4 5 °

M T 96° 40' 39° 32' - 1 0 °  24;
N T 99° 25' 49° 20' - 1 2 °  20'

2 .5  T h e  R e l a t i o n  B e t w e e n  t h e  I .R .E .  A n g l e s  3 a n d  t h e  Z  S e c t i o n

A n g l e s  A 1; A 2, A 3

I t  can be shown th a t:
A 1 =  90 +  0 

A 2 =  9 0 - 0  

As = -  90 +  0

2.6 P o l a r i z e d  L i g h t  a s  A p p l i e d  t o  C r y s t a l s

L ight consists of electrom agnetic “ v ibrations.” The vibrations are per
pendicular to  the direction of propagation b u t ordinarily helter-skelter in 
all directions perpendicular to  the propagation. The color of the light is 
determ ined by  the v ibration  frequency, blue v ibrating  more rapidly than  
red. In  a vacuum , light travels a t 186,000 miles per second (3 X 1010 cms 
per second) all colors a t the same velocity. On entering a transparen t me
dium  the  velocity is reduced, ordinarily blue being slowed more than  red. 
T h e  frequencies are unaltered on entering the medium.

L ight traveling through a uniaxial crystal in the direction of Fig. 2.19 
breaks up  into two com ponents th a t travel a t  different velocities. For one



238 B E L L  S Y S T E M  T E C H N I C A L  J O U R N A L

of these com ponents the v ibration  is all in the plane of poz, of the o ther 
the  v ib ration  is all perpendicular to  the plane of poz.

Z

A plo t of the propagation  velocities for all d irections is a surface of two 
sheets, one oc tan t of which is shown in Fig. 2.19. One sheet is a sphere;
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the o ther sheet, which is an  ovaloid of revolution, touches the sphere a t  the 
two points where the double sheet is pierced by  the optic axis. Of the two 
rays traveling along one line, the one w ith a velocity corresponding to the 
sphere is called the ordinary  ray ; the one w ith a velocity corresponding 
to the ovaloid is called the extraordinary ray. For quartz  the ovaloid is 
pro late  and lies inside the sphere. For tourm aline the ovaloid is oblate and 
lies outside the sphere. The small arrows show the direction of vibration. 
Each of the com ponents is said to be polarized since for each all the vibra
tion is in one direction.

Since bo th  sheets are surfaces of revolution w ith the optic axis as the 
axis of revolution, we can never tell the x axis from the y  axis by optical 
means.* Only the z axis is a unique direction and can be determ ined op
tically. If this figure is taken to  represent the case for blue light there will 
be a slightly larger b u t similar figure for red light since, in the crystal, red 
light travels faster than  blue light.

Some kinds of crystals have velocity plots for which the double sheet 
surfaces touch a t four points. Hence they  have two optic axes and are 
called biaxial. All hexagonal, rhom bohedral and tetragonal crystals are 
uniaxial, all o thers except the isom etric ones are biaxial. Rochelle Salt is 
biaxial.

2.7 P o l a r i z e r s  a n d  A n a l y z e r s

In  the Nicol prism  m eans were found to elim inate the ordinary ray; the 
o ther is transm itted  as polarized light. T h a t is, ordinary light of any or 
all colors upon passing through a Nicol prism  emerges as plane polarized 
light w ith no change in color.

T ransparen t colored m edia appear colored because they  absorb some 
colors of light m ore th an  other colors. In  colored crystals the two rays 
them selves often differ in their color absorption so th a t the crystal as viewed 
by m eans of the ordinary ray  seems to be of a different color than  as viewed 
by the ex traordinary  ray. Quinine iodo-disulfate, or H erapath ite , absorbs 
m ost visible colors of one ray  alm ost com pletely; transm its about 60%  of the 
visible colors in the other ray. Hence light emerging from this crystal is 
alm ost com pletely polarized. In  the commercial product called “ polaroid” , 
m yriads of such crystals, microscopic in size, are contained in a celluloid
like sheet and oriented by stretching the sheet. This m aterial now re
places Nicol prisms for all b u t the m ost exacting uses.

If we p u t two identical polaroid sheets together w ith their transm ission 
v ibration directions parallel as in Fig. 2.20 we can see through them  b u t if 
their t r a n s m i s s i o n  vibration directions are a t  right angles we cannot see

* M ethods depending on etch  p its are excluded. T h ey  are optical on ly  in th e sense  
th at observing natural faces is  optical.
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th rough  them  because the  second sheet can tran sm it none of the v ibrations 
tran sm itted  by  the  first sheet. As we ro ta te  the second sheet back  from  
com plete extinction to “ best transm ission” the tran sm itted  ligh t increases 
sinusoidally. In  any  such arrangem ent as Fig. 2.20 the  first sheet is called 
the polarizer, the second is called the  analyzer. T he nam e analyzer is 
chosen because light th a t can be extinguished by  m eans of a su itab ly  ro
ta ted  analyzer m ust be plane polarized, and  it m ust be v ib rating  a t  righ t 
angles to the transm ission v ib ration  direction of the analyzer when set for 
extinction. T he transm ission v ib ration  d irection of a polaroid p la te  will 
hereafter be called its v ib ration  axis.

L et us go back to  Fig. 2.19 and  cut ou t from  around  the  p o in t p, the  small 
tangen tia l crystal p la te  shown magnified in Fig. 2.21. H ere p  is the  direction 
of propagation  as before, and  z is parallel to the  optic axis. Also s which is

in the  plane of p  and  z, is the  direction of slow v ib ration  while /  which is 
perpendicular to th is plane is the direction of fast v ibration . T he v ib ra
tion  frequency is really the  same for bo th . “ Slow v ib ra tio n ” m eans “ v i
b ration  direction for slow transm ission.” All directions of p ropagation  
th a t  have th is v ibration  axis have the  same velocity.

In  Fig. 2.22 we have placed th is p la te  b e tw een“ crossed polaroids”— th a t 
is polaroids set for extinction. T he slow direction m akes an  angle a  w ith 
the polarizer v ib ration  axis. W hen th is vertical-polarized ray  of in tensity  
I  en ters the crysta l it breaks up  into com ponents, one of in tensity :

I  cos a  v ib ra tes along s (2 . 1 )

and  one of in tensity

I  sin a  v ib ra tes a lo n g /  (2 .2 )

as illu strated  in Fig. 2.23.
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z

Fig. 2 .22— T ransm ission  w hen a crystal is p laced askew  betw een crossed polarizers

I f  a  =  0 the fast com ponent reduces to zero and the slow com ponent goes 
through the crystal unchanged hence emerging plane polarized. I t  can
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then  be extinguished by  the analyzer. If a  =  90° the slow com ponent 
reduces to  zero and  the  fast one goes through unchanged and  again can be 
extinguished by  the analyzer. T h is effect can be used to check crystal 
orientations. Such an  in strum ent fitted  w ith a divided circle used to  m eas
ure a  is called a stauroscope. T he stauroscope often uses a special analyzer 
capable of b e tte r determ ination  of extinction  setting.

If a  is no t 0 or 90° two com ponents traverse the  crysta l and  recom bine a t  
the  boundary . These two com ponents are a t  righ t angles to  each o ther; 
th ey  are of unequal intensities, and they  differ in phase because they  tra v 
eled a t  different speeds.

F ig . 2 .23— T h e  in ten sity  of th e  tw o  com p on en ts  from  F ig . 22

Now vs and  vf  have the same frequency F  so th a t in u n it tim e each m akes 
F  wave-lengths. T his requires th a t  the  slow ray  have F  w ave-lengths in a 
distance vs and hence th a t  each w ave have a le n g th :

Similarly

* -  Vf 
F

(2.3)

(2.30

In  a d istance t there are -  fast waves and  — slow ones. L e t us say th a t
A  /  A s

there are N  m ore fast waves th an  slow ones in the d istance t. C onsequently

N  =  ~ — -  which, from  (2.3) and  (2.30 m ay be w ritten :
A  /  A s

n  =  ‘1 - ‘L
V f vs

(2.4)

All the d a ta  on light are given in term s of w ave-lengths in a vacuum , no t 
in term s of frequency, so we will assum e th a t in a vacuum  the w ave-length
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of th is light is X, and  as in a vacuum  its velocity is F ( =  3 X 1010 cms per 

second) an  equation similar to (2.3) would tell us th a t X =  and hence th a t:

T he ratio  of the velocity in  a vacuum  to the velocity in a m edium  is called 
the refractive index of the m edium  commonly given the symbol n. For 
m ost transparen t m aterials n  is between 1.3 and 1.8.

We w rite these refractive indices as

After passing through the crystal p la te  of thickness t, Fig. 2.21, the two 
light com ponents recombine. T hey  are polarized a t  right angles each to 
each; they  are of unequal intensities, and they differ in phase by N wave
lengths as given by  equation (2.7).

If the crystal were vanishingly th in  the two com ponents th a t recombine 
would be effectively in step or in phase. In  Fig. 2.24 we have p lo tted  vibra
tion am plitude against tim e for these two components. T hey  are sep
ara ted  for clarity. In  the upper curve the slow v ibration  is shown as ver
tical, in the center curve the fast one is shown as horizontal. In  the lower 
curve corresponding points have been added vectorially. From  actual con
struction  we see th a t in the resu ltan t curve the v ibration is always parallel 
to the line A A '. Hence it  is plane polarized and can be extinguished by 
m eans of an  analyzer.

L et us now consider the case of a thicker p la te  for which the slow wave 
gets a quarter-w ave-length behind the faster one. This case is p lo tted  in 
Fig. 2.25 in the same way th a t the previous case was p lo tted  in Fig. 2.24. 
I t  tu rns ou t to be a space curve like a slightly flattened corkscrew. Viewed 
along the axis it looks like an  ellipse, as shown to the right of the space 
curve. If the slow ray  had  lost b u t a little  w ith respect to the fast ray, we 
would have gotten a very flat ellipse. If the two com ponents had had  the

(2.5)

W ith (2.5) we can rew rite (2.4) as

(2.6)

— =  n t  and — =  n s respectively. 
Vf vs

Now (2.4) becomes:

(2.7)
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sam e am plitude w ith  the  q u arte r w ave phase difference the  end view in Fig. 
2.25 would have been a true  circle. Now since the v ibration , in these cases, 
is n o t all in one plane, the  light cannot be extinguished by  an  analyzer; it 
is n o t p lane polarized light. In  the one case it  is called “ elliptically polar
ized” light and  in the  other, “ circularly polarized” light. If the  slow ray  
loses an  in tegral num ber of w ave-lengths, i t  m akes no difference; only frac-

F ig. 2 .24— T h e  recom b ination  of th e lig h t com p on en ts a fter  passing through a
th in  crysta l

tions of w ave-lengths count, except th a t  if several w ave-lengths are p resen t 
a thickness th a t  is righ t to  give an  integral num ber of w ave-lengths for one 
color m ay give an  integer plus a fraction  for some o ther color. If the  th ick
ness is fairly  small, th is m ay  cause spectral colors from  w hite light. F or 
th ick  p la tes the w ave-lengths so overlap th a t  the field appears colorless 
b u t dark  or w hite according to  the value of the angle a ;  i.e., if a  is zero or

I
i
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90° the  field is dark ; if a  ^  0 or 90° the field is bright. In  Fig. 2.26 we illus
tra te  how, for one color of light the polarization s ta rts  ou t as plane a t  the

crystal boundary, passes through elliptical to circular polarization, then flat
tens ou t the other w ay through elliptical to plane polarization a t  a distance
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in the  crysta l corresponding to  the  slow wave being one w ave-length behind 
the fast one.

In  Fig. 2.27 we show two AT p la tes resting on a reference surface. In  the 
first crysta l the p ropagation  is perpendicular to  x, in the  second crysta l i t  is

Ou
N

along x. If the reference surface is the reference tab le of a sim ple stauro- 
scope the edge of the first crysta l will appear d a rk  because a  =  0° or 90°; 
the  edge of the second crysta l will appear b righ t because a  is no t 0° or 90°. 
A ctually  th is a  for an  A T p la te  can be ± 3 5 °  ±  any  m ultip le of 90° because 
we d on ’t know w hether 2  stands ou t to  the righ t or to the  left. H ence the
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reading m ight be, for instance, —35°, + 3 5 °, + 5 5 ° , + 125°, etc. T his is 
the  principle of the normascope used to identify the x  direction for crystal 
ad justm ent.

L e t us s tudy  these relative phase shifts a t  different angles near the optic 
axis. Now quartz  has an  optical com plication beyond th a t ju s t described—- 
it ro ta tes the plane of polarization of plane polarized light traveling along 
the optic axis. T his com plicates our present a ttem p t to build up a back
ground sufficient for an  understanding of the conoscope. B u t the cono
scope finds the optic axis for other crystals th a t do no t ro ta te  the plane of 
polarization, tourm aline for example; so we will ignore this rotation, to be

gin w ith, in order to arrive quickly a t  some useful conclusions. We will 
la ter explain how optical ro tation  modifies these conclusions.

Consider then the crystal z section shown in Fig. 2.28. A source s sends 
m onochrom atic light through the polarizer which passes only vertical 
vibrations. We will assume th a t the light passes in and ou t of the crystal 
w ithout a deviation of path . Since the v ibration is in the plane of z and 
pi (its direction of propagation) the ray does not break up inside the crystal 
b u t is propagated  as plane polarized light, unchanged. An analyzer set 
for vertical extinction could then extinguish this ray.

T his is true  for propagation  from 5  anywhere in th is vertical plane. 
Also since the v ibration  is perpendicular to the plane of z and pi the ray  
pi does not break  up inside the crystal b u t passes through and ou t un
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changed. All rays from  5  in the horizontal p lane emerge p lane polarized 
and  can be extinguished by  an  analyzer set for vertical extinction. T he 
ray  po is in bo th  these planes so it  can be sim ilarly extinguished.

W ith  the  ray  pz the  situation  is different. H ere the  v ib ration  is n o t in the 
z pz p lane so the  ray  b reaks up  inside the  crysta l in to  two com ponents which 
travel w ith different velocities and  recom bine in  or ou t of phase to  give the 
various degrees of elliptical polarization (including plane and circular). 
Hence, an  eye looking back along pz, through an  analyzer set for vertical 
extinction, will see light or d a rk  depending on the  phase sh ift N .  N ow  th is 
phase shift for a  given thickness of p la te  is zero along po b u t increases as 
6 increases (w ithout changing <£; see Fig. 2.28), passing th rough  one in tegral

<t> =  1 80 °

F ig . 2 .29— A  p lo t o f ph ase as a fu n ctio n  o f <j> an d  6

value afte r another. Therefore, as we allow 6 to increase, the  eye should 
see a lte rna te  dark  and b righ t regions. M oreover, since the crystal is op
tically  sym m etric ab o u t z, if 4> is changed w ithou t changing d, th e  ap p a ren t 
brightness will no t change (except th a t  if <f> =  0, 90°, 180° or 270° the  field 
is dark  as we previously explained). C onsequently, if we could see along 
all directions a t  once we would see a p a tte rn  of concentric d a rk  rings on a 
dark  cross as shown in Fig. 2.29.

B u t we can see along all these directions a t  once if we em ploy a  p roperly  
placed lens for a lens can converge all these rays to  one po in t where an  eye 
can be placed for viewing.

T hus an  eye a t  e, Fig. 2.30, will see, in the  direction  e po, th e  ray  th a t
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sta rted  along s p0. I t  will see along e pi the ray  th a t s ta rted  along 5  p i .  
E very  po in t on the lens will have associated w ith it a different direction 
in the  crystal. Therefore the eye will see a p a tte rn  like th a t of Fig. 2.29. 
T h is is the principle of the conoscope. In  the conoscope (the nam e means 
“ conical viewing” ) the source s is replaced by  the image of a source, the 
image being cast by  a lens; see Fig. 2.31. T hus by the use of two similar 
lenses we get twice as much working space as one lens would give.

F ig. 2 .31— A  practical conoscope

Figure 2.32 show’s a cross-section of the W estern Electric conoscope. The 
graduated  dial shaft goes ou t through the bottom  of the tank  to give more 
working room—older instrum ents had the shaft overhead and it was in the 
way. T he light source is a m ercury arc lam p with filters to isolate the 
5461A line. The lenses have a converging power corresponding to f: 0.6. 
T he focus is no t changed by  changes in the refraction of the oil—in fact, the 
focus is the same w ith no liquid in the tan k  as when filled w ith liquid. T his 
is of some in terest for those who m ight wish to use the instrum ent for 
Rochelle salt and accordingly use a fluid of refractive index about 1.495
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instead of the 1.546 of quartz . T he d ial is graduated  into degrees and  a 
vernier allows readings to ten ths of degrees.

If a crystal plate is held against the glass reference surface one m ay read 
the angle between the optic axis and the surface normal. One should 
occasionally check the instrum ent (against slippage of the dial) by reversing 
the crystal and recentering the pa tte rn . If the readings are no t identical, 
the dial should be adjusted  till they are. Even if the readings are no t iden
tical the m ean value should be correct. If one is using the m ethod of ring

7

6

5

2  4
UJcco
UJ
Û

z
-  3 a>

2

1

0
0 10

R
F ig . 2 .33— T he ring eccentric ity  correction chart

centering, the correction for eccentricity from Fig. 2.33 should be applied to 
this m ean value.

T he carriage m ay be. slid back and forth  and for very small crystals the 
carriage should be placed so th a t the crystal is near the center of the tank  
so th a t very  little  of the light cone by-passes the crystal. B y the use of a 
block a th in  crystal can be examined by  viewing through its edge or length. 

• T he carriage can be removed and “ raw ” crystals examined. T he optic 
axis is plainly visible and quite accurate orientations can be m ade if there 
is no t too much opaque m aterial on the crystal. Excessive optical tw inning
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m akes a  confused p a tte rn  b u t good orien tations can be m ade anyw ay. A 
“ raw ” crysta l can be m ounted ad justab ly  in a jig  th a t is lowered in to  the 
conoscope, the optic axis lined up, the  jig transferred  to a saw, and  sections 
sawed directly.

L e t us tu rn  now to the q u an tita tiv e  analysis of the ring p a tte rn  seen in 
the eye piece when exam ining a  uniaxial crystal. We wish to  know the  size 
of the sm allest ring in the  field, or ra th e r the corresponding angle in the 
crystal. T his first dark  ring (analyzer and polarizer crossed) is the result 
of the slow wave falling one wave length behind the fast one. If  the  p la te  
thickness (Fig. 2.34) is t' the p a th  length in the  crysta l is

t  -
t'

cos 9
(2.8)

T his is to  be substitu ted  in Eq. 2.7, nam ely:

N  =  -  (« / -  n ,) (2.7)

Now it can be shown th a t, quite accurately , a t  the angle 9 from the optic 
axis:

n, — n j =  .00917 sin2 6 (2.9)

where .00917 is the difference in the  refractive indices for the ord inary  ray  
and  the extraord inary  ray  for green m ercury  light traveling  a t  righ t angles 
to  the optic axis. (These are generally given the sym bols n0 and  n e or n w 
and  n t respectively.)

t'
N i  = X  .00917 sin 6 =  1

X cos 6

and since X =  .000546 m m . for green m ercury  light th is m ay be w ritten  

t' sin 6 ta n  9 =  0.0595 mm. (2.10)



S P E C I F Y I N G  Q U A R T Z  C R Y S T A L  O R I E N T A T I O N 253

whence we solve for the values in th is table

convergence 6 =  5° 10° 20° 30°
thickness t' =  7.8 1.94 0.48 0.21

T his shows th a t if we wish to examine th in  plates in a conoscope the lenses 
m ust be strongly convergent. T he conoscope used in the W estern Electric 
has a convergence corresponding to abou t the 2 0 ° en try  of the table so it

F ig . 2 .35— R ing  eccen tr ic ity

can be used on crystals down to a h ah  m illim eter thick— th a t is for orien
tation studies. In  determ ining handedness we rem em ber th a t th is is a ques
tion  of the ro ta to ry  power of quartz  causing the rings to expand or con tract 
on ro tating  the analyzer. Also we said th a t  this ro ta to ry  power effectively 
disappears a t  15° from  the axis. If no ring is found w ithin 15° of the  axis 
there is no ring capable of expanding or contracting and we cannot te s t the 
handedness of such a  th in  crystal no m a tte r how strong a lens we employ. 
W e can then  fall back on the succession of colors shown when we ro ta te  the
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analyzer using w hite light. R ed, yellow, blue are observed for clockwise 
ro ta tio n  w ith IR E  righ t-hand  quartz .

If the  z section is no t a true  one, Eq. 2.9 will be replaced by  one allowing for 
th is error 5:

n s — n j  =  .00917 sin2 (9—8)

T his will m ake the  rings non-concentric and  although  the  “ cross” in te r
section is still the  tru e  optic axis the  ring  centers are not.

H ence if we are tem pted  to  find the  optic axis by  centering a  large sharp  
ring in preference to a sm all fuzzy one we find th is eccentricity  error m ust be 
allowed for.

2 .8  R o t a t io n  o r  t h e  P l a n e  o f  P o l a r iz a t io n

If we have a  polarizer and  an  analyzer set for extinction  (Fig. 2.36), then 
place a th in  z section of q u artz  betw een them , the  field brigh tens up  b u t 
can be extinguished again b y  ro ta tin g  th e  analyzer, Fig. 2.37. F or the  m in
eralogist’s righ t-hand  qu artz  the  analyzer m u st be ro ta ted  21.7° (yellow 
ligh t assum ed) clockwise to re-establish extinction, counter-clockwise 21.7° 
for left-hand quartz . T he ro ta tio n  is m ore for blue light, less for red. If 
the  section is no t a perfect z section the ro ta tio n  is less th an  this, effectively 
d isappearing a t  abou t 15° from  the  optic axis.

A th ick  slab can be exam ined in th is way and, due to  the  color difference 
in ro tation , “ rainbow s” will be seen in the qu artz  when held a t  ju s t the  
rig h t orientation. These rainbow s will follow the contours of the  specim en 
unless bo th  righ t and  left quartz  are presen t 'in one piece. W hen th is  is 
th e  case the  one kind generally occurs as spike- or blade-like in trusions in 
the  other. I t  will then  cause the  rainbow s to have sharp , jagged outlines 
bearing  no rela tion  to  the specim en contour.

Also, since red, yellow, blue, are here in the  order of increasing ro ta tion , 
if we ro ta te  the  analyzer clockwise for righ t-hand  q u artz  (I.R .E . R H Q ) we 
will pass th rough best transm ission for red, best for yellow and  best for 
blue in  th a t  order so th a t  the  field will assum e these colors in th is order.

W ith  u n cu t stones th is exam ination is b est m ade under an  im m ersion fluid. 
T h e  inspectoscope is m ade for th is work. W e spoke of the  ro ta tio n  of the  
plane of polarization and  its  com plicating of the issue for the conoscope. 
D ue to  th is the field a t  the center is no t dark  when the analyzer and  polar
izer are crossed. Also if we ro ta te  the  analyzer clockwise the  rings of the 
p a tte rn  either expand or con trac t according to  w hether the crysta l is right- 
h and  qu artz  or left-hand q u artz  (IR E  definition).

A different k ind  of p a tte rn  is visible in th e  conoscope when viewed per
pendicular to  z, a double set of hyperbolae as shown in Fig. 2.38. T his p a t
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te rn  has been used to check the orientation b u t much grief has ensued due 
to  n o t recognizing one of its properties. T his property  is th a t, if z does no t 
lie parallel to  the  crystal boundary  the center of the p a tte rn  is no t per
pendicular to  the optic axis and a ra the r involved correction m ust be used. 
T h is correction reduces the actual angle to about half the observed value.

T his conoscope is an  immersion instrum ent. T he fluid is chosen to have 
an  index of refraction to  m atch the “ ord inary” one for quartz . W hen this 
is done light is no t ben t in passing between fluid and quartz. W hen the 
fluid does not m atch  there is a bending and all readings are subject to  a

correction. F or example if we m easure the angle of an  AT pla te  in a fluid 
th a t is too low by  .0048 (since n0 for quartz  in green m ercury light is 1.5462 
th is fluid has n  =  1.5414), we will get a reading th a t is too high by  a quar
ter degree (the 35° angle will then appear low). A tem perature rise of 12° C 
will lower the relative refractive indices by this am ount.

Also the more perfectly the fluid matches, the more nearly will the rough 
q uartz  surface disappear and seem smooth and clear. This greatly en
hances the sharpness of the rings.

T he refractoscope (Fig. 2.39) was designed by G. W. W illard to tell when the
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m atch  is good. I t  uses the  elim ination of the bending as a te s t for refractive 
m atch . I t  also dem onstrates the existence of two velocities in quartz , for 
two images are seen where a glass prism  would cause b u t one. Also by  
viewing th rough  an  analyzer we see th a t the  two images are caused by  plane 
polarized light, the polarization planes being m u tua lly  perpendicular.

If the  fluid has an  index lower th an  th a t  of the prism  the  rays will bend 
tow ards the base of the prism. F or th is reason, light th a t reaches the  eye e 
from 5  m ust trave l by  the  p a th  s q0poe for the  ordinary  ray, s qep (e for the

extraord inary  ray. H ence the slit as seen through the prism  will appear a t  
5o for the ordinary  ray , a t  se for the ex traord inary  while the slit as seen 
d irectly  alongside the prism  will appear a t  s. If the fluid index m atches 
the quartz  prism  for the ord inary  ray  th is ray  will be unben t a t  p 0 and q0 so 
th a t  So will appear as a continuation  of 5 .

If the fluid index is too high the image s0 will appear to the left of s w ith 
s't still to the  righ t of so.

As the refractive indices of qu artz  for the ordinary  and  the extraord inary  
ray  differ by  .009 the ap p a ren t separation  of s0 and  se represents .009 and
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can be used to judge the difference between the liquid index and the quartz  
ordinary  index.

T he liquid can be ad justed  by placing a cap face of a crystal on the refer
ence glass and  setting  the dial to read 51.8° the liquid being then blended 
to  center the p a tte rn .

I f  the  refractive index of the fluid is low by  an  am ount L  the observed 
reading R  m ust be corrected by adding to it an am ount e.

Since

(N q — L) sin R  =  N  sin (R — e)

we can com pute e. T he accom panying refraction correction nomograph 
was com puted from  the above equation. If we know th a t the fluid in the 
conoscope is high, by  an  am ount H , and we wish to  know the correction to 
be applied to a conoscope reading R  we locate H  on the diagonal line H L  
and locate R  on the horizontal line R. We join these two points w ith a 
stra igh t line and  read the scale e— e where th is stra igh t line crosses the 
curved line e— e. T his value tells the size of the correction and whether 
to add it to  R  or sub trac t it from  R. Conversely, if we wish to find how 
closely the index of the fluid m ust be held in order to have the correction 
less th an  say j °  a t  a reading of say R  =  50° we join the points R  =  50° and 
e =  ±  i °  and find H  =  ±  0.005. A ten-inch-long lucite strip  w ith a 
stra igh t line ruled on it is a convenient tool w ith which to  read this nomo
graph.

We now inquire as to w hether the refraction correction can be m ade to 
annu l the ring eccentricity  correction. In  the appendix it is shown th a t 
th is is done if H  =  — .530 tan 2 d where 2d is the distance between the ver
tical reticule lines.

E xperim entally  it  is easy to achieve th is balance by  using a cap face 
parallel slice. W ith the cap face against the reference glass and the dial 
reading 51.8° the fluid is blended to m ake a single ring tangent to both re ti
cule lines. W hen th is is done for d =  10° the fluid should have a refractive 
index of 1.5228 and the residual errors should be less th an  2 m inutes for R  
no t over 60°.

2 .9  I m m e r s io n  F l u id s

In  order to  m atch  the refractive index of quartz  we blend a substance 
which has an  index th a t is too large w ith one th a t has an index th a t is too 
small. Such blended substances should be liquid a t  room tem perature and 
hence should be perfectly  m utually  soluble. T hey  should have low vapor 
pressure so th a t  they  do no t evaporate quickly and should be harm less to 
the operator. Also they should be nearly colorless and clear. T hey  should 
be fluent enough to be easily drained from the crystal and should have a
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sufficiently h igh flash po in t th a t  they  would n o t p resen t a  fire hazard . T he 
odor should no t cause distress and  finally th e  cost m ust be reasonable.

D r. G. T . K ohm an of the  Bell Telephone L aboratories has p repared  a 
fist of such substances th a t  can be mixed, any  high one w ith any  low one to

A  e

Fig. 2.39—The refractoscope

obtain  a  fluid satisfactory  in  a l l these respects. T h e  following m ixtures of 
substances are taken  from  his da ta .

Substance
Refrac-

tive
Index

Misture 
Parts 
by wt.

Density Flash
Point Supplier

Dimethyl phthalate
a  monochlor naphthalene

1.51
1.63

73.9
26.1

1.193
1.194 255°F Monsanto Chem. Co. 

Bakelite Co.

Dimethyl phthalate 
Dichlor naphthalene (solid 

at toom temp.)

1.51
1 .6 3 +

73.9
26.1

1.193
1.30 285°F Monsanto Chem. Co. 

Hooker Chem. Co.

Decalin
Dowthenn

1.467
1.586

35.3
64.7

0.895
1.1 170°F Dupont Co. 

Dow Chem. Co.

Kerosene 170°F
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An immersion fluid for Rochelle salt can be m ade by mixing decalin with 
any  of the other substances. For example b m ixture of 34 p arts  of dim ethyl 
p h th a la te  and 6 6  p a rts  of decalin should give the necessary index 1 .4 9 5 .

2.10 A P P E N D IX  

T H E  R IN G  E C C E N T R IC IT Y  C O R R E C T IO N

Referring to Fig. 2.41, we see th a t, a t  an  angle a , from  the optic axis to
w ards the p la te  thickness direction the phase relation is, by  E quations (2.7) 
and  (2.9):

jy  _  .00917 t' sin2 ax 
X cos(5 — ax)

I "  . 11 i i "  I ....................  M l i l i  .......................... I l 1 1 ' I ' 1 ' 1 I i 1------1----1— I 1 ‘ 1----- 1----- 1
o” 10° 20° 30° 40° 50° 60°

APPARENT ANGLE R

Fig. 2.40— Refraction correction nomograph

while a t  an  angle a 2 away, it is:

_  .00917 t' sin2 a 2 
2 X cos(5 +  a 2)

W hence, if these are equal, we h a v e :
• 2 - 2sin ax Sin a 2

cos(<5 — ax) cos(ô +  a 2)
(2 .11)
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These points, in the conoscope field, being of equal phase are p a rts  of the 
same ring, and  if m atched  to  a pair of reticule lines, the  optic axis is off their 
center line by  an  angle e, where

a\  —  c¿2

If the separation  of the  reticule lines corresponds to  an  angle 2d, we see 
th a t

^  _  « 1  +  « 2

so th a t

a i =  d  +  e and  a 2 =  d  — e 

T he reading of the  d ial will be, a t  th is m atch

R  =  +  « 2  +  5 — a 2) — 5 — 1  — -

Hence we have

sin(d +  e) _  , / Cos(R  -  d)
sin(d 1 1 1/ :cos (R  +  d)

(2 .12)
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For a  given value of d, we can p lo t the values of e as a function of 8 as given
by (2.12). This p lo t is a chart of corrections to be added to the readings R
to  find the true  angle 8.

Exam ination of E quation  (2.12) shows us th a t the correction e is indepen
d en t of the  thickness t' and even of the birefringence; hence, the chart 
could serve for all uniaxial crystals. E quation  (2.12) can be given an ap 
proxim ate solution:

e =  1820 ta n 2 d ta n  R  m inutes

e =  30.3 tan 2 d  tan  R  degrees (2.13)

F or R  no t m ore th a n  60 degrees and d no t more than  15 degrees the error 
in e is no t more than  5 m inutes. Figure 2.33 is a chart of these corrections 
com puted from  the more exact equation (2 . 1 2 ).

A n n u l l i n g  t h e  R in g  E c c e n t r ic it y  C o r r e c t io n  b y  M e a n s  o f  t h e  

R e f r a c t i o n  C o r r e c t io n

T he difference in quartz  index and liquid index is

H  = N q ~  N (

and  by  the law of refraction:

N f  sin R  =  N q sin (R + e )
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whence

and if € is small

H  =  -
N q sin e 
ta n  R

F ro m E q . 2.13, e =  0.530 ta n 2 d tan  R  radians, and  p u ttin g  th is in the  equa
tion  for H  we find th a t the correction for ring eccentricity  approxim ately  
annuls the correction for refraction if

H  = — .530 ta n 2 d

F or d  =  10° th is gives H  =  —.0255, th a t is, a fluid index of 1.5207.



A Note on the Transmission Line Equation 
in Terms of Impedance

By J. R . PIERCE

IN C R EA SED  fam iliarity derived in handling M axwell’s equations, 
especially in connection w ith problem s arising a t very high frequencies, 

has resulted in a variety  of forms for expressing certain laws and behavior. 
Especially, work by  Schelkunoff in extending the impedance concept1 shows 
th a t impedance can be quite as general and exact a means for expressing 
electrom agnetic relations as are current, voltage, electric and magnetic 
fields, and vector and scalar potentials.

In  reform ulating certain problem s in term s of impedance the content and 
u ltim ate solution m ust of course be equivalent. There may, however, be 
a considerable change of procedure and  sometimes a  simplification. For 
instance, in m any cases a single impedance condition can replace the usual 
two boundary conditions for voltage and  current.

One very simple case in which it is perhaps easiest to deal directly w ith 
impedance is in the derivation of the transm ission line equation on a dis
tribu ted  constant basis. In  the usual derivation, two linear second order 
differential equations are obtained, one for voltage and one for current. 
The impedance, in term s of which the engineer expresses m any of his results, 
is obtained as a  ratio  from  solutions for voltage and current. In  treating 
the transm ission line from the impedance po in t of view, w ithout dealing 
w ith currents and voltages, a first order non-linear differential equation in 
term s of impedance and distance is obtained. This impedance equation 
is a R ica tti equation and could be obtained from the usual line equations. 
I t  is simpler, however, to derive it directly.

As the principal interest of such a treatm ent lies in the method and in 
the fact th a t the line m ay be tapered, rather than  in losses, the derivations 
will be carried ou t for lossless lines. Losses can be taken into account by 
allowing the inductance per un it length, L, and the capacitance per unit 
length, C, to become complex quantities.

Consider the section of line dx long, shown in the figure, having an 
inductance L  dx and a capacitance C dx. We can write im m ediately

1 “The Impedance Concept and Its Application to Problems of Reflection, Refraction, 
Shielding, and Power Absorption,” B.S .T .J .  Vol. 17, pp. 17-48, January, 1938.
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Z x T  dZ  — Zx+dx

=  Z x +  ju [L  — C Z 2X\ dx. (1)
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D ropping the  subscrip t the differential equation  for the  line in term s of 
the im pedance Z  m ay be w ritten 2

R  =  (L /C )112 (3)

v =  ( L e y 112 (4)

R  is the nom inal characteristic im pedance, and  v is the  nom inal phase 
velocity, which is constan t for m any tapered  lines w ith  the same dielectric 
m ateria l separating the conductors th roughout the ir length. In  such lines, 
if the  dielectric is a ir or vacuum , v is c, th e  velocity of light.

I t  should n o t be surprising th a t (2) is of the first order. A lthough there 
are two boundary  conditions, the im pedances term inating  the  righ t and 
left ends of the line, there are two im pedances, th a t  looking tow ard the  righ t 
and th a t looking tow ard the left. The im pedance looking tow ard the righ t

l_Ax
_ T D W l_ __

cAx Zx+Ax

Fig. 1

is unaffected by  the left end term ination , and  th a t  looking tow ard the  left 
is unaffected by  the  right end term ination.

As R  is real, it m ay be seen from  (2) th a t the only case in which the im 
pedance can equal the nom inal characteristic im pedance R  a t  all points 
is for R  constant. This tells us th a t the characteristic im pedance of any 
lossless tapered line is complex. F or very gradually  tapering lines the 
characteristic impedance differs from  the nominal characteristic impedance 
principally by a  small im aginary com ponent.

T he simplest solution of (2) is of course th a t for a uniform  line, w ith  R  
a  constant which will be called R 0. In  th is case (2) can be in teg rated  
direct.lv. giving the fam iliar result

I — =  tanh  (ju x /v  +  K ) (5 )
Ko

2 It  is interesting to note that the equation for adm ittance F  can be obtained by re
placing Z by F  and R by (,1/i?) =  G in (2).
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D r. L . A. M acColl has pointed out to  the w riter th a t (2) is the same as 
the electrostatic electron optical equation for paraxial rays. To reduce (2) 
to  the standard  form:

- W  -  *  (6)

- R ‘ =  ff(z) (7)

f  “  H{t) + Z’ (8)
The electron optical equation for paraxial rays is

r  =  c - j m  (10)

H ere z is distance along the axis, V(z) is potential on the axis, and C is 
convergence, or the inverse of the focal distance.

I t  would seem, then, th a t from each solution of an electron optical 
problem, a solution of a tapered line problem  could be found, and vice versa.

W hile it cannot be claimed th a t anything new has entered the transm is
sion line equation in expressing it in term s of impedance, it does seem th a t
the approach m ay be stim ulating in uncovering hitherto  neglected m aterial
and analogies.
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Electronics in  Telephony} F r a n k  A. C o w a n .  T he historical develop
m ent of the use of electronic devices by  the  telephone system  is reviewed, 
showing how long distance telephony has grown w ith the increased use of, 
and  im provem ents in, electronics. T he num ber of telephone repeaters has 
grown from  16 in  1908 to  123,000 in 1942 and  carrier circuit m ileage has 
grown from  2,000 in 1920 to  2,300,000 in 1942, while copper usage per circuit 
mile has decreased from  400 pounds in 1910 to less th an  70 in 1942.

A transcon tinen ta l telephone connection has grown from  an  open-wire 
circuit w ith  a  to ta l loss, less repeaters, of less th an  75 db (1915) to a  p resen t 
day  cable circuit operating a t  carrier frequencies, which m ay have a  to ta l 
loss of over 10,000 db. T he problem  of m atching enorm ous am plifications 
to  com pensate for huge losses w ith  a  precision of one or tw o db was a 
difficult one, which was solved by  electronic techniques. T he am plifica
tion necessary to  com pensate for the high losses on the  cable layou t m ay 
en tail some 2 0 0  repeaters utilizing a  to ta l of m ore th an  600 vacuum  tubes 
in tandem . T he au tom atic  regulation  and  control of the am plification is 
accom plished by  electronic devices, giving to  the  p resen t day  circuits a 
s tab ility  unequalled in the days before the  vacuum  tube.

T here is available, except for the  W ar, radiotelephone service to  83 
foreign countries and  overseas areas, and  ocean liners a t  sea, and  to  boats 
in coastal and  in land  w aters.

Such w idespread dependence on vacuum  tubes has s tim u la ted  research 
and  design to  achieve long life and  a  high degree of un iform ity , stab ility  
and  reliability. Among in teresting fu tu re  possibilities are transoceanic 
cables, the  use of higher frequencies providing broader bands and  larger 
num bers of circuits over a  given p a th , and  fu rth er application  of rem ote and 
un attended  stations.

Deionization Considerations in  a Harmonic Generator Em ploying a Gas- 
Tube Switch.2 W i l l i a m  G. S h e p h e r d .  A description is given of an  
experim ental investigation of the p roperties of a th y ra tro n  operating  as a 
high-frequency sw itch in a  circuit which p erm itted  the generation  of a 
wide b an d  of harm onics. T he experim ents indicate th a t there is an  opera t
ing frequency below which no difficulties in deionization occur and  above

1 Electronics, March 1943.
2 Proc. I.R .E ., February 1943.
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which stable operation requires th a t the grid po ten tia l fulfill certain  condi
tions dependent upon the frequency, wave form of the grid voltage, and 
circuit constants. I t  has been found possible to  operate certain standard  
thyratrons a t  switching frequencies as high as several hundred kilocycles 
per second. F or these higher frequencies the deionization of the tubes is 
incomplete b u t norm al switching behavior is obtained.
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