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Physical Limitations in Electron Ballistics*

By J. R. PIERCE

I n t r o d u c t io n

TH E  subject of th is  ta lk  is “Physical L im itations in  E lectron Bal
listics” . I t  is p leasant to  have a chance to  ta lk  about such physical 
lim itations, because there is so little  we can do about them . And, 

although these lim itations are a p t to  be discouraging, a knowledge of them  
is very  valuable, for i t  keeps us from  spending tim e try ing, like the  in
ventors of perpe tual m otion machines, to  do the impossible.

As electron ballistics is particu larly  subject to  physical lim itations, there 
are so m any  th a t it is impossible to  discuss all of them  thoroughly a t th is 
tim e. Also, m any of the  lim itations are of a  ra the r com plicated nature , 
and  to  deduce them  from  basic principles in a  quan tita tive  way requires 
m uch though t and  patience. I  th in k  the  best I  can do is to  try  to  m ention 
m ost of the  chief lim itations, as a w arning to  the un in itia ted  th a t  rocks lie 
ahead in certain  directions, b u t to  concentrate a tten tion  on only a  few of 
them . I  have chosen th is  evening to  devote particu lar a tten tion  to  lim 
ita tions th a t  bear on the production and use of electron beam s in which 
considerable current is required, such as those used in cathode ray  tubes 
and high-frequency oscillators, and to  m ention only briefly as a sort of 
introduction problem s pertain ing more closely to  low-current devices such as 
electron microscopes.

T h e  W a v e  N a t u r e  o f  t h e  E l e c t r o n

One of the m ost im portan t lim itations in  electron m icroscopy is the dual 
natu re , wave and corpuscular, of the electron. W ithout m aking any 
a ttem p t to  justify  or explain the  com bination of wave and  particle con
cepts which is characteristic of m odern physics, we m ay describe its con
sequence a t  once; very  sm all objects don’t  cast distinct shadows. This 
cannot be explained m erely in term s of the physical size of the electron and 
the object. W hen an  electron beam  is reflected from  a surface of regularly

* A lecture given under the auspices of the Basic Science Group of the New York Secr 
tion of the A .I.E .E ., as a p a rt of an Electron Ballistics Symposium, Columbia University, 
M arch 21, 1945.
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spaced obstacles (the atom s in a crysta l la ttice, for instance) diffraction 
pa tte rn s  are obtained, sim ilar to  those which m ay be ob ta ined  w ith  waves 
of X -rays or light. I t  appears th a t  electrons get around  sufficiently small 
objects ju st as sound waves get around telephone poles, autom obiles, and 
even houses, and  if the objects are sufficiently sm all the ir effect on the 
electron flow will e ither be absent or will consist of a  few ripples which are 
meaningless in disclosing the shape or size of the object.

The electron w ave-length, which varies inversely as the m om entum  of the 
electron, m ay  be sim ply expressed in term s of the energy V in electron volts. 
A simple non-relativistic expression which is only 5%  in error a t  100,000 
volts (a high voltage for electron m icroscopes), is*

X =  V l W v  x 10- 8  cm (1)

T hus for 30,000-volt electrons the w ave-length is 7 X  10- 1 0  cm or about 
1.4 X 10- 7  tim es the d iam eter of a hair and  1.2 X  10- 5  tim es the length 
of a wave of yellow light.

In  term s of th is w ave-length X and  the  half angle of the  cone of rays 
accepted by  the objective, a, we can express the distance d between point 
objects which can ju st be distinguished in an  electron microscope. This
distance is

d =  ,61X/sin a  (2)

For sm all values of a

2 a  =  1 /f  (3)

where /  is the well know n photographic /  num ber, the ratio  of the focal 
length to the lens diam eter. We see th a t, ju s t as w ith  cam eras, the smaller 
the /  num ber the better. In  electron microscopes a small /  enables us to 
distinguish smaller objects.

A b e r r a t io n s

Ju s t as in cam eras, the lim itation  to  the /  num ber is im posed by  lens 
aberrations. B u t in electron lenses the aberra tions are m uch more severe. 
W hy is this so? Because w ith electron lenses we have less freedom  of design 
th an  w ith optical lenses.

Consider an  electric lens. The q u an tity  analogous to  the index of 
refraction for light is the square root of the  po ten tia l w ith  respect to  the 
cathode. Now suppose th a t  w ith a light lens we know the index of re
fraction  a t every  point along the axis. Suppose, for instance, th a t  the  in 
dex of refraction is 1 everywhere along the  axis except for a space L  long

* The relativistic expression is

X =  ( V l 5 0 / V / V i  +  -98 X 10-» F ) X lO“ 8 cm
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where it is 2, as in Fig. 1. Our lens m ay be converging or diverging; strong 
or weak. In  the analogous electric case, however, the po ten tia l throughout 
the lens space m ust satisfy L aplace’s equation, and  th is m eans th a t if it is 
specified along the axis it is known everywhere. We can easily see th is by 
writing down L aplace’s equation  for an  axially sym m etrical field.

i d  /  d V \  , ô V  _ 
r dr \  dr )  dz2

(4)

LIGHT-CONDITIONS OFF 
AXIS NOT FIXED BY 
CONDITIONS ON AXIS

ELECTRIC FIELD-FIELD 
OFF AXIS SPECIFIED BY 
POTENTIAL ON AXIS

r-Tt
V=1T  f (5+ iL  COS e)dL9

Fig. 1—Contrast between optical and electric focussing conditions.

The field near the axis m ay be expanded in powers of /
d V  ,—— =  ar T  ■ • 1
dr

(5)

Substitu ting  th is in to  (4),

l d , 2. I  - d 2V  
-  V  (ar ) =  2 a ==; ■
r dr dz2

d V  - 1  52 V
dr 2  dz2 (6)

As a m a tte r  of fact, the po ten tia l V  (z,r) rem ote from the axis can be 
expressed in  term s of the po ten tia l V0(z) on the axis as

V =  -  f, Vo(z +  ir  cos 6) dd
7T Jo

(7)

If we could introduce charges into our lens, L aplace’s equation would no 
longer hold and  we would have more freedom of design. The m ethods 
proposed for the in troduction  of charges comprise the use of free charges 
(space charge) which are largely uncontrollable, and the use of curved grids, 
which do more dam age th a n  good. In  other words, the cures are worse 
th a n  the disease.
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Similar lim itations apply  to  m agnetic lenses, and  in the  end  we find th a t  
because of the sim plest form  of aberra tion , spherical aberra tion , best def
in ition  is achieved in electron microscopes w i th /  num bers of 1 0 0  or greater, 
while the  /  num ber of a  light microscope objective corrected for spherical 
aberra tion  and  o ther defects as well m ay  be around  un ity . T hus the  elec
tro n  microscope is severely handicapped, and  th is  handicap  is overcome 
only because electron waves are m uch less th a n  1 / 1 0 0  th e  length  of light 
waves.

W = 2L0 t ' 0,W= e2w2

O r V y ^ L

Fig. 2—Approximate relation between beam size and angular spread.

T h e r m a l  V e l o c it ie s  o e  E l e c t r o n s

In  m any electron-optical system s, and  particu larly  in  such devices as 
cathode ray  tubes, it is desirable to  focus an  electron beam  in to  a small 
area, so as to  produce a  very  sm all spot on a fluorescent screen, or to  pass a 
considerable curren t th rough  a sm all aperture . We m ight th in k  a t  first 
th a t  if our focusing system  were good enough, th a t  is, if it h ad  very  small 
aberrations, we could focus a cu rren t from  a cathode of given area in to  as 
sm all a  space as we desired. This, un fo rtunate ly , is no t so. The obstacle 
is the therm al velocities of the  electrons em itted  by  the cathode.

A simple example will show the sort of th ing  we should expect to  take 
place. Figure 2 shows a plane cathode and  near to  it a  positive grid so 
fine as to  cause no appreciable deflections of the electrons which pass th rough  
it. F a rth e r  on we have an  aberrationless electron lens designed to  focus
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the electron stream  a t a spot a distance L  beyond it. The electrons will 
leave the cathode w ith some slight sidewise velocity com ponents; so, elec
tron  pa th s will pass a t several angles through a given point 011 the lens. The 
lens will bend these paths approxim ately equally, and hence we can see th a t 
a t the point where the beam  is narrowest it will still have some appreciable 
diam eter W 2 .

Now consider the beam a t  the lens. Suppose th a t through a  given point 
all the paths lie w ithin a cone of half angle d. Then the w idth W 2 
is approxim ately

W 2 =  2 Ldy (8 )

We can also see th a t the paths a t W 2 will lie w ithin an angle approxim ately

02 =  W i/2 L  (9)

Hence we see th a t approxim ately

O1W1 = e2w2 (10)
In  other words, we can have a  small spot through which electrons pass 
over a wide angular range, or we can have a broad beam  in which all paths 
are nearly parallel, b u t we can ’t  have a narrow spot and nearly parallel 
rays.

We see th a t  the ac tua l w idth of spot will depend on the therm al veloc
ities, which are proportional to  the square root of the cathode tem perature , 
and on the forw ard velocity, which is proportional to  the square root of the 
accelerating voltage. By using more involved argum ents we discover 
th a t for any  point in an  electron stream , where the beam  is wide, narrow, or 
interm ediate, the curren t in an  arb itra ry  direction chosen as the x  direction 
can be expressed4'*

dj =  ̂ ^ l j oVxe(-llkT',<-er~mvil2) dvx dvy dv2 (11)
-Km

v J  vl #  Vy +  J

whenz>> y /2 .e V /m ;  (12)

or dj =  0 (13)

when v <  V 2eV ¡m  (14)

Here j 0 is the cathode current density, V  is voltage w ith respect to  the 
cathode, T  is the absolute tem perature of the cathode in degrees Kelvin,
and vx, vy, and  vz are the three velocity com ponents; dj is the^elem ent

* This expression neglects the effects o'f electron collisions, which may actually make 
the current density smaller.
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of curren t density  carried by  electrons which have velocity com ponents 
abou t vx, vy, vz, lying in the  little range of velocity  dvx dvv dvz.

The reason for restric tion  (12) is th a t  if an  electron s ta rts  w ith  zero 
therm al velocity  from  the cathode, it will a t ta in  the velocity  given by  the 
righ t side of (12) by  falling th rough  the po ten tia l drop V . As electrons 
cannot have velocities sm aller th a n  th is, we have (13) and  (14).

By in tegrating  (11) w ith appropriate  lim its we ob ta in  a more specialized 
b u t very  useful expression

( - 1  . A  , 116 0 0 V \ . 2 . g J
j  <  ]m =  Jo ( 1 +  — T  J  Sin29 (15)

For usual values of voltage, u n ity  in the parentheses is negligible, and  we 
can say th a t if all the electron p a th s  approaching a given po in t in an  electron 
beam  lie w ithin a cone of half angle 6, th e  cu rren t density  j  a t  th a t  point 
cannot be greater th a n  a  lim iting value j m which is proportional to  the

Fig. 3—Parameters im portant in determining spot size in a cathode ray tube.

ELECTRON DEFLECTING 

CATHODE

cathode curren t density , to  the voltage, to  sin2 0 , and  inversely proportional 
to  the cathode tem perature .

L et us see w hat th is m eans in some practical cases. F igure 3 shows a
cathode ray  tube. The electron stream  has a w id th  W  a t  the final electron
lens, and  is focused on a screen a distance L  beyond the lens. The half 
angle of the cone of rays reaching the screen cannot be greater th an

sin 0 =  e =  W /2 L  (16)

Suppose the spot m ust have a  diam eter no t greater th a n  d. L e t the  spot
curren t be i. T hen  from  (15),

* <  T *  ( '  +  iV ' r >V)  , w t'1L  '- (17)
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Thus if for a given spot size we w ant to  increase the spot current, and if we 
are lim ited to  a given cathode current density  because of cathode life, 
we m ust m ake V  larger, IF larger or L  smaller.

M aking W  larger increases bo th  lens and deflection aberrations. M aking 
L  smaller m eans th a t for a given linear deflection we m ust increase the 
angular deflection, and  th is too tends to  defocus the spot. Because of these 
lim itations, it is necessary to  avail ourselves of the rem aining variable and 
raise the operating voltage V.

Another illustration, perhaps a little more subtle, of the effect of therm al 
velocities, lies in the analysis of the properties of a type of vacuum  tube 
amplifier known as the “ deflection tu b e ” . In  such a device, illustrated  in 
Fig. 4, an electron stream  from a cathode is accelerated and focused by a 
lens and deflected by a pair of deflecting electrodes so as to  h it or miss an ou t
pu t electrode. Such a device m ay be used as an amplifier.

Now it is obvious th a t as the ou tpu t electrode on which the beam  is 
focused is m oved farther away from the deflecting plates, a given deflecting 
voltage will produce a greater linear deflection of the beam  a t the ou tpu t.

As th is a t first sight seems desirable; it has been seriously suggested not 
only th a t th is be done, bu t th a t an elaborate electron optical system  be 
interposed between the deflecting plates and the ou tpu t electrode to  am plify 
the deflection.

The m erit of a deflection tube is roughly m easured by the deflecting 
voltage required to  move the beam from entirely  missing the ou tpu t elec
trode to  entirely  h itting  the ou tpu t electrode, and, of course, moving the 
ou tput electrode farther aw ay or pu tting  lenses between the deflecting 
plates and the ou tpu t electrode doesn’t reduce th is voltage a t all. As we 
improve the deflection sensitivity  by these means, we simply increase the 
spot size a t the same tim e. Focusing our a tten tion  on the beam between 
the deflecting plates, we appreciate a t once th a t the electron paths through 
each point will be spread over some cone of half angle 6, and th a t to  change 
from a clean miss to  a clean h it we m ust deflect the electrons through an 
angle of a t least 26, regardless of w hat we do to  the beam afterwards.

R eturn ing  for a m om ent to  equation (15), we see th a t it says the current 
density  can be less th an  a certain  lim iting value depending on 6. Y et

CAT

/ ' ' ■ l l  D OUTPUT [\
E L E C T R O N ^ E L E C T R O D E  

LENS DEFLECTING 
PLATES

Fig. 4—Amplifying tube making use of electron deflection.



expression (15) was ob ta ined  by  in tegrating  a supposedly exact expression. 
W hat does th is  inequality  m ean?

T he answer is th a t  for the  cu rren t to  have the  lim iting value, electrons 
of all allowable velocities m ust approach each part of the  spot from  all angles 
lying w ith in  the  cone of half angle 6. W hen the average cu rren t density  in 
the  spot is less th a n  the lim iting cu rren t density , the possibilities are

(a) E lectrons are approaching each po in t in the beam  from  all angles, bu t 
along some angles only electrons which le ft the cathode w ith  greater than  
zero velocity  can reach the spot.

(b) E lectrons leaving the  cathode w ith  all velocities can  reach the  spot, 
b u t a t  some portions of the spot electrons don’t  come in  a t  all angles within 
the cone angle 9.

312 B E L L  S Y S T E M  T E C H N IC A L  J O U R N A L

Fig. 5—Relation between nearness of approach to limiting current density and fraction
of current utilized.

T hus, we can have less th a n  the lim iting cu rren t e ither because electrons 
do no t reach the spot w ith all allowable velocities or from  all allowable 
angles. Of course bo th  factors m ay operate.

We can easily see how lens aberrations, which we know  are presen t in all 
electron-optical system s, can p reven t our a tta in in g  the  lim iting  current 
density . There is a more fundam ental lim ita tion , however. I t  can be 
shown th a t  even w ith perfect focusing, we m ust sort ou t and  throw  away 
p a r t of the cu rren t in order to  approach the lim iting cu rren t density , and 
we can  even derive a  theoretical curve for the case of perfect focusing re
lating  the fraction  of the lim iting cu rren t density  which is a tta in ed  to  the 
fraction  of the cathode cu rren t which can reach the spot. F igure 5 shows 
such a curve which applies for voltages higher th an , say, 1 0  volts.

Usually, the failure to  approach the  lim iting cu rren t density  is chiefly 
caused by  aberrations, and  in  ord inary  cathode ray  tubes the  curren t 
density  in the spot m ay be only a sm all fraction of the  lim iting  value. A 
very  close approach to  the lim iting curren t density  has been achieved in a
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special cathode ray  tube designed by D r. C. J. D avisson of the Bell Tele
phone Laboratories.

W hen we become thoroughly convinced th a t these equations expressing 
the effects of therm al velocities very  much cram p our style in designing 
electron-optical devices, as good engineers we wonder if there isn’t ,  afte r all, 
some way of getting  around them . I  don’t  th in k  there is. The suggestion 
illustrated in Fig. 6  is a typical example of such an  a ttem p t. We know 
th a t in a strong m agnetic field electrons tend  to  follow the lines of force. 
W hy not use a very  strong m agnetic field w ith lines of force approaching the 
axis a t a gentle angle to  drag the electron stream  tow ard the axis?

An electron off axis traveling  parallel to  the axis certainly will be dragged 
inward by such a field. The catch is th a t the field pulls the electron in 
because it m akes the electron spiral around the axis. As the beam  con
verges and the field becomes stronger, the p itch  of each spiral decreases and 
the angular speed of each electron increases. Finally, if the field is strong 
enough, all the kinetic energy of the electron is converted from forward

ELECTRON 
PATH

m a g n e t ic '
LINES OF 
FORCE

Fig. 6—Reflection of an electron by a magnetic field with strongly converging lines of
force.

m otion to  revolution about the axis; the electron ceases to  move in to  the 
field and  bounces back out. I t  m ay be some small consolation to  know 
th a t very high-current densities can be achieved by  th is means, b u t only 
because in the ir flat spiralling the electrons approach a spot a t  m uch wider 
angles w ith the axis th a n  the small inclination of the lines of force.

Sp a c e  C h a r g e  L im it a t io n s

In  electron beam  devices using reasonably large currents, the space 
charge of the electrons is a very serious source of trouble bo th  in com pli
cating design of the devices and in lim iting the ir perform ance.

Let us begin our consideration right a t  the electron gun, the source of 
electron flow in m any devices such as cathode ray  tubes and certain  high- 
frequency tubes. E lectron guns are sometimes designed on the basis of 
radial space charge lim ited electron flow between a cathode in the form of a 
spherical cap of radius ra and a concentric spherical anode a distance d from 
the cathode. I t  can be shown th a t by use of suitable electrodes external to  
the beam, radial m otion can be m aintained between cathode and anode along
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stra igh t lines norm al to the cathode surface. A hole in the anode electrode 
will allow the beam  to emerge from the gun. Because of the change in

CATHODE AN ODE S P A C IN G , d / r Q 

Fig. 8—Relation between perveance, angle of cone of flow, and cathode-anode spacing.

held near the hole, the hole acts as a diverging electron lens . 11 F igure 7 
illustrates such a gun . 15 The curves shown in Fig. 8  relate to this sort of
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electron gun. T hey  are plots of a factor called the perveance, which is 
defined as

p  =  i / y w  (18)

(th a t is, current divided by voltage to the 3 /2  power) as a function of 6, the 
half angle of the cone of flow, and d /r0, the ratio  of cathode-anode spacing 
to cathode radius. In  getting an idea of the m eaning of the curves, we m ay 
note th a t a perveance of 1 0 ~ 6 means a current of 1 milliampere a t  1 0 0  volts. 
I t  is obvious from the curves th a t to get very high values of perveance, th a t  
is, high current a t  a given voltage, 6 m ust be large and the cathode-anode 
spacing m ust be small. M aking 6 large m eans th a t electrons approach the 
axis a t steep angles; aberrations are bad and the beam tends to diverge 
rapidly beyond crossover. M oving the anode near to the cathode means 
tha t the hole which m ust be cut in the anode to allow the beam  to pass 
through m ust be large, and cutting  such a large hole in the anode defeats 
our aim of getting  higher perveance; we can’t  pull electrons aw ay from the 
cathode w ith an electrode which isn’t  there. F urther, for ratios of spacing 
to cathode radius less than  about .29, the lens action of the hole in the 
anode causes the emerging beam to diverge, which would make the gun 
unsuitable for m any applications.

W hen we build guns for sm all currents a t high voltages, such as cathode 
ray tube guns, space charge causes little trouble; when we try  to  obtain 
large currents a t lower voltages, we find ourselves seriously em barrassed.

Suppose we now tu rn  our atten tion  to  the effect of space charge in beams 
when the beam  travels a distance m any tim es its own w idth. Consider, 
for instance, the case of a circular disk forming a space charge lim ited 
cathode. Suppose we place opposite th is a fine grid, and shoot an electron 
stream  out into a conducting box, as illustrated  in Fig. 9a. We im m ediately 
realize th a t there will be a po ten tia l gradient aw ay from the charge forming 
the beam. In  th is case, the gradient will be tow ard the nearest conductor; 
th a t is outw ards, and  the electron beam  will diverge.

How can we overcome such divergence? One way would be to  arrange 
the boundary  conditions in such a fashion th a t all the field would be di
rected along the beam  instead of outw ards; th is m ight be done by  sur
rounding the beam  by  a series of conducting rings and  applying to  them  
successively higher voltages as in 9b, the voltages which would occur in 
electron flow between infinite parallel planes w ith the same current density. 
A nother way in which the same effect m ay be achieved is through use of 
specially shaped electrodes outside of the beam, as shown in Fig. 9c .11 In  
m aintaining parallel flow by  these means, the electric field due to  the elec
trons acts along the beam, and  increases continually in m agnitude w ith
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distance from  the  cathode. We can in fact calculate the  p o ten tia l a t  any  
distance along th e  beam  by  the  well know n C hild’s law equation

I  =  2.33 X  10~6A V m / x 2

V  =  5,690xil3I 2ls/ A 213

a

(19)

CATHODE

■M'l'hT

V fe J C  4/ 3
I I I J  I I I I 1 1 .L

„A .A A -fvA bv V \d . '\ \ • l vCv'X'vA.Al .V 'i - W v l y X \ Ai v V ' / \ Y —I—

— ------------- 111 ■ i 1 1 f lH  ------

Fig. 9—Avoiding beam divergence by means of a longitudinal electric field.

H ere V  is the anode voltage, x  the cathode-anode spacing, I  the  current 
in am peres and  A  the cathode area.

Suppose we take as an exam ple

A =  1 cm 2 

I  — . 0 1  am p. 
x  =  1 0  cm
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Then
V  =  5,700 volts

Thus to  m ain ta in  parallel m otion of the m odest current of 10 m illiamperes 
spread over an  area of one square centim eter requires 5,700 volts. M ore
over, the requirem ent of d istributing  th is voltage sm oothly along the beam 
would m ake it very  difficult to  p u t the beam  to  any  use.

One m eans for m itigating  the situation  is to  use an  electron lens and 
direct the beam inward. Of course, the beam  will eventually  become p ar
allel and then diverge again, b u t by  this means a  fairly large current can be 
made to travel a considerable distance. Some calculations made by Thom p
son and H eadrick12 cover this type of m otion, w ith an  especial em phasis on 
the problem  in cathode ray  tubes, in which the currents are m oderate.

In  order to  coniine large currents in to  beams, an  axial m agnetic field is 
sometimes used, as shown in Fig. 10 Here a cathode-grid com bination 
shoots a beam  of electrons in to  a long conducting tube. A long coil around 
the tube produces an  axial m agnetic field intended to  confine the electron

paths in a roughly parallel beam . The radial electric field due to  space 
charge will cause the beam  to  expand somewhat and to  ro tate  about the 
axis. As the m agnetic field is m ade stronger and stronger, the electrons 
will follow path s more and  more nearly  straigh t and parallel to  the axis. 
For a given curren t and  voltage, there is one sort of physical lim itation in 
the strength  of m agnetic field we need to  get a satisfactory beam. I t  is 
another effect th a t  I  wish to  discuss.

Suppose we have a very strong m agnetic field, in which the electrons 
trave l alm ost in stra igh t lines. We know, of course, th a t the radial electric 
field is still present, and  th is m eans th a t the po ten tia l tow ard the center of 
the beam  is depressed; th is in tu rn  m eans th a t the center electrons are 
slowed down. T his slowing down of course increases the density of electrons 
in the center of the  beam. The result is th a t if for some critical voltage or 
speed of injection we increase current beyond a  certain  value, the process 
runs away, the  po ten tia l a t  the center of the beam  drops to  zero, and another 
type of electron flow w ith a  “v irtua l ca thode” of zero electron velocity a t 
the center of the beam  is established. Thus, although the m agnetic field

CONDUCTING
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Fig. 10—Avoiding beam divergence by means of a longitudinal magnetic field.



318 B E L L  S Y S T E M  T E C H N IC A L  J O U R N A L

has overcome the diverging effect of the space charge, we still have a space 
charge lim ita tion  of the  beam  curren t. C. J . Calbick has calculated  the 
value of th is lim iting cu rren t .13 If  the beam  com pletely fills a  conducting 
tube a t a po ten tia l V  w ith  respect to  the cathode, the  lim iting beam  current 
is independent of the d iam eter of the  beam  and is

I  =  29.3 X  10“ V /2 (20)

If the beam  diam eter is less th a n  th a t  of th e  conducting tube, the  lim iting 
cu rren t is lower.

B ut perhaps we can com pletely overcome the  effects of space charge. 
Suppose we p u t a  very  little  gas in the  discharge space. T hen  positive ions 
will be form ed. A ny tendency  of the electronic space charge to  lower the 
p o ten tia l and slow up  the electrons will tra p  positive ions in the  po tential 
m inim um  and  so raise the po ten tia l. T hus the gas enables us to  get rid 
of the the slowing up  effect of the space charge as well as its diverging 
effect.

Before we congratu late ourselves unduly, it m ight be well to  m ake sure 
abou t the s tab ility  of an  electron beam  in w hich the  electronic space charge 
is neutralized by heavy  positive ions. Langm uir and  T onks, in the ir work 
on plasm a oscillations, in troduced a  concept, extended la te r by H ahn  and 
Ram o, which enables us to  investigate th is  problem . The concept is th a t 
of space charge waves. I t  is found th a t  in a cloud of electrons whose net 
space charge is neutralized  by  heavy, rela tively  immobile positive ions, 
sm all disturbances of the electron charge density  produce a linear restoring 
force; and  th is, together w ith the m ass of the electrons, m akes possible a 
type of space charge wave which m ay be com pared roughly w ith  sound 
waves, although m uch of the detailed behavior of space charge waves is 
quite different from th a t of sound waves. We m ay  express a d istu rbance in 
an electron beam  in term s of these space charge waves and  then  exam ine the 
subsequent h isto ry  of the d isturbance as a function  of tim e. T his has been 
done14 and the perhaps surprising result is th a t even w hen the  electronic 
space charge is neutralized  by heavy  positive ions, the flow tends to  collapse 
if the curren t is raised above a lim iting value

I  =  190 X  l ( r V /2 (21)

I t  is true  th a t th is  curren t is 6.5 tim es the lim iting current in the absence of 
ions, bu t it is a lim it nevertheless.

If th is lim it in the presence of ions seems unnatu ra l, perhaps we should 
recall a m echanical analogy. Consider a vertical long column subjected  to 
a load F. If we subject it to  a sidewise force aF  proportional to  F, as shown 
in Fig. 11a, the behavior on increasing F  will be a  g radual deform ation 
(analogous to  the space charge lowering of po ten tia l in the absence of ions)
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ending in collapse. However, even if, as in l i b ,  there is no sidewise loading 
and no bending during loading, we know from E uler’s form ula th a t beyond a 
certain loading the column will still collapse. This behavior is analogous to  
th a t of an electron beam  in which the electronic space charge is neutralized 
by positive ions and  there is no depression of po ten tia l in the beam.

This space charge lim itation either in the presence or absence of ions 
allows the passage of quite a large current through a tube, as the table 
below will show:

Voltage Current, amperes, no ions Current, amperes, ions

1000 .927 6 .0 1
100 .029 .190

10 .009 .060

We might therefore feel th a t the space charge is disposed of in a practical 
sense, and so it is in m any cases.*

-chF

r f f r

1=29.3 x |0 ~ V /2 1=190 xlO~V/2
a

Fig. 11—Comparison of limiting stable beam currents with and without positive ions.

P o w e r  D is s ip a t io n  L im it a t io n s

Having ta lked about various lim itations imposed by wave effects, aber
rations, therm al velocities and space charge on the electron flow in the 
beam itself, I  w ant to  close by  discussing briefly a topic which seems hardly  
included in electron ballistics bu t yet is v ita l to  any application in th a t 
field. I  refer to  the problems associated w ith power dissipation when 
electrons strike som ething and stop. This is a good deal like the problem 
imposed by suddenly coming down to ea rth  while studying the sensations 
of a free fall. I t  is inevitable and m ay be fata l unless satisfactory provision 
is made for the dissipation of kinetic energy.

W hat I  w ant chiefly to  bring out are the consequences of scaling a given 
electronic device down in size. If we change the size of each p art of an

* I t  appears th a t in many gas discharges, including those in which plasma oscillations 
are observed, the current is too high to allow persistence of the homogeneous flow upon 
which the plasma oscillation equations are based.
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electron device in the ratio  R , if we keep all voltages the  sam e, and  if we 
change all m agnetic fields in the  ratio  1 /i? , electron cu rren t will rem ain the 
same (provided the cathode is still capable of giving space charge lim ited 
em ission). E lectron path s will rem ain exactly  sim ilar, though  sm aller; 
the  power in to  the  electron beam  will rem ain  the  sam e, b u t w hat will happen 
to  the  power dissipation capabilities of the  device an d  w hat will happen  to 
the tem perature?

In  a  device cooled by  rad ia tion  alone and  w ith  cool surroundings, the 
rad ia ting  area varies as R 2, and  since the  rad ia tion  per u n it area  varies as 
T \  the  tem perature will v a ry  as R  \

In  considering a  case of cooling by  conduction alone, th in k  of a  rod 
carrying a certain  am ount of power away. If all the dimensions of a rod 
are changed by a factor R, the length will be changed by  a  factor R , the cross 
sectional area will change by  a  factor R 2, and  if the therm al conductivity

Fig.’

rem ains constan t the tem perature will vary  as R ~ l. T his is a  faster rate  of 
varia tion  th an  in the case of cooling by  radiation, and hence as the system 
is scaled to  a  smaller and smaller size, cooling by  conduction will become 
negligible and rad ia tion  cooling only will rem ain effective and  will determ ine 
th e : tem perature.

Figure 12 gives an  idea of the  varia tion  of various quan tities discussed.
We w ant to  m ake electronic devices sm aller for a  num ber of reasons; 

perhaps chiefly to  reduce tran s it tim e and  so to  secure operation  a t  higher 
frequencies. In  doing th is, we encounter the fundam ental lim ita tion  of 
reduced power dissipation capabilities and  increased tem peratu re . W hat 
is the trouble? We have scaled everything. Or have we? The answer 
is, we have not. The electrons, atom s, and  q uan ta  are still the same size. 
H ad  we been able to  scale these, we should have increased the  h ea t con
ductiv ity  and  the rad ia ting  power of our device, and  all would have been

CURRENT,
TAGE, POWER

ATURE 
ION 

COOLING

________________  EMPERATURE,
0 R LINEAR DIMENSION ^ c O O L d 'tG ^

MAGNETIC FIELD
12—Variation of magnetic field and tem perature in scaling an electronic device.
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well. As it is, if we m ake a tube for given power smaller and  smaller, using 
the m ost refractory  m aterials available we eventually  reach a size of tube 
which will, despite our best efforts, m elt, thaw , and  resolve itself into a dew.

CONCLUSION

Perhaps after these som ewhat gloomy words concerning physical lim
itations in electron ballistics, you m ay wonder how it is a t all possible to 
surm ount the difficulties m entioned. I t  certainly is not easy; all electronic 
devices represent compromises of one sort or another between fundam ental 
physical lim itations of electron flow on the one hand  and structu ra l com
plications on the other. In  working w ith vacuum  tubes one is perhaps 
troubled more by  physical lim itations, difficulties of construction, inade
quacy of m aterials and the lack of quantita tive agreem ent between compli
cated phenom ena and relatively simple theories than  in any  other p a r t of 
the electric a r t. I t  is for this reason th a t a friend of mine tw isted an  old 
aphorism into a new one and said, “N atu re  abhors a vacuum  tube” .
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Electron Ballistics in High-Frequency Fields*

By A. L. SAMUEL

H IS , the final lecture of a series on E lectron Ballistics, is no t a sum m ary
of the m ateria l which has been previously presented  b u t ra th e r it is an 

a ttem p t to  show how the ballistic approach can be extended to  the analysis 
of high-frequency devices. M uch th a t m ight otherwise be said abou t u ltra- 
high frequencies cannot be said because of secrecy requirem ents. However, 
there is considerable m ateria l which can be presented, w ithin the  lim its of 
the necessary security  regulations, which m ay be of in te rest to  those who are 
no t already well acquainted  w ith the  subject. I  will, perforce, no t be able 
to  say anyth ing  specific abou t ac tua l devices utilizing the principles to  be 
discussed.

M any  of the ultra-high-frequency devices which have come in to  use 
during the last few years have em ployed electron beam s of one sort or 
another. These devices can be analysed in any  one of a num ber of ways. 
F or example, we can w rite the equation of space-charge flow. T his ap
proach considers the electric charge as a  continuous fluid subject to  Poisson’s 
equation. The small-signal theory  of Peterson and  Llewellyn is an  example 
of th is type of analysis. Or if we wish we can consider the various types of 
wave m otion which can exist in a space-charge region. The space-charge- 
wave analysis of H ahn  and R am o as applied to  velocity-variation tubes is an 
example of this. In  addition  there is an  electron-ballistic approach to  the 
problem  and it is w ith th is m ethod th a t we will be concerned in the present 
lecture.

Before we become involved in the details of the analysis, we should perhaps 
spend a few m om ents considering the relationship betw een these various 
methods. If we have an  interaction  tak ing  place between electric fields 
and moving charges, we know a t  once from  N ew ton’s second law th a t the 
forces acting on the electrons m ust of necessity be equal and  opposite to 
those acting on the fields. I t  is therefore a  m a tte r  of sm all concern w hether 
we consider the forces acting on the electrons and the effects of these forces 
on the electron m otion or w hether we consider the a ltera tion  in fields which 
the electron m otion produces. We can, if we wish, com pute the energy 
transfer to  an  electric field by  the m otion of an  electric charge or we can 
com pute the change in energy of the electron which accom panies th is trans-

* Originally presented on April 11, 1945 as the concluding lecture of a symposium on 
Electron Ballistics sponsored by the Basic Science Group of the American Institu te  of 
Electrical Engineers.
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fer. I  was tem pted to say “ which results from this transfer” bu t this implies 
a cause and an effect, a notion which has no place in the present discussion. 
The dual aspect of any  energy-transfer problem  m ust always be kep t in 
mind. M uch needless discussion frequently arises between proponents of 
one point of view and those preferring the other when the only difference 
is one of language and both  groups are really saying the same thing. The 
electron-ballistic approach yields a simple physical picture; it is capable of 
being applied to  widely differing situations, b u t it is not well suited for a 
determ ination of the reactive contributions of an electron stream .

B a s ic  C o n c e p t s

There are several concepts which we will find useful in our analysis. 
These concepts are extrem ely simple, so simple in fact th a t one is tem pted to 
assume th a t they are well known. However, these concepts are so basic 
to the subject, and their results so far reaching th a t we m ust pause to 
consider them.

The first is the concept of to ta l current, as distinguished from its com
ponents. One way of writing Kirchhoff’s second law is

D iv .  /  =  0  (1 )

T his simply says th a t the to ta l current entering or leaving any differential 
region in space is zero. This expression m ust of course be generalized by 
including displacem ent currents as proposed by M axwell if applied to 
alternating currents. The current /  is the to ta l current density  as here 
defined. An im portan t consequence of equation (1), actually  only an 
alternate way of stating  it, is th a t the to ta l current always exists in closed 
paths. L et us take a simple case of a two-elem ent therm ionic vacuum  tube 
connected to a battery . Visualize the  situation existing if b u t a single 
electron leaves the cathode and travels to the plate. The electron takes a 
finite time to cross from the cathode to the plate. D uring this tim e a current 
exists, the m agnitude being given by the relationship

I  =  ev

and according to  our premise this current is the same in every p a rt of the 
circuit. The current begins a t  the instan t th a t the electron leaves the 
cathode and it ceases when the electron arrives a t the plate. In  the appar
ently em pty  region ahead of the electron there m ust exist a  displacem ent 
component, num erically equal to  the conduction, or perhaps we should say 
convection com ponent accounted for by the moving electron. An am m eter, 
were there one sufficiently sensitive and fast, connected in the external leads 
would read a current during this same interval of time.

I  have chosen to ta lk  about bu t a single electron to emphasize the electron-
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ballistic aspect; however, the  concept is m uch broader th an  th is since it  is 
no t a t  all dependent upon a  corpuscular concept of the electron. As a result 
of th is p roperty  of the to ta l current, the current to  any  electrode w ithin a 
vacuum  tube does no t necessarily bear any  relationship to  the num ber of 
electrons which en ter or leave it. Obviously then, curren ts can exist in the 
grid circuit of a three-elem ent tube even though none of the electrons are 
actually  intercepted by  the grid. This current m ay have any  phase rela
tionship to  an im pressed voltage on the  grid so th a t the grid m ay draw  power 
from  the external circuit, or i t  m ay  deliver pow er to  the external circuit, 
all w ithout actually  in tercepting any  electronic current. The grid-current 
com ponent resulting from  the electronic flow between cathode and  plate 
m ay equally well bear a quadra tu re relationship to  the  im pressed voltage, 
in which case it will e ither increase or decrease the apparen t interelectrode 
capacitance. If  these effects seem queer it is because one is still confusing 
the electronic com ponent w ith the to ta l current.

A second basic concept once sta ted  becomes self-evident. T his is to  the 
effect th a t the only one thing which we can do to  an  electron is to  change its 
velocity, th a t is, if we are to confine ourselves to  the  classical concept of 
an electron. We can change its longitudinal velocity, th a t  is, a lte r its speed 
b u t no t its direction other th an  possibly to  reverse it, or we can introduce a 
transverse com ponent to  its  velocity, th a t  is, a lte r its direction as well as its 
speed. T hought of in th is light all electronic devices in which a  control is 
exercised over an  electron stream  are velocity-m odulated devices. I t  m ight 
be argued th a t one could equally well say th a t  all we can do is  to change the 
electron’s acceleration (derivative of velocity) or its position  (integral o f velocity). 
T he singling ou t of velocity is in a sense a rb itra ry . I t  does, however, have 
some very interesting ramifications.

I  m ight digress for a m om ent to elaborate on th is idea. Since some of 
the newer devices have been labeled velocity-m odulation tubes, there is a 
perfectly understandable tendency on the p a r t of the un in itia ted  to  assume 
th a t these tubes differ from  earlier known devices, such as, for example, the 
space-charge-control tubes, the B arkhausen tube or the  m agnetron in the 
fact th a t they  em ploy velocity m odulation. The real difference lies else
where as we shall see in a few m om ents. A t the same tim e th a t  these newer 
devices were introduced, there was introduced a  new w ay of looking a t 
som ething which is very  old in the a rt. T his newer viewpoint, to  m y way of 
thinking, constitu tes a  far greater fundam ental con tribution  th an  do the 
specific devices which have received so m uch a tten tion . T he pioneers in this 
new approach: Heil and Heil, Bruche and  Recknagel, the V arian Brothers, 
H ahn  and M etcalf, to  m ention a few, and the m any o ther w orkers who lost 
in the race to publish the ir independent contributions in th is field— all of 
these people deserve the g reatest of praise for the ir stim ulating  contributions



to  our thinking. M y only po in t in all this discussion is to  emphasize th a t 
the basic m ethod of acting on the electron stream  has no t really been changed 
a t all. The entire m a tte r is summ arized in the original sta tem ent th a t the 
only thing which we can do to  an electron is to change its velocity.

Before going on to  the next aspect of the problem  there is a closely related 
concept which should be m entioned. This concept is th a t a  change in the 
component of the velocity of an  electron along one space coordinate does no t 
introduce com ponents of velocity in directions orthogonal to the first. F or 
example, if an  electron beam  is deflected by  a  transverse electric field, there 
will be no accom panying change in the longitudinal velocity. The difficulty 
in the way of doing th is in a practical case has nothing to  do w ith  the concept 
bu t only w ith the problem  of producing unidirectional fields. Analyses of 
deflecting field problem s which ignore the longitudinal com ponents of the 
fringing fields are a p t to be wrong. The problem  of high-frequency deflect
ing fields has been trea ted  in great detail in the literature and frequently  
with more acrim ony th an  accuracy.

One fu rther note should be added a t  this point. In  an  earlier lecture it 
was pointed out th a t the m agnetic effects of an  electrom agnetic field are in 
general very m uch smaller th an  the electric effects. We will no t stop to 
prove th a t this is still true a t  the frequencies which now in terest us b u t will 
accept it w ithout fu rther discussion.

For our next concept we leave electron flow for a m om ent and consider the 
fields w ithin a resonant cavity. You m ay very  properly object th a t this 
has nothing to  do w ith electron ballistics, and indeed it does not. However, 
we will find it necessary to  discuss problem s involving cavity  resonators, and 
a failure to  understand some of the properties of these circuit elements can 
cause a great deal of trouble. There are two conflicting approaches to this 
problem which I  will a ttem p t to  reconcile.

The physicist when first presented w ith the problem  of a resonant cavity  
is inclined to say: This is a boundary value problem. The solution consists in  
writing M axwell’s equations subject to the conditions that the tangential com
ponent of E  must be zero along the conducting walls. W hile a scalar and a mag
netic vector potential can be defined, the field is not related to the former in  the 
simple manner used in  electrostatic problems.

The engineer, on the other hand, is inclined to  say: This looks like an 
extension o f the usual resonant circuit. A  capacitance exists between the top 
and bottom walls of the cavity; charging currents w ill flow through the single 
turn toroidal inductance form ed by the side walls. I  would like to know  
what voltage difference exists between the top and bottom walls, and what 
currents exists in  the side walls.

Now, actually, I  am  maligning bo th  the physicist and the engineer by  m y 
statem ents; nevertheless, there are these two approaches. W hich is cor
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rect? Well, they  bo th  are. I t  is no t correct to  speak of an  electrostatic 
po ten tia l w ithin a resonant cav ity ; nevertheless, we m ay and  do ta lk  about 
the voltage between the top and bo ttom  of a resonant cavity . W hat do 
we mean? Simply the m axim um  instantaneous line in tegral of the electric 
field taken along some specified pa th . In  any  p ractical device utilizing 
electron beam s we are natu ra lly  in terested  in the p a th  taken  by  the elec
trons. The fact th a t the line integral is different for different p a th s  is of no 
great concern. We are in terested  in b u t one of these paths. We shall 
therefore have occasion to  ta lk  abou t voltages in cavities b u t we m ust always 
rem em ber w hat is m eant, and we m ust never for one in stan t forget th a t  this 
voltage is no t unique b u t th a t it depends upon some assum ed path .

T he second peculiarity  of th is voltage m ust also be em phasized. The line 
integral m ust be taken a t  a specified in stan t in tim e. In  effect one takes a 
photograph of the field a t  some in stan t in tim e and  then  a t  one’s leisure 
perform s the integration.

Now, of course, an electron when projected th rough  such a  cavity  will 
perform  y e t another type of in tegration. The change in squared velocity 
of the electron as expressed in volts will be given by  the line in tegral of the 
field encountered by  the electron; th a t  is, in tegrated  n o t instantaneously 
b u t w ith the electron velocity. T his is n o t a simple process, because the 
electron velocity is continuously being changed by  the  field in teraction  and 
therefore the velocity w ith which the in tegration  is perform ed depends 
upon the in tegrated  value of the field up to  the po in t in question. This 
has nothing to  do w ith the concept of voltage in a  resonant cavity . The 
cavity  voltage can, however, be considered as the  m axim um  change in 
squared velocity expressed in volts which an  electron could receive if its 
entrance velocity was very  large so th a t the tran sit tim e was sm all compared 
w ith the period of the cav ity  field.

The four basic concepts which I  have chosen to  recall to  your m ind are, 
by w ay of sum m ary: (1 ) the to ta l current is the same in all p a rts  of a circuit, 
th a t is div. J  =  0; (2) the only way we can ac t on an  electron is to  change its 
velocity; (3) the changes in the velocity com ponent of an  electron along 
any  one rectangular coordinate have no effect on the velocity com ponents 
along any other coordinate; and  (4) for convenience, a voltage can be defined 
in a resonant circuit as the line integral of the electric field taken  along some 
prescribed path .

T r a n s it  A n g l e

Since we are to  deal w ith the in teraction  of electrons and  high-frequency 
fields, we frequently  find it convenient to m easure electron velocity  not 
d irectly  b u t in term s of the  equivalent po ten tia l difference th rough  which an 
electron m ust fall to  obtain  the velocity in question, and  the  u n it of measure
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will be a volt. Instead  of m easuring the tim e required for an electron to 
traverse any  given distance in seconds, i t  is also convenient to  use, as a 
un it of time, one rad ian  of angle a t the operating frequency. We frequently 
refer to  the transit angle of an electron ra ther than  the transit time, although 
bo th  term s are used. In  fact, we m ay on occasion measure distances in 
term s of transit angle, and th is usage is extended to measure dimensions 
transverse to the direction of travel of the electron beam. W hen used in 
this fashion, we m ean th a t the dimension in question is such th a t were an 
electron to  be projected in this direction w ith a velocity equal to  th a t of the 
electrons in the m ain beam, the high-frequency field would change through 
the sta ted  num ber of radians during the transit time.

T h e  F iv e  F u n c t io n s  in  a n  E l e c t r o n ic  D e v ic e

W ith this prelim inary discussion out of the w ay wre can now answer the 
question which has probably  been troubling quite a  few of you. If the only 
thing we can do to  an electron is to  change its velocity, then  in w hat basic 
way does the velocity-m odulation tube differ from  the conventional negative 
grid tube or from  the m agnetron?

Well, th is is an  involved story. If we are to  m ake any  use a t  all of an 
electron beam  we m ust in general perform  five d istinct operations or func
tions. F irs t w’e m ust produce the beam. T hen  we m ust impress a  signal 
of some sort onto the beam. F rom  w hat I  have ju s t said this can be done 
only by  varying the velocities of the electrons contained in the beam. The 
th ird  operation consists in converting this variation  into a usable form. 
I t  is in this w ay th a t the diverse forms of electronic devices differ to  the 
greatest degree. We will go in to  th is m a tte r in  more detail shortly. The 
fourth operation consists in abstracting  energy from the beam, and the final 
operation consists in collecting the spent electrons. While these operations 
are distinct from an analytical po in t of view, in m any actual devices they  
are perform ed more or less sim ultaneously and more th an  one operation 
m ay be perform ed by  certain portions of the tube structure. In  fact, in 
some devices, for example in the space-charge-control tube, the confusion 
is so great as to make the separation seem rather forced. This very  confu
sion m ay p artly  explain wThy  vacuum -tube engineers who were steeped in 
the a r t  were so slow to  realize the advantages of th is new w'ay of looking 
a t  things which I  will call the velocity-m odulation concept.

By wTay of m ental exercise in th is new way of thinking let us see how 
we can analyze a simple space-charge-control triode. Well, first of all we 
have to identify the electron gun wThich produces the beam. The electrons 
m ost certainly come from  the cathode, b u t where is the first accelerating 
electrode? A ctually there isn’t  any  unless wre th ink  of the combined d-c 
field resulting from  the d-c potentials on the grid and p la te  as assisted by
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the  initial emission velocities as perform ing th is function. T he nex t func
tion, th a t  of varying the electron velocities, is perform ed by  the grid which 
varies the po ten tia l gradient in the vicinity  of the cathode and hence the 
velocity of the electrons as they  approach a po ten tia l m inim um  or v irtual 
cathode which is form ed a  short distance in fron t of the  cathode by  the 
action of space charge. T his v irtua l cathode perform s the th ird  function, 
th a t  of conversion, by  sorting ou t the  electrons and  allowing only those elec
trons w ith emission velocities greater th an  some specific value to  pass. 
This, then, is one of the conversion m echanism s which we will call virtual- 
cathode sorting. In  this example the v irtua l cathode occurs very  close to 
the real cathode b u t th is is n o t always the  case. T he fourth  function, 
th a t of utilization, is perform ed by  allowing the sorted  electrons to  traverse 
an  electrom agnetic field between the v irtua l cathode and  the plate. This 
operation is com pleted by  the tim e the electrons have reached the plate. 
Of course in the triode the p la te  then  perform s the final operation, th a t of 
collecting the spent electrons and dissipating the rem aining energy as heat. 
I t  should be clearly realized, however, th a t  th is last function need no t neces
sarily be perform ed by the same electrode which provides the  o u tp u t field. 
Indeed the so-called inductive-outpu t tube proposed by  Haeff is a  space- 
charge-con trol tube in which these two operations are separated.

C o n v e r s io n  M e c h a n is m s

B u t now to get back to  a cataloguing of the different k inds of conversion 
mechanisms. The first general type involves sorting. The first k ind  which 
we have m entioned is by  v irtual-cathode sorting. A second k ind of sorting 
m ight involve deflecting the electron beam  in proportion  to  its longitudinal 
velocity instead of reflecting or transm itting  it. V arious deflection tubes 
have been proposed from tim e to  tim e using th is m echanism . We shall 
be forced to  neglect th is phase of the problem  th is evening because of time 
lim itations b u t those of you who are interested  will find the litera tu re  filled 
w ith detailed discussions. Still a th ird  type of sorting, som etim es called 
anode sorting, is used in certain  B arkhausen tubes when the  p la te  is oper
a ted  a t  or near the cathode poten tia l so th a t fast electrons are collected while 
slow electrons are reflected and caused to  retraverse a  high-frequency field. 
There are still o ther types of sorting m echanism s b u t I  will n o t burden 
you w ith these.

A second general type of conversion m echanism  I  will call bunching, to 
distinguish sorting in which electrons are separated  according to  their 
velocities from bunching in which electrons of differing velocities are brought 
together. Now it ju s t happens th a t m any of the older devices used sorting, 
while m any of the newer devices use bunching b u t th is is no t universally 
the case. F or example, the m agnetron as used a t  high frequencies and  the
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cyclotron bo th  em ploy a  com bination of sorting and bunching. A peculiar 
property7 of the  m otion of an  electron in a m agnetic field lies in the existence 
of the so called Larm or frequency7. You will recall th a t  the  angular velocity 
of an  electron in a m agnetic field depends only upon the  field-strength and 
no t a t  all upon the  electron’s linear velocity. T his tim e in seconds is 
given by

_  0.357 X  1(T*
H

or in radians

106006 = 2-k
\ E

Electrons of w idely differing velocity can thus revolve together in spoke- 
like bunches w ith  the  faster electrons going around larger circles th an  the 
slow ones, b u t ju s t enough larger to  keep them  together. This, then, is 
one k ind  of bunching, which for sim plicity we shall call m agnetic bunching. 
I t  is used in the  m agnetron and  in the  cyclotron. We will have m ore to  say 
on th is subject a little  later.

A second kind  of bunching was used in some of the early Barkhausen 
tubes where the p la te  electrode was operated a t  a  fairly  high negative poten
tia l so th a t  none of the electrons were able to  reach it. U nder such condi
tions a  uniform ly spaced stream  of electrons w ith  varying velocities is re
flected as a  bunched stream , the  slower electrons being reflected alm ost a t  
once and  the  faster electrons penetrating  the  retard ing  field for a  greater 
distance and  hence taking longer to  return . This same type of bunching is 
used in a  newer form  of oscillator, commonly referred to  as a  reflex tube 
which was suggested by  H ahn and M etcalf in  1939, and  by  others a t  abou t 
the same tim e. The reflex tube differs from  the  B arkhausen tube, n o t in 
the basic mechanisms so m uch as in the  fac t th a t  the conversion m echanism 
occurs in a different region in  the tube from  the  region devoted to  velocity 
m odulation and  to  energy abstraction. A second k ind  of bunching is then 
reflex bunching.

A th ird  type of bunching was used in the  diode oscillators of M uller and  
of Llewellyn. The m athem atical research done by  W . E . B enham  m ay be 
m entioned as of in te rest in th is connection. In  these tubes a  uniform stream  
of electrons becomes bunched simply through the fact th a t  faster moving 
electrons overtake slower ones which precede them . In  these earlier forms 
of tubes we again have the  case where th is conversion is perform ed simul
taneously w ith one or m ore of the o ther processes so th a t  i t  is very  difficult 
to  separate them . However, in 1935 Heil and  Heil proposed a tube in 
which the  conversion region was separated from  the other regions of the
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tube. T his tube, the velocity-m odulation tubes of H ahn  and  M etcalf, and 
the k lystron tubes of the V arian B rothers, are alike in the ir use of transit
tim e bunching in a relatively-field-free d rift tube. Since th is separation of 
functions renders these devices m uch easier to analyze and  since the struc
tures are quite interesting in any  case we will spend m ost of our tim e con
sidering them  and  will, I  fear, ra th e r neglect some of the o ther types of tubes.

We will, of course, keep our analysis as general as possible so th a t  the 
results m ay be applied to  a varie ty  of different devices.

I n p u t  G a p  A n a l y s is

L et us begin by  a sm all-signal consideration of a  uniform  electron stream  
entering a region in which there is a longitudinal field defined as some func
tion of the distance and  of tim e. T his can be the entire Llewellyn diode 
or it can be the in p u t region of a k lystron . We ask  ourselves w ith w hat 
velocity will the electrons leave th is region and  w hat will be the n e t exchange 
of energy between the electrons and  the field. A t any  po in t w ithin the field 
a typical electron will experience an  acceleration given by

y =  j E  +  yf (y ) f ( 0 (!)
where r) is proportional to the m axim um  am plitude of the h.f. field, b u t con
tains a num erical constan t so th a t  y  is expressed in centim eters per second 
per second. Now in the usual case f i t )  will be a simple sine function bu t 
f ( y )  m ay assume a varie ty  of forms. Again, by  w ay of simplifying our 
work we will assume th a t it is also a  sine function. L e t us consider how 
we can go abou t solving th is apparen tly  simple equation. U nfortunately 
this expression can no t be solved directly  because the value of t a t  any  plane 
(th a t is, the tim e of arrival of an  electron a t  th is plane) depends upon the 
interchange of energy between the electron and  the field. H ere we are 
forced back to  the tim e-honored m athem atical device of assum ing a solu
tion in the form of a series and  then  evaluating  these coefficients. There is a 
large num ber of ways in which th is can be done, and consequently a large 
num ber of different solutions which look very  different b u t which all give 
com parable answers. U sually when such solutions are published, the a rith 
m etical work is om itted leaving one w ith the feeling th a t there is something 
involved th a t is no t w ithin the ken of ordinary  m ortals. T he fac t is th a t 
the work is usually extrem ely tedious b u t actually  very  simple. I t  will be 
instructive to  follow through one form  of such an analysis in ju s t enough 
detail to  see the am ount of work involved.

Since we are interested  in the energy which is proportional to  y 2 we will 
w rite a t once

( y lE a  =  K  =  Ko +  V K i  +  nrK ,  +  +
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where the K ’s are a function of the transit tim e, of the field distribution  and 
of the entrance phase, and we will proceed to evaluate these coefficients.
The average energy per un it of change as expressed in volts is then  simply

a t the  end of the field while the gain is:

F av =  ( i /2 ) (K  -  Ko) =  ®  +  ^ - 2 +  • • •

where the bar m eans th a t we are averaging over all values of the entrance 
phase.

I t  is of interest to evaluate the value of velocity y 2 which individual elec
trons receive as a function of the entrance phase. F or small signals it is 
usually sufficient to evaluate y 2 maximized w ith respect to the starting  
phase, then

Fma* =  m ) ( K  ~  K o U *  =  ^  + max.

We can further define the ratio  of F max to  the largest value it can have as a 
coefficient /3, sometimes called the m odulation coefficient.

B ut now to evaluate the K ’s. There are m any ways of doing this as I  
have intim ated. We will proceed by writing

y = tiff) +  f i y 0  + VWO + vsysit) +  . . .
where the y’s are coefficients depending upon the transit tim e t which in 
itself is a function of the applied field thus

t =  to +  77/1 +  rfh  +  V3t3 +

We can then expand each function of tim e into a series remembering th a t

1 ! ‘ 2 !

or for our particu lar case

yo(t) = y0 M  + + i:;J

, /o(fo)hh +  v~ h  +  V h  +  • • - ] 2 j_ 
i -  2 ! '

Now we can expand y\(t), y 2(t) etc. in exactly the same way. F inally  we 
get a collection of term s which can be grouped in like powers of t] thus

y = yo{to) + V [terms in y, y, h , t2, etc.] + 1?2 [ ] . . .

The coefficient of the rj is in fact y 0(to) h  +  yi(fo). We will no t bother to  
write the rest. This expression can then be differentiated to  get y  and then
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squared. However, we still have some undeterm ined coefficients the h , 
t i  etc. term s. These we can evaluate by  noting th a t we wish these values a t 
y  =  a, where a  is a fixed distance in the ac tua l device. A t th is distance 
the t coefficients in the expression for y  m ust have such values th a t  the value 
of y does n o t change w ith the value of t]. T his can only be tru e  if the 
individual expressions m ultiplying each power of rj are each equal to  zero. 
E quating  these expressions to  zero one can evaluate all of the t ’s. F o r exam
ple the first term  yields

yo(t0)ti +  yi(to) =  0

or

t =  I  y ija )
*>(*>)'

In troducing  these values, d ifferentiating and  squaring, one finally gets an 
expression for (y2)y  =  0  as a power series in y, th e  coefficients all being of a 
form  easily evaluated  for any  specified field d istribution . Since we have by 
definition called these coefficients K 0 , K x, etc. these values are then

K 0 =  yl

K i  =  2 (y0y -  yoyi)
.. 2

Ki B  (yl — 2yi y\ +  2y0 jfe) — 2yo yi +
yo

T his then  constitu tes the form al solution of the  problem . We m ust 
now particularize our problem  to  some specific field d istribu tion  and  evaluate 
the y  coefficients. Suppose, for example, th a t  there is a  uniform  d.c. field 
(E  of equation  1) and an  alternating  field which varies as some cosine func
tion of distance. T hen  the la tte r  is

f ( y ) =ms{ f +c)
and

y  — |  E  +  7] cos (a t +  <p) cos +  c^j

we m ust elim inate the y  which appears in th is expression and  replace y  by 
its equivalent

y = yo +  yyi + + • ■ •
and expanding
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c o s  =  COS +

6 Ŝn C)  7,2 l j   ̂ ‘ ‘ '
1 !

and as before equating like powers of rj w ith y defined as 

y  =  yo +  v y i +  r f h  +  ■ • ■

we finally arrive a t

y i  =  cos (at +  <p) cos ( ?  + *)
y 2 — —y n r /b  cos (ut +  <p) sin H+k

Now we need only integrate these expressions to  obtain the values of the y’s 
and the y ’s needed to  evaluate the K ’s.

If we average y2 over all values of the sta rting  phase we can write the 
energy contributed by the field to  the electron’s velocity. W hen this is 
done one finds th a t the odd powers of 17 are identically zero leaving only the 
even powers to be considered and for small signal analysis purposes we need 
only consider K 2 . The energy per electron expressed in volts is

where f(6) =  u2K t , and the power is obtained by  m ultiplying this expression 
by the beam current in amperes.

The end results can be expressed as curves of f(d) against 9 as shown in 
Fig. 1. Three examples are shown: the uniform field case and two different 
harmonic distributions as indicated by  the smaller plot in the lower left- 
hand corner. You will note th a t there exist regions of positive f(0) where 
the net transfer of energy is from the field to the electron and regions in 
which the transfer is in the o ther direction; the former portions are of con
siderable interest in connection w ith the inpu t gaps in velocity m odulation 
tubes, and for th a t m a tte r  in the cathode grid region of the negative grid 
tube although th is is more complicated than  is here indicated, as th is trans
fer of energy constitutes a  loss to  the field which loads the inpu t circuit. 
The la tte r portions m ay be utilized as was done in the M uller and Llewellyn 
diodes to  obtain sustained oscillations.

If, as I  have indicated, we maximize y2 as a  function of the sta rting  phase 
we can evaluate the m odulation coefficient. The value for the uniform  field

V  =  2.49 X. 1Cr sE?\2f(9)
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case, as shown in Fig. 2, is simply, ¡3 =  F or fu tu re  reference we will
6/2

w rite the loss expression for th is case as

f(d ) =  2  ( 1  — cos d) — d sin 0.

D r if t  Sp a c e  A n a l y s is

N ow le t us consider the conversion region in a  typical velocity-variation 
tube. F igure 3 is a  draw ing of several such devices with the conversion

03

u.
o
uz>
5

TR A N SIT ANGLE (9)

Fig. 1—The energy transfer between an initially uniform electron stream  and a longitudi
nal electromagnetic field as a function of transit angle.

regions indicated. We will assume for the m om ent th a t  the electrons enter 
th is region w ith a small varia tion  in velocity and  a t  a perfectly  uniform  rate. 
Since the to ta l num ber of electrons entering  the region m ust be equal to  the 
num ber of electrons leaving the region we m ay write

i \  (iti =  iodto
or

. dto
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0  IN RADIANS
Fig. 2—The (velocity) modulation coefficient between an initially uniform electron stream 

and a uniform electromagnetic field as a function of transit angle.
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Fig. 3—Typical velocity variation devices employing transit-tim e bunching.
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However, a  relationship exists between tx and t 0

h = h mI - .

W here

V =  v0 a /  1 +  a  sin wt\,

I
h  =  h  +

Now if a  <<C 1

and

and finally

b u t

so th a t finally

Vo • % / 1  +  a  sin wtx

=j to +  -  ( 1 -  ^  sin wtx +  • • ■ ) 
V 2 /

dto . .  I  aw
wy =  1 H 7T cos wtx
dt\ v0 2

. (  law \
Î1 =  ?0 I 1  I  X C0S wti I

\  V o - 2 /

Iw
Vo

. ( .  . a d  \
H — Vq I 1 — cos wti J .

T his says th a t the velocity varia tion  im pressed on the beam  a t  the en
trance to the drift space or conversion region has resulted in a curren t varia
tion a t the ou tpu t. F or those of you who th in k  in vacuum  tube param eters 
it is of in terest to  differentiate th is expression w ith  respect to the a-c voltage 
and obtain the transconductance

d ii
Gm —

rew riting

d V  a-c-

VacONI  ' ( i  M X f M
* | =  H l + ~ 2 v )

di i
d V a o

Bio 
2 V  '
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This result is obtained by  neglecting all of the higher order term s and is 
therefore only a small signal theory of a very restricted sort.

Now let us consider w hat we have done. Well, we have followed a small 
interval of tim e through the drift tube. A t the inpu t this tim e dt0 had  a 
current i0 associated w ith it; a t the ou tpu t the size of this un it of time is 
different—it is now dt\ and the current associated w ith it is i \ . The physi
cal p icture corresponding to this phenom enon is th a t of a uniform  d istribu
tion of electric charge becoming bunched w ith tim e as it traverses the drift 
space.

The next step in the analysis is to  carry our approxim ation a step fu rther 
and consider higher-order term s. Expanding the expression for ii  and using 
our nom enclature the desired expression is

l\ — to 1 + 2

This equation is no t exact since it  neglects space charge effects b u t it does 
indicate the presence of harm onics in the beam  current and it reveals cer
tain non-linear effects which can also be illustrated by the so-called phase- 
focusing diagram s of B ruche and  Rechnagel.

P h a s e - F o c u s in g  D ia g r a m s

B ruche and Recknagel pointed out th a t an analogy exists between the 
focusing in space of a parallel light beam  and the focusing in phase of the 
electrons in a uniform  electron beam. In  fact a small-signal theory can be 
developed entirely in term s of optical equations. We will no t go into 
this aspect in detail b u t we will use their diagram  (Fig. 4) to illustrate the 
bunching effect graphically. A uniform beam  of electrons is represented by 
a series of parallel lines in distance and tim e coordinates, focus being indi
cated by a crossing of these lines after they have been deflected by the veloc
ity  m odulation.

This general type of diagram  has been popularized in this country by the 
Varians, and their associates under the nam e Applegate diagram, the only 
difference being an interchange of axis. Figure 5, taken from a recent paper 
by Dr. A. E. H arrison, illustrates th is version of the Bruche and Recknagel 
diagram.

Now if instead of judging the current density  by  the density of the lines 
on the diagram , we m ake a plo t of the current density as a function of tim e 
for different fixed distances from the input gap, the pictures are somewhat as 
shown on Fig. 6 . Figure 7 represents a  plo t presented by K om pfner and 
combines in one illustration the type of presentation used by  Tombs.
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P h a s e  F o c u s in g  in  a  R e f l e x  T u b e

I t  m ight be well to  pause for a m om ent in our discussion of tran s it tim e 
bunching to consider how the phase focusing diagram s can be applied  to  a 
reflex tube. The elem ents of a m odern reflex tube are shown in Fig. 8

Fig. 4—The phase-focusing diagram of Bruche and Recknagel showing the analogy to
optical focusing.

which was taken  from  a recent I .R .E . paper by  D r. J . R . Pierce. E lectrons 
from  the cathode pass through an  inpu t gap defined by  two grids where they 
are m odulated in velocity. In  traveling in the  retard ing  field produced by 
the repeller those electrons which passed the gap when the field was becom 
ing progressively less accelerated, become bunched; the  faster electrons
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Fig- 5—Applegate’s version of the phase-focusing diagram (Harrison).
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Time
Fig. 7—Kompfner’s presentation of the bunching effect.
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penetra ting  the field to  a greater ex tent and waiting, as it were, for the 
slower electrons which follow to  catch up. The electrons which pass across 
the gap while the field is becoming progressively more accelerating are 
spread out. I f  the retarding field is uniform  it can be likened to  the ea rth ’s 
g rav itational field and the phase-focusing path s on our tim e-distance plo t are 
parabolas. F igure 9, taken  from  Pierce’s paper, illustrates th is while Fig. 
10 is such a p lo t taken from  the paper by H arrison. One interesting and,

D E /E E  T/EfE T - E  TT/to

8 4 0 . PPPO IYP UP BALL T P B O W // UP PPLE TUPOtV/H U P
t^ /P P  P /G P  SPEED P /P P  AfED/UAf FP/PP EOFP S P E E D
1r>  v 0 B E PU PPS /P  SPEED xr0 B E  PU PA 'S zrC  ir0 P E  P U P /U S
r/PE r> r0 w  p/ale rQ p / p/pte p< To

Fig. 9—The gravitational-field analog}- to reflex bunching (Pierce).

Fig. 10—The phase-focusing diagram for a reflex oscillator (Harrison1.

in a way, unfortunate difference between reflection bunching and  direct 
transit-tim e bunching is the fac t th a t  for reflection bunching the slow elec
trons catch up  w ith the  fast ones while the  reverse is true  for the  o ther type. 
This m eans th a t  if bo th  types of bunching are present as shown in  Fig. 11, 
(also taken  from  H arrison’s paper) one will tend  to  undo the  effect of the 
other.

A nother w ay of combining effects of separate bunching actions is to  build
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a cascade transit-tim e-bunching am plifier in which a  series of three gaps is 
used together w ith two d rift spaces. The first gap velocity m odulates the 
beam ; th is m odulation is converted in to  a cu rren t m odulation  in the  first 
d rift space. The beam  then excites the second cavity , which again velocity 
m odulates the beam  in quadrature w ith the original m odulation. T his 
action of course occurs in the ou tp u t gap of a  tw o-gap tube b u t it is not 
there used. H ere this second and  larger velocity m odulation is converted 
to  curren t m odulation in the second d rift space. T he o u tp u t is finally 
taken  off the beam  by  the th ird  gap. A phase-focusing d iagram  of this 
sort (again taken  from  H arrison’s paper) is shown in Fig. 12.

Sp a c e -C h a r g e -W a v e  A n a l y s is

T his phase-focusing approach is ra th e r in triguing as one feels th a t  one 
has a physical p ic ture of w hat is going on. T he p ic ture is, however, very 
inexact except under certain  highly specialized cases, as i t  com pletely ignores

Fig. 11—Diagram showing reflex bunching combined with field-free transit-tim e bunching
(Harrison).

space-charge effects. These space-charge effects are of two sorts: a d-c 
effect, if you will, and an r-f effect; th a t is, the presence of the electrons of 
the beam  will a lter the average velocity of the electrons a t  different p a rts  of 
the beam , and will tend to  undo the bunching action. Because of this 
second effect, the electrons are effectively prevented  from  passing each other 
as the graphical solution suggests. Instead , as the density  of the electrons 
in the bunch becomes greater, the m utua l repulsion forces tend  to  prevent a 
fu rther concentration of charge. The electron bunch then  tends to  disperse. 
The action could be likened to  the propagation  of a sound wave in a moving 
column of air. W hile there are several approxim ate w ays to  handle this 
problem , H ahn  was the first to  propose a  really sa tisfactory  theory . Inci
dentally  it should be noted th a t the Benham , M uller, Llewellyn and  P ete r
son type of theory  is capable of trea ting  th is aspect of the problem  in a 
rigorous way and including all space-charge effects, b u t unfo rtuna te ly  these 
theories are lim ited in th a t they  have been applied only to  the parallel- 
plane case, and of course they  are only small-signal theories.
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H ah n ’s analysis s ta rts  by trea ting  an  infinitely long electron beam, using 
cylindrical co-ordinates and is lim ited to a small signal theory where the a-c 
m otions are small com pared to  the d-c b u t it does not ignore the r-f effects 
of the space charge forces. The electron beam  is thought of as a moving 
dielectric rod which is capable of propagating axial waves much as a dielec-

ACŒLERATION VOLTAGE 'IN P U T  GAP
VOLTAGE

Fig. 12—Diagram for a cascade amplifier (Harrison).

trie wave guide will do. H e assumes an axial m agnetic field and a stream  of 
positive ions having the same velocity axially and the same charge density. 
These ions are assumed to have infinite mass. The solution is much too 
com plicated and involved to present here even in abstract. I t  involves the 
com plete solution of M axwell’s equations subjected to  the stated  assum p
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tions as restricted  by  the assum ed boundary  conditions a t  the  edge of the 
beam.

I t  is found th a t two waves are possible, one traveling  slightly faste r th an  
the electron beam  and  the second traveling slower. A  po in t where the 
velocity com ponents are in phase will correspond to  the in p u t to  the  beam, 
while points where the curren t com ponents are in phase correspond to  the 
desired positions for the ou tpu t. The propagation  constan ts for these two 
waves in a  simplified special case where the m agnetic field streng th  is 
i n f i n i t e  are given by  H ahn, as well as expressions for the  optim um  drift 
tube length. H e goes on to  consider the case where the  m agnetic field is 
zero and finds th a t for th is case the density  of the charge does no t v a ry  much 
b u t instead the beam  swells in and  ou t so th a t  instead  of being lum ps of 
charge w ith spaces between, the lum ps appear in the ou ter boundary . H ahn 
has extended his general m ethod of analysis to  consider the  m odulation 
coefficient of gaps through which the  beam  m ust pass.' H is results are a 
g reat deal more general th an  those we have presented.

R am o has reform ulated H ah n ’s theory  by  m eans of re ta rded  potentials 
for the m ost im portan t case. This results in some sim plification of the 
theory. H e com putes the  m ore im portan t design constan ts for a velocity 
m odulated tube, such as the  optim um  drift tube length  and  the  am ount and 
phase of the  transconductance. Those of you who are particu la rly  in ter
ested are referred to  the original paper. An in teresting  aspect brought 
out ra th e r forcibly by  R am o’s analysis is the existence of h igher-order waves 
on the beam , always occurring in pairs, one faster and  the  o ther slower than 
the  beam  velocity.

T h e  M a g n e t r o n

In  w hat tim e rem ains I  w ant to  say ju s t a  very  few words abou t the  mag
netron. T his is a very  com plicated subject and  one which cannot be ade
quately  dealt w ith in an  entire evening, and  certain ly  n o t in  the  time 
remaining.

As you all know, the m agnetron was invented  and  nam ed b y  D r. A. W. 
Hull. H abann, Zacek, Okabe and others pioneered in the use of the mag
netron  as an  ultra-high-frequency oscillator. As envisioned today  a 
m agnetron is a two-elem ent device, usually cylindrical w ith  a  centrally 
located cathode and a  surrounding anode. The anode m ay be continuous 
or it m ay be split in to  a num ber of segm ents as suggested by  Okabe, and 
these segments joined together either externally  or in te rnally  by  resonant 
circuits.

The basic ballistic problem s of the m agnetron, and  hence the  only prob
lems which directly  concern us a t  th is tim e are (1 ) th a t  of determ ining the



electron pa th s w ithin the m agnetron and having determ ined these paths (2 ) 
th a t of getting  an understanding of the mechanism whereby electrons in 
traversing these pa th s are able to  deliver energy to the connected high- 
frequency circuits. One m ight th ink  th a t the first problem  would be a 
relatively easy job. As a m atte r of fact the literature is surfeited w ith 
papers purporting  to give the answer. U nfortunately  alm ost all of the 
published work ignores the effect of space charge. A few m om ents’ thought 
will suggest th a t space charge m ay be a controlling factor because of the 
long electron paths which are sure to result in crossed electric and m agnetic 
fields, and indeed more detailed com putations bear this out. N evertheless 
the neglect of space charge greatly  simplifies the problem. There are those 
who believe th a t the no-space-charge theories have no bearing on the way 
actual m agnetrons work and th a t any  correspondence between the predic
tions of such theories and the actual behavior of m agnetrons is simply the 
result of an  unfortunate coincidence. In  fact Brillouin points out th a t 
the simplified form  in which the Larm or theorem  is applied by  m any, is in 
itself an  approxim ation which was perfectly valid as originally applied by 
Larm or to  the electronic orbits w ithin the atom  bu t which does not apply  
to conditions as they  exist in the m agnetron.

A num ber of recent workers have a ttem p ted  to  include the effects of 
space charge b u t have unfortunate ly  largely restricted themselves to  small 
signal theories while the m agnetron is seldom operated under small signal 
conditions, a t  least no t intentionally. M ost theories are fu rther restricted 
to a  consideration either of the coaxial case where the cathode radius is 
small com pared to  the anode radius or of the plane case. M ost practical 
structures are interm ediate between these extremes.

As an example of the difficulties involved, Fig. 13, reproduced from a 
paper by  Kilgore, shows the electron path s as com puted neglecting space 
charge and also shows experim ental proof th a t these path s actually  exist. 
This illustration has been frequently  reproduced and widely accepted. 
The experim ental p icture was obtained in the presence of gas, to make 
the electron beam  p a th  visible, and unfortunately  the ionization which 
makes the beam  visible also tends to  neutralize space charge effects. The 
experim ental arrangem ent departs still fu rther from reality  in th a t the 
electron emission from the cathode was restric ted to  a lim ited region so 
th a t the space charge forces were still fu rther reduced. Now it is probably 
true th a t some m agnetrons operate w ith electron paths as shown; still i t  is 
no t true th a t all m agnetrons operate in this way.

C ontrasting w ith th is p icture which was un til recently commonly ac
cepted, Brillouin, B lew ett and Ramo, and others have shown th a t stable 
d istributions are possible in which a space charge of alm ost uniform  density 
ro tates w ith a uniform  angular velocity about the axis. Brillouin goes so
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far as to  label the curves due to  Kilgore as wrong, and pictures the  possible 
electron trajectories as shown in Fig. 14.

One of the earliest papers to  consider th is newer picture of the electron 
pa th s in the m agnetron was published by P osthum us in 1935. T h is was 
definitely a ballistic approach and  hence suitable for discussing tonight.

e l e c t r o n Ele c tr o n

E L E C T R O N

Fig. 13—Typical electron paths in a two-segment magnetron showing how electrons arrive 
a t the plate-half of lower potential (Kilgore).

Posthum us lim its his discussion to b u t one type of oscillation which can be 
obtained in the split-anode m agnetron. Those of you who are fam iliar 
w ith the early literature on the m agnetron will recall th a t two d istinct types 
of oscillations were frequently  described. One type usually  called “elec
tronic” was found to  occur under conditions when the m agnetic field was ju st
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high enough to  cut off the anode current under sta tic  conditions. This field 
has the value com puted by  H ull:

„  6.72 V V
H m  R —

H ull’s first com putation, by  the way, was made neglecting space charge, 
but, strangely enough, the result is no t changed by space charge. These 
electronic oscillations were assumed to  be related in frequency to  the time 
of transit of an  electron from the cathode to the anode, and a t  cutoff th is is 
inversely proportional to  the field strength, as expressed by the empirical 
relationship

A H  =  13,100.

B

Electronic trajectories for different magnetic fields 
A— small magnetic field L ^ > b  
B— moderate magnetic field L ~ b  
C— strong magnetic field L<iC.b 
D — critical magnetic field L =  0

Fig. 14—Electronic trajectories for different magnetic fields varying from weak fields to 
the critical field shown to the right (Brillouin).

In  general, it was found th a t best operation occurred when the magnetic 
field was no t quite perpendicular to  the electric field. The efficiency and 
outputs as reported for this type of oscillator were always low, in spite of 
the large am ount of effort devoted to it by an equally large num ber of work
ers. A second type of oscillation, usually referred to  as negative resistance 
oscillations, has also been the subject of considerable study  and some practi
cal use has been m ade of it a t  relatively low frequencies.

Contrasting w ith this, Posthum us described a  th ird  k ind of oscillation 
which he called ro tating  field oscillations. As in the electronic oscillations 
the preferred frequency is determ ined by the m agnetic field-strength and the 
anode potential, the frequency being inversely proportional to  the magnetic 
field-strength. C ontrasting w ith the electronic oscillations, the rotating
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field oscillations occur w ith the m agnetic field-strength very  m uch above the 
critical cutoff value and the  efficiency on occasion reached as m uch as 70% . 
W hile a careful reading of the literature will reveal th a t  some of the  earlier 
experim enters were occasionally dealing w ith these oscillations, P osthum us’ 
observations represent a new departure in m agnetron theory  and  practice 
and one which we m ight do well to  investigate.

P osthum us’ approach consisted in studying the electron p a th s  in a m ag
netron in detail in order to  find the conditions under which electrons m ay 
reach the p la te  w ith considerably less energy th an  th a t  corresponding to  the 
p la te  potential. H e assum ed a m agnetron having k  pairs of p la tes and 
based his calculations on the supposition of a ro ta ting  electric field w ith k 
pairs of poles. In  reality  there exists a  simple a lternating  field b u t this 
can be resolved into two ro tating  fields ro ta ting  in opposite directions. 
Power engineers will recognize th is as identical w ith  the procedure used in 
analyzing single-phase ro tating  m achinery. Posthum us neglected the field 
opposite to  the sta tic  angular velocity and considered only one com ponent. 
T his is an approxim ation b u t a fairly plausible one which can be partially  
justified.

In  the absence of oscillations there is a  radial electric field independent 
of the angular position and inversely proportional to  radius (for the coaxial 
cylindrical case). W hen oscillations are presen t there is an additional radial 
field which varies as some periodic function of the angle and w ith  a period 
2tt, and a tangential com ponent of the same general type. F or sim plicity 
these functions are taken to  be simple harm onic functions and  can therefore 
be split into two circular ro tating  fields.

P osthum us w rites the two sim ultaneous differential equations determ ining 
the p a th  of an electron, neglecting space charge, and  inquires if a solution 
is possible for an elecron p a th  which travels a t  approxim ately  the  same 
angular velocity as the ro ta ting  field b u t lags it by  an  angle a. A n equally 
satisfactory w ay of looking a t  th is is to  say th a t  we transform  our coordinates 
from  a fixed system  to  one ro tating  w ith the field and inquire if a solution 
is possible where a  the angular m otion is always small. H e finds th a t such a 
solution is indeed possible and th a t for the electron m otion to  be stable the 
value of a  m ust be such th a t the electrons are som ew hat behind the line for 
which the field has its m axim um  retard ing  value. The electrons are thus 
in a position to lose energy to  the field and  to  spiral ou t tow ard  the anode.

P osthum us defined the value of the electron’s radial velocity squared a t 
the anode as P  and the to ta l velocity squared a t  the  anode as Q. N or
malized plots of these two param eters are shown in Fig. 15 as a function of 
frequency. The upper plo t shows the radial velocity. Obviously for elec
trons to reach the plate a t all they  m ust have a positive velocity  a t  the  p la te . 
E lectrons can therefore reach the p la te  w ith any  given field value, say Z  =  2,
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*Vo2

Fig 15—Electron velocities in the magnetron according to Posthumus.

th a t is w ith a field equal to  twice the cutoff value, for all frequencies less 
than  the equivalent value defined by  the intercept of the Z  =  2 line w ith



350 B E L L  S Y S T E M  T E C H N IC A L  J O U R N A L

the abscissa axis. The line for P  =  0 appears on the lower curve as the 
do tted  line s. H ere the  ordinate is the to ta l velocity  squared, norm alized 
w ith  respect to  the value w ithout oscillation. Efficiencies can therefore be 
p u t on the plo t directly  as shown by  the righ t-hand  scale in per cent. The 
line x is therefore a  p lo t of the  m axim um  possible efficiency. T his refers 
to  w hat we m ight call the electronic efficiency since no account is taken  of 
circuit losses. N ow  in any  physical device there are some circuit losses and 
hence a  lower value of electronic efficiency for which sustained oscillations 
are no t possible. T he do tted  line p  is P osthum us’ experim ental value for 
this lower lim it. Betw een the lines p  and s, then , oscillations are possible 
a t frequencies given by  the  abscissae and  w ith  field values shown on the 
solid lines. A ctual d a ta  for an  experim ental tube are shown on the plot, 
oscillations occurring a t  the w avelengths indicated  and  over the  ranges in 
field shown by  the lines term inating  in arrows.

One additional line t is shown on the  p lo t connecting po in ts on the different 
Z  lines for which the efficiency is a m axim um . T he optim um  design would 
be one based on the intersection of th is line w ith the p  line. Still o ther facts 
will appear from  a  detailed s tudy  of these results b u t we shall n o t be able 
to devote any  m ore tim e to  th is in teresting  subject.

C o n c l u s io n

In  concluding a ta lk  of th is sort and particu larly  in concluding a series of 
talks, it is usually appropriate to  look ahead to  the fu tu re  and  pred ic t the 
trend  of affairs, or perhaps to  po in t out certain  fru itfu l fields of research. 
I  find this a singularly difficult th ing  to  do. However, it is n o t revealing 
any  m ilitary  secrets to  say th a t  m uch of the progress of the  last few years 
has been in the direction of m aking things w ork and no t tow ard getting  a 
clearer understanding of the underlying theory. If, for example, an il
lum inating approach could be devised which would m ake th e  problems 
associated w ith transverse fields, bo th  electric and  m agnetic, appear as 
simple and  straightforw ard as do longitudinal-electric-field problem s, as a 
result of the velocity-m odulation concept, then  I  believe even m ore striking 
advances could be m ade in the  ultra-high-frequency field th a n  those which 
the  w ar years have brought forth.
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Dynamics of Package Cushioning 
By RAYMOND D . M IN D LIN

I n t r o d u c t io n

TV /TEC H A N IC A L  dam age is a common occurrence in the transportation  
of packaged articles. The causes of failures are generally inadequate 

protective cushioning, lack of ruggedness of the outer packing container, 
or occasional abnorm al weakness of the packaged article. The first of these 
difficulties is the subject of this paper.

One of the m ajor influences in reducing the incidence of mechanical failures 
of packaged articles in recent years has been the use of the drop test. The 
drop test is perform ed simply by raising the package to a specified height and 
dropping it to the floor. The package and its contents are then examined 
for damage. T his is a go-no-go test and requires a large num ber of samples 
before a reliable estim ate of quality  can be made. An adequate num ber of 
tests is prohibitive when the article packaged is costly. In  such cases it is 
im portant, and in any case it is useful, to supplem ent the drop test d a ta  w ith 
measurem ents and calculations. I t  is also possible to evolve rational pro
cedures for designing packages, as described in the present paper, so th a t 
a particular product will survive a drop test a t any specified height, w ith a 
known factor of safety and w ith a m inim um  am ount of space assigned for 
cushioning. The drop test then becomes only a check instead of playing an 
integral role in a cu t and try  design procedure.

Assuming th a t the outer container is adequate, the survival of a packaged 
article in a drop test still depends upon a large num ber of factors descriptive 
of the mechanical properties of both the cushioning medium and the pack
aged item. However, the more im portan t properties can be grouped so 
th a t they m ay be replaced by  knowledge of only the following factors:

(1) The m agnitude of the m aximum acceleration th a t the cushioning 
perm its the .packaged  item  to reach.

(2) The form of the acceleration-time relation.
(3) The strengths, n a tu ra l frequencies of vibration and dam ping of the 

structural elem ents of the packaged article.
P a rt I  of this paper is concerned prim arily w ith m ethods for predicting 

maximum acceleration of the packaged article w ith emphasis on non-linear 
cushioning. P a r t I I  deals prim arily w ith the prediction of the form of the 
acceleration-time relation. P a r t I I I  deals w ith the effect of acceleration on
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the packaged article and gives m ethods for determ ining w hether or n o t the 
strength  of the packaged article will be exceeded. T he streng th  de ter
m inations them selves are no t dealt w ith here; b u t the inform ation in P a r t  I I I  
is essential in in terpreting  and  applying the d a ta  obtained in streng th  m eas
urem ents. In  P a r t IV  some consideration is given to  the influence of dis
tribu ted  m ass and elasticity.

I t  cannot be em phasized too strongly th a t  the determ ination  of the m ech
anical properties of the packaged article, n o t dea lt w ith  in th is paper, is an 
essential prelim inary to  a rational design procedure for packaging. The 
whole purpose in designing package cushioning is to  lim it the forces which 
m ay ac t on the packaged item . If one does n o t know to w hat values to 
lim it the forces, a rational design procedure cannot be applied.

I t  is interesting to  observe th a t the m ethods described here for analyzing 
and designing' package cushioning are directly  applicable to  the  design of 
shock m ounts in tended to  p ro tec t equipm ent from  the  effects of a  sudden 
change in velocity. All of the  principles, form ulas and  design curves given 
here m ay be used in the shock m ount problem  w ith  the  sim ple substitu tion  
of F 2/ 2 g for h, where h is the  height of drop in the packaging problem , g is 
the acceleration of g rav ity  and V  is the velocity change in the shock m ount 
problem.

T his paper is essentially a  report on a study  undertaken  a t  the  Bell Tele
phone Laboratories, Inc., in  the E lectronic A pparatus D evelopm ent 
D epartm ent. The results have been applied to  the packaging of large 
vacuum  tubes and  all of the examples used to  illustrate  the  analysis and 
design procedures in the paper are taken  from  vacuum  tube applications.

M iss H . A. Lefkowitz, M em ber of the Technical Staff, Bell Telephone 
Laboratories, assisted in the m athem atical studies. T he oscillograms, used 
as illustrations, were prepared under the supervision of M r. F . W. Stubner, 
M em ber of the Technical Staff, Bell Telephone L aboratories. Figure 
3.8.2 was taken  from  a  thesis subm itted  by  M r. C. U lucay in p a rtia l fulfill
m ent of the requirem ents for the degree of M aster of Science in the  D ep a rt
m ent of Civil Engineering a t  Colum bia U niversity. The calculations for 
Figs. 3.5.1 to 3.5.6 and Fig. 3.2.2 for fii >  0 were perform ed on the  W esting- 
house M echanical T ransien ts A nalyzer under the supervision of D r. G. 
D . M cC ann, Transm ission Engineer, W estinghouse E lectric and  M anu
facturing Com pany.

A s s u m p t io n s

The procedures to  be described for the analysis and  design of package 
cushioning are based on applications of a  few simple laws of m echanics to 
an  idealized m echanical system  representing the package and  its contents.
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Essentially, a  package consists of
1. E lem ents of the packaged article which are susceptible to  mechanical 

damage.
2a. The packaged article as a  whole.
2b, A cushioning m edium  (excelsior, cardboard spring pads, m etal springs, 

etc.)
1 *

3. An outer container (cardboard carton, wood packing case, etc.) 
The four m ajor com ponents are illustrated  schem atically in Fig. 0.2.1. 
The system  is fu rther idealized by  “ lum ping the param eters” ; for example, 
the outer container is considered as a  single mass, the  cushioning is con
sidered as a massless spring w ith  friction losses. The result of th is idealiza
tion is to  lose some of the  fine detail of the real d istribu ted  system  such as 
wave propagation through the  cushioning and  higher m odes of v ibration  in

Fig. 0.2.1— Schematic representation of a package.
1. Element of packaged article 

2a. Packaged article as a  whole 
2b. Cushioning 

3. Outer container

the package structu re and  in the packaged article. Some consideration of 
these details is given in  P a r t IV.

The idealized system  is illustrated  in  Fig. 0.2.2. The m ajor com ponents 
of the system  are as follows:

1. A structu ra l elem ent of the packaged item  is represented by  a  mass 
(mi) supported by  a linear massless spring w ith or w ithout velocity 
dam ping. The m ass m i is assumed to be small in  comparison with 
the m ass of the whole packaged item .

2a. The whole packaged item  is represented by  a  m ass »z2.
2b. The cushioning is represented by  a spring which m ay have a  linear 

or non-linear load-displacem ent characteristic and which dissipates 
energy th rough velocity  dam ping or d ry  friction. P erm anen t de
form ation of the cushioning is n o t considered, th a t  is, in  a  repetition 
of the drop te s t i t  is assumed th a t  the package has the  same properties 
as before the first test. A properly designed package will have essen
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tia lly  th is characteristic. The m ass of the cushioning is assum ed to 
be small in com parison w ith m 2, except in Section 4.2.
T he outer container is represented by  the m ass . T he im pact of 
m 3 on the  floor is assum ed to  be inelastic and  during contact the  rela
tive displacem ent between m 3 and the in itial position of the floor 
is assum ed to  be small in com parison w ith the relative displacem ent 
between m 2 and m 3. In  o ther words, no spring action  is assigned to 
the outer container and the floor is considered rigid.

Elem ent of 
Packaged  

Item

Packaged  
Item

Cushion

Height 

of drop h

' / / /  S  
0

( a )  ( b )  ( c )

Fig. 0.2.2—Idealized mechanical system representing a package in a drop test.

P A R T  I

M A X IM U M  A C C E L E R A T IO N  A N D  D IS P L A C E M E N T

1.1 I n t r o d u c t io n

M ost of P a r t I  is concerned w ith the prediction of the m axim um  accelera
tion th a t  the cushioning perm its the packaged article (w 2) to  a tta in . In 
m any instances th is will be all the  inform ation necessary for judging the 
su itab ility  of a cushioning system . I t  will be all th a t  is necessary if the 
shape and scale of the acceleration-tim e function satisfy certain  criteria 
which are trea ted  in detail in P a rts  I I I  and IV. If these criteria are satisfied, 
the effect of the drop on the packaged article is found by  m ultip ly ing the
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dead load stresses (obtained in the usual m anner) by  the ratio  of the maxi
m um  acceleration to the acceleration of gravity. If the criteria for the use 
of m axim um  acceleration alone are no t satisfied, then P arts  I I  and I I I  will 
supply a  numerical factor (the Amplification Factor) by which the maxim um  
acceleration should be multiplied, and the rem ainder of the procedure is the 
same as before.
■ The determ ination of the m axim um  acceleration is founded on a knowledge 

of the load-displacem ent characteristics of the cushioning. W hen the cush
ioning system  is simple enough, the load-displacem ent relation m ay be found 
or designed by  purely analytical procedures. The tension spring package, 
discussed in Sections 1.7 and  1.8, is an  example where such a  trea tm en t is 
possible. In  m any instances, as w ith d istributed  cushioning, the load- 
displacem ent relation is more easily found by  test.

A load-displacem ent test is m ade by  applying successively increasing 
forces, w ith weights or in a load testing machine, to  the packaged item  
completely assembled in its  package, and  m easuring the corresponding 
displacements. The force is applied usually by  m eans of a  rod inserted 
in a hole cut through the outer container and the cushioning to  the packaged 
item. I t  is convenient to use a low loading rate  in the test, and, in doing so, 
the effect of resisting forces th a t depend on velocity is lost. These forces 
are often of little im portance bu t, in certain designs, i t  is necessary to  con
sider them . This is done for velocity dam ping in Sections 2.5, 2.6, 3.2 and
3.5.

M ost of P a r t I  is concerned w ith cushioning having non-linear load-dis
placem ent characteristics. L inear cushioning is rarely  encountered, bu t 
it will be trea ted  first because of its sim plicity and because it will be con
venient la te r to  express the m axim um  acceleration in non-linear cases in 
term s of the m axim um  acceleration in a  hypothetical linear case.

1.2 Derivation of Equations of Motion

To introduce the m ethod of analysis th a t will be used in P a r t I, the sim
plest possible system  is considered first. The m \ system  is om itted entirely, 
the mass of the outer container (m3) is neglected, and  the cushioning is 
assumed to have no dam ping or friction. There rem ain only the mass 
mi (the mass of the packaged item  alone) and the supporting spring, as 
shown in Fig. 1.2.1. If  the spring is linear its displacem ent is proportional 
to  the applied load throughout the range of use (see Fig. 1.4.1). The spring 
rate  (ki) of a linear spring is a  constant usually expressed in term s of pounds 
per inch. The force (P) transm itted  through a linear spring is therefore 
given by

P  =  k 2x 2 , (1.2.1)
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where x 2 is the displacem ent of m 2 m easured downward from  its  position a t 
first contact of the spring w ith the floor (see Fig. 1.2.1). F or a  non-linear 
spring P  will be some o ther function of x 2 :

P  =  P (x 2). (1.2.2)

To w rite the equation of m otion for the m ass m 2, we consider the  forces 
acting on it  a t  any  instan t. These are (see Fig. 1.2.2(b)) the spring force 
P  and the weight m 2g, where g is the acceleration of gravity . W hen x 2 
is positive (i.e., a  downward displacem ent of m 2 from  its  position a t  first 
contact of the spring w ith the floor) the spring exerts an  upw ard force P

p

(a) (b)
Fig. 1.2.2—Free body diagram for elementary system.

(a) Spring not in contact with floor.
(b) Spring in contact w ith floor.

on the mass, opposing the weight. The to ta l dow nw ard force on m 2 is 
thus m 2g — P . B y the second law of m otion, the p roduct of the  m ass and 
its acceleration a t  any  in stan t is equal to  the applied force:

m 2x 2 — m 2g — P , (1.2.3)

where the symbol x 2, representing the acceleration of m 2, stands for the 
second derivative of displacem ent w ith respect to  tim e ( t fx i /d t2). E quation
(1.2.3) is the law governing the m otion of m 2 as long as the spring is in con
ta c t w ith the floor. W hen the spring is n o t in contact w ith the  floor, it can 
exert no force on the m ass so th a t, in w riting the  equation  of m otion th a t
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governs before or afte r contact, the free-body diagram  of Fig. 1.2.2(a) should 
be used. Then

x 2 =  g. (1.2.4)

E quation  (1.2.4) holds (neglecting air resistance) from  the in stan t the 
package sta rts  to fall un til the in stan t i t  strikes the floor and from  it  we 
can find the package velocity a t  the in stan t of first contact. In tegrating  
(1.2.4) w ith respect to  time, we find

x 2 = gt +  A ,  (1.2.5)

where x 2 is the velocity (dx2/d t) and A  is a constant of integration whose
value is found from the initial condition th a t when t =  0 (the instan t of
release) x 2 =  0. T hus A =  0 and

x 2 =  gt. (1.2.6)

In tegrating  again,

*2 =  U t 2+ B .  (1.2.7)

The value of the integration constant B is found from  the initial condition 
th a t x 2 =  — h (the height of drop) when t =  0. Hence B  — —h and

x 2 =  \ g P ~ h .  (1.2.8)

A t the in stan t of contact, x 2 =  0 and, from (1.2.8), the tim e a t  first contact 
is given by  t\ =  2h/g. S ubstitu ting  th is value of t in (1.2.5) we find, for the 
velocity a t  first contact,

fe]*2=o =  V 2 ~gh. (1-2-9)

We now have the in itial conditions for finding the values of the integration 
constants in the solution of equation (1.2.3), which we proceed to obtain.

F irst m ultiply both  sides of (1.2.3) by  dx2/d t  and write x 2 = :

m 2

or

, d ( dx2\  , _ dx2 dx2
im ’ d l \ n )  + p T i - m '-s l u -

M ultiplying by  dt and integrating once:

/ 2̂ Cx2
P  dx% =  J m 2g dx2 +  C, (1.2.11)
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where C is a constan t of in tegration  whose value is determ ined by  the  initial 
conditions th a t x\ = 2gh and x2 =  0 a t  the in stan t of contact. Hence

I t  m ay be observed th a t (1.2.12) is an  energy equation  in which the 
term s have the following m eanings:

P  dx2 is the energy stored in the spring a t  any  in stan t. I t  is also

m 2g(h +  x 2) is the po ten tia l energy of the m ass a t  its in itia l heigh t h +  x2 
above the instantaneous position x2.

Hence (1.2.12) expresses the law of conservation of energy.
O rdinarily h is very  m uch larger th an  x2 so th a t  we m ay w rite, w ith good 

accuracy,

E quation  (1.2.14) and its first integral, equation  (1.2.13), are convenient 
forms for calculating events a t  any  tim e during contact. T heir use will be 
illustrated  in P a r t I I . F or calculating only m axim um  displacem ent and 
acceleration, the equations become simpler. L et 

W i  =  weight of the packaged article ( = m 2g), 
dm =  m axim um  displacem ent of the  packaged article,
Gm =  absolute value of m axim um  acceleration of the packaged article

in term s of num ber of tim es g rav ity  ( Gm =  | x2/g  | m a x ) ,

P m =  m axim um  force exerted on packaged article by  cushioning.
We shall lim it our study  to  the practical regions where P  >  0 when

x-i >  0. T hen  it m ay be seen from  (1.2.13) th a t  x2 is a  m axim um  when
x2 is zero, hence

Substitu ting  the above value of C in (1.2.11), we have

'o
(1.2 .12)

§m2x2 is the instan taneous kinetic energy of m 2,

'o
equal to  the area under the load-displacem ent curve up to 
the displacem ent x2,

(1.2.13)

To the same approxim ation, equation  (1.2.3) becomes

m 2Xi +  P  =  0. (1.2.14)

'o
(1.2 .15)
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and, from  (1.2.14),

(1.2.16)

where P m is the m axim um  value of P . If P (x f)  is a monotonic function, 
P m m ay be obtained from  (1.2.2) by  substitu ting  dm for x 2:

In  the unusual case where P(.t2) is no t monotonic, the m axim um  value of P

The general procedure is to calculate dm from  (1.2.15), P m from  (1.2.17) 
and then Gm from  (1.2.16). If P  can be expressed analytically in term s of x2 
and if the integral in (1.2.15) can be evaluated in term s of elem entary func
tions, simple form ulas can be found for dm and Gm. If  this is no t possible, 
then the integration can be perform ed graphically or numerically. B oth 
of these procedures will be illustrated. In  either case the maxim um  accel
eration and displacem ent are obtained in term s of the weight of the pack
aged item, the height of drop and param eters descriptive of the load-dis- 
placement characteristics of the  cushioning.

1.3 Linear Elasticity

For cushioning w ith a linear load-displacem ent relation, equation (1.2.1) 
applies. S ubstitu ting  this value of P  in (1.2.15), and perform ing the in
tegration, we find

Notice th a t equation (1.3.3) holds only if there is space available for a 
displacement dm and if the cushioning is linear and capable of transm itting  
a force P m . Also, from  (1.3.3) and (1.3.1),

P m =  P (dm). (1.2.17)

in the in terval 0 <  x 2 <  dm m ust be chosen instead of equation (1.2.17).

(1.3.1)

From  (1.3.1) and (1.2.17)

Pm — - V l h W i h , (1.3.2)

and, from (1.3.2) and (1.2.16),

(1.3.3)



Example: F ind  the properties of the linear cushioning required so th a t 
the m axim um  acceleration will be 50g in a 3 ft. drop of a  20 lb. article.

F rom  (1.3.4),

2 X  36 . ,necessary travel, am =  ——— = 1.44 inches.

F rom  (1.3.5),

20 X  (50)2 
spring rate , fa =  2 X  36~ =  ^ s /m .

F rom  (1.2.16)

M axim um  force P m =  20 X  50 =  1000 lbs.

1.4 Cushioning with N on-Linear Elasticity

In  practice it is rarely th a t a packaging system  has linear spring charac
teristics. D epartu re  from  linearity  m ay be due to

362 B E L L  S Y S T E M  T E C H N IC A L  J O U R N A L

Fig. 1.4.1—Linear elasticity. Class A.

1. N on-linear geom etry, such as in the  tension spring package described 
in Section 1.7.

2. N on-linear characteristics of d istribu ted  cushioning m aterials such as 
excelsior and rubber.

3. A brup t change of stiffness such as occurs if the  packaged item  can 
strike the  wall of the container.

F or the purpose of developing design form ulas it  is desirable to  have 
analytical functions to  represent load-displacem ent characteristics. I t  is 
no t feasible to  have only one fam ily of functions w ith  ad justab le param eters 
to  fit all possible shapes of load-displacem ent curves. Therefore, all the 
practical shapes have been divided in to  six general classes, m ost of which 
are associated w ith simple functions having one or tw o ad justab le param 
eters. The six classes are as follows:

Class A — Linear Elasticity. T h is has already been trea ted . I ts  load- 
displacem ent function is

P  — faxi. (1.4.1)
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Class B — Cubic Elasticity. T his includes cushioning which does no t bo t
tom  in the anticipated  range of use, b u t the slope of the load-displacem ent 
function generally increases w ith increasing displacem ent as in the curved 
full line of Fig. 1.4.2. A suitable load-displacem ent function is

P  =  k0x 2 +  rx 2 . (1.4.2)

ko is the initial spring ra te  of the cushioning, as shown by  the slope of the 
dashed straigh t line in Fig. 1.4.2, and r determ ines the rate  of increase of the 
spring rate . T he same function can be used if the slope of the curve de
creases gradually  w ith increasing load as shown by  the curved dashed line 
in Fig. 1.4.2. In  th is case the param eter r  is negative.

^1 ^2 ^2
Fig. 1.4.2 Fig. 1.4.3

Fig. 1.4.2—Cubic elasticity. Class B.
Fig. 1.4.3—Tangent elasticity. Class C.

Class C— Tangent Elasticity. Cushioning th a t bottom s, b u t no t very 
abruptly , can be represented by  the load-displacem ent function

2ko  db . 7T%2 . «>.
/  =  -  - t a n -  -. (1.4.3)

7T Mb

Referring to  Fig. 1.4.3, k 0 is the initial spring rate  and db is the maxim um  
available displacem ent. The figure shows how the stiffness of the cushion
ing (i.e., the slope of the curve) increases as the displacem ent approaches 
the maxim um  available (db) a t hard  bottom ing. The shape of the curve 
is typical of load-displacem ent curves for a great varie ty  of packages w ith 
d istributed cushioning.

Figure 1.4.7 illustrates the wide varie ty  of shapes of non-linear cushioning 
characteristics th a t can be obtained w ith  the single function given by  equa
tion (1.4.3) sim ply by  varying the param eter k0; and a  similar set is given by 
each value of db. A lthough these families of curves do no t include all pos
sible shapes, one of them  can usually be found to  fit a practical shape for 
cushioning of th is class over the anticipated  range of use.

Class D—Bi-linear Elasticity. T his is characterized by  a load-displace-
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m ent curve consisting of two stra igh t line segments. T he load displacem ent 
function is (see Fig. 1.4.4)

I t  is useful especially in situations where very  ab ru p t bo ttom ing is possible.
Class E — Hyperbolic Tangent Elasticity. W hen the m echanism  of the 

cushioning is such as to  lim it the m axim um  force th a t can be transm itted  
over a considerable displacem ent range, the load-displacem ent function

is useful. P q is the asym pto tic value of the force and k0 is the in itial spring 
ra te  (see Fig. 1.4.5).

Class F— Anomalous Elasticity. In  occasional instances the load-dis
p lacem ent curve of the cushioning cannot be m atched accurately  enough 
by  any of the five preceding functions. In  such cases a num erical in tegra
tion procedure can be used, as described in Section 1.15.

1.5 C u s h io n in g  w it h  C u b ic  E l a s t ic it y  (C l a s s  B)

Substitu ting  (1.4.2) in (1.2.15) and perform ing the in tegration , we have:

(1.4.4)

(1.4.5)

pp

ds ^2 
Fig. 1.4.4 Fig. 1.4.5

Fig. 1.4.4—Bi-linear elasticity. Class D.
Fig. 1.4.5—Hyperbolic tangent elasticity. Class E.

(1.5.1)

Now, let

(1.5.2)
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th a t is, d0 is the displacem ent th a t would take place if the elasticity were 
linear (see equation (1.3.1)) w ith a constant spring rate  k 0 equal to the in itial 
spring rate  of the cubic elasticity. Also let

B  =
AW  2 hr

Then, from (1.5.1), (1.5.2) and (1.5.3)

H i /It-i+vnTB).

(1.5.3)

(1.5.4)

Equation (1.5.4) is p lo tted  in Fig. 1.5.1 which shows graphically how the 
maximum displacem ent dm compares w ith the “equivalent linear displace
m ent d0” as the param eter B  is varied. N ote th a t B  depends on the weight 
of the packaged item , the height of drop and the shape of the load displace
m ent curve (as determ ined by k0 and r).

Fig. 1.4.6—Anomalous elasticity. Class F.

Similarly we can compare the m aximum acceleration Gm w ith the maxi
mum (Go) th a t would obtain if the load displacem ent curve were linear w ith 
spring ra te  k0. The la tte r  acceleration is given by

/ihko
~  y  W l

(1.5.5)

and the former is obtained by  finding P m from (1.2.17) and then, from
(1.2.16),

%  ~  ' t / I  (1 +  +  i *) -

Equation (1.5.6) is p lo tted  in Fig. 1.5.2.

(1.5.6)

1.6 Procedure por Finding Maximum Acceleration and D isplacement 
for Cushioning with Cubic Elasticity

If the load-displacem ent curve of a  cushioning system  has the general 
appearance of Fig. 1.4.2 (where the slope increases or decreases gradually



w ith displacem ent) the following procedure m ay be used for estim ating  the 
effectiveness of the cushioning.
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MU! "  
mws&mtfos?

. ••• . Aiü-W

¡íüi¡¡PHP!r“ i  - r a n g e  'j s t  s w -  ■ ■ >t i

130(0)1

120(0)j

1 0 0 (0 ) i

70(0)

20(0)

Fig. 1.4.7—Family of load displacement curves for cushioning w ith tangent elasticity.

150(0)

140(0)

1 10 (0 )

a. Select the po in t on the load-displacem ent curve for which the load 
is equal to  the w eight of the packaged item  m ultiplied by  the allowable 
Gm. Call th is load P* and  the corresponding displacem ent d2.
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Fig. 1.5.1—Maximum displacement for cushioning with cubic elasticity. See 
equation (1.5.4).
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Fig. 1.5.2—Maximum acceleration for cushioning with cubic elasticity. See 
equation (1.5.6).



368 B E L L  S Y S T E M  T E C H N IC A L  J O U R N A L

b. Select ano ther po in t (d \ , P i)  abou t hall w ay tow ard  the  origin from 
(¿2 , P 2)• See Fig. 1.4.2.

d. Using the know n weight, W 2, of the packaged item , the  specified height 
of drop h, and  ko and r  from  (1.6.1) and  (1.6.2), calculate B , do and  Go from
(1.5.2), (1.5.3) and  (1.5.5). T hen  calculate the  m axim um  acceleration Gm 
and  m axim um  displacem ent dm from  (1.5.6) and  (1.5.4) or find the ir values 
from  Figs. 1.5.1 and  1.5.2.

Example: A large vacuum  tube, weighing 22.5 lbs, was packed in a 7" x 
7 f"  x 15" carton  which was supported  on corrugated  cardboard  spring pads 
in a  10§" x 1 1 x 18f " carton. T he la tte r  was, in tu rn , packed in 28 pounds 
of excelsior in a  25" x 25" x 30" carton. T he tube is ra ted  a t  50g and the 
package is in tended for a  drop of th ree feet.

A rod was inserted th rough a  hole cu t th rough  the  three cartons to  the 
tube. Load was applied to  the  rod and  the  displacem ent of th e  tube was 
m easured. T he d a ta  obtained were

T he d a ta  are p lo tted  in Fig. 1.6.1. The resulting curve is suitable for 
classification as either Class B or Class C cushioning. Considering it, for 
the  present, as Class B , we take P 2 =  22.5 X 50 =  1225, and  from  the  curve, 
¿2  =  1.9 inches. Also, from  the curve, take di = 1 inch and  P i  =  365

c. Calculate

(1.6 .1)

and

P 2 _  P
di d ;

f  =  d\ -  d\

Pi
di

(1.6 .2),2

p
(load in  lbs) (displacement in inches) 

00
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400

1 6
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lbs. Substitu ting  these values in (1.6.1) and (1.6.2), we find k0 =  255 and 
r =  108. Then

„  4W ih r  4 X  22.5 X  36 X  108
B”  I T "  =  ----------- (255?------------- =  5 '4 '

_  / 2 I k ,  . / 2  X  36 X  255 ,
Gt -  V w ,  ~  V  -------2X5-------  "  28'6 '

Entering  Fig. 1.5.2 w ith B  =  5.4 we find Gm/G 0 =  1.9. Hence

Gm =  28.6 X 1.9 =  55

This is close enough to the 50g ra ting  of the tube to call the cushioning 
safe insofar as maxim um  acceleration is concerned.

x2
Fig. 1.6.1—Experimental load-displacement curve for a corrugated cardboard spring pad

and excelsior cushion.

The maxim um  displacement, obtained by  entering Fig. 1.5.1 w ith B  —
5.4 and finding dm/d a =  0.75. T hen  dm =  0.75 X 2h/G a =  1.95 inches. 
Hence, the package is m uch larger than  necessary since approxim ately 8 
inches of cushioning thickness is supplied to  accom m odate 2 inches of 
displacement.

1.7 T h e  T e n s io n -S p r in g  P a c k a g e  (C la s s  B)
The tension spring package is useful when the allowable Gm is so small 

and height of drop so great th a t a large displacem ent (say dm >  several 
inches) is required. The decision as to w hether or no t a tension spring 
package is indicated m ay be m ade on the basis of a  prelim inary estim ate 
of displacem ent based on the linear case. Suppose the height of drop is 
to  be 60 inches and the allowable acceleration for the packaged item  is
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20g. Then, from  E quation  1.3.4, the approxim ate displacem ent th a t  will 

be required is

dm ■= 2 =  6 inches.

The actual m axim um  displacem ent in a tension spring package will prove 
to  be som ewhat more th an  6 inches, b u t the prelim inary calculation shows 
the displacem ent to  be large enough to  w arran t the use of th is type of 
cushioning.

H G

Fig. 1.7.1— Schematic diagram of a tension spring package.

A schem atic diagram  of a  typical tension spring package is shown in Fig.
1.7.1 and a photograph of one design is given in Fig. 1.7.2. T he packaged 
item  is suspended on eight identical helical tension springs which diverge 
to  the outer frame. The analysis and design procedures described in this 
and  the following section apply  equally well if the springs converge from  the 
packaged item  to the outer frame. W ith a slight modification, indicated 
in the next section, the procedure also applies if four of the  springs (say, 
B J, D F , EM , OG in Fig. 1.7.1) are om itted.

In  all cases, however, we shall consider only system s having reflected 
sym m etry abou t each of three m utually  perpendicular planes th rough  the 
center of grav ity  of the packaged article.
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Fig. 1.7.2—A tension spring package.

The load-displacement characteristics of the spring system may be found 
by statical considerations. We shall examine, first, the displacement in the 
vertical direction in Fig. 1.7.1, using the following notations:

P  =  force applied to the suspended object. 
x2 =  displacement of suspended object,
x0 =  perpendicular distance (I R , Fig. 1.7.1) from inner spring support 

point (I, Fig. 1.7.1) to nearest plane, perpendicular to displacement 
direction and containing four outer spring support points (A,  B,  C, 
D,  Fig. 1.7.1);
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i i  =  distance {IA )  between spring support po in ts when suspended article 
is in equilibrium  position,

I  — projection of C on plane A B C D ,
f  — I  m inus length (between hooks) of unstretched  spring, 
k =  spring ra te  of each spring.

Consider, first, the action of one pair of springs, say E M  and  GO of Fig. 
1.7.1, independent of the rem ainder of the suspension. Since E M  and GO 
lie in parallel vertical planes and  the po ints M  and 0  rem ain in  the  initial 
planes of the ir respective springs during a  vertical displacem ent, the two 
springs m ay be considered to  lie in the  same plane, and  to  be transla ted  hori
zontally  in th is plane so th a t  the ir ou ter ends are separated  by  a  distance 21. 
Hence Fig. 1.7.3 m ay be used to  represent the independent action  of this 
pair of springs and  it  is required to  find the force Q' needed to  transform  Fig. 
1.7.3(a) to  Fig. 1.7.3(b). In itia lly  there are tw o springs, each of length I  — f

rHĆHJKLmJUB

Fig. 1.7.3— Diagram used in discussion of tension spring package.

and  spring constan t k, w ith  no in itial tension in them . One end of one spring 
is fixed a t  po in t E  and  one end of the o ther spring is fixed a t  a  point G 
d is tan t 21 from  E . The springs are then  stretched  so th a t  the  tw o initially 
free ends are located a t  a  po in t F  equ id istan t from  E  and  G and  d istan t x2 
from  line EG. The axis of each spring m akes an  angle a  w ith  EG, where

sin a  = x 2
nx2V f  +

In  th is s ta te  the  axial force F  in each spring is

f  =  k i V f T V 2 -  * «

(1.7.2)

(1.7.3)

and the force Q', required to  equilibrate the  tw o forces F  is 2F  sin a. Con
sidering the force Q' as a  function of the displacem ent x 2 , we w rite

Q '( * i )  -  WW e  m ^  (1 .7 .4 )
V C  +  x %
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or

where

O V )  - 2 i < | V +  f r y j l j Q  (1.7.5)
V l  +  Z':

l i
Consider, next, the configuration shown in Fig. 1.7.4(a), where one end of 

each of four springs is fixed a t a  corner of a rectangle of length 2i  and w idth 
2x0 . E ach spring is again of length t  — f .  The four free ends of the springs 
are draw n together a t  a common poin t X  a t  the center of the rectangle (see 
Fig. 1.7.4(b)). The system  is in equilibrium in this position. A force Q 
is then applied a t X  in the plane of the rectangle and norm al to  the side 21.

Fig. 1.7.4—Action of springs in a tension spring package.

The common poin t X  is displaced a  distance x 2 to  X '  (see Fig. 1.7.4(c)). 
W riting z = x 2/1 , a = Xq/  I, we observe th a t

Q(z) =  Q’(z +  a) +  Q'(z -  a), (1.7.6)

or, from equation (1.7.5),

z  4- a z —M (1.7.7)-  2 M | 2 S - ( 1 - » ) [ 5 W ~ |  +  V f T F

The standard  tension spring package has two sets of four springs so th a t 
the force P  required to  displace the common poin t X  a  distance x 2 is

P (z) =  2Q(z). (1.7.8)

If x 2 is small in comparison w ith I  (i.e., z is small in comparison w ith 
unity), equation (1.7.8) m ay be w ritten approxim ately as

^ ( 2  I  Z 1 (1.7.9)r W  =  m[i,  -

Even when x 2 becomes alm ost as large as I, equation (1.7.9) has been found, 
experimentally, to  be rem arkably accurate.
W riting

K 8*[! (1 +  w ] (1.7.10)
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and

c
(1 +  a ) 312 (1.7.11)

1 -  b

equation (1.7.9) becomes

í > § H ¡ k | , (1.7.12)

I t  is seen, by com parison w ith (1.4.2) th a t  th is is Class B cushioning 
(cubic elasticity). K  is the initial spring ra te  and  c determ ines the rate  of 
increase of stiffness w ith displacem ent. W ith  the no ta tion  k 0 , r of Section
1.5, we see th a t

Hence equations (1.5.6) and (1.5.4) m ay again be used to  calculate maximum 
acceleration and displacem ent. B  has the  same m eaning as before (Eq.

To pred ic t the perform ance, in the vertical direction (Fig. 1.7.1), of an 
existing tension spring package the same procedure as outlined in Section
1.6 m ay be used, except th a t it is no t necessary to  have a load-displacem ent 
curve for calculating k 0 and r. Instead , these param eters m ay be calculated 
directly  from equations (1.7.10), (1.7.11), (1.7.13) and  (1.7.14). The 
rem ainder of the procedure is the same as in Section 1.6(d).

To predict the perform ance perpendicular to ano ther face, say A E H D  
of Fig. 1.7.1, it is only necessary, in the calculation of k 0 and  r, to  substitute 
x'o for x 0 , V  for t  (see Fig. 1.7.1) and, in place of b:

The initial spring ra te  K  for any  direction of acceleration m ay be calcu
la ted  from the initial spring rates K i , K 2 , K s in the three directions normal 
to the faces of the fram e by  using the relation

where 5, t, u  are the direction cosines of the acceleration direction with 
respect to  the norm als to the faces of the frame. I t  is seen, from  (1.7.16), 
th a t the spring ra te  is given by the radius to  the surface of an  ellipsoid whose 
principal semi-axes are K i , K 2 , K s .

ko — K

2  æ  ‘

(1.7.13)

(1.7.14)

1.5.3).

V  =  1 -  I  ( 1  ■ -  b ) . (1.7.15)

(1.7.16)
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The displacem ent direction does not necessarily coincide w ith the acceler
ation direction. The angle 6 between them  is given bv

where K  is defined by  equation (1.7.16).
The spring characteristics m ay be made the same in all directions and the 

displacement direction m ay be made to  coincide w ith the acceleration 
direction by  setting

(see Fig. 1.7.1). T his m akes b = b' =  b", c =  0.828 and k / K  =  0.274 
in the calculations of the next section.

1.8 P r o c e d u r e  f o r  D e s ig n in g  T e n s io n  Sp r in g  P a c k a g e s

The design of a tension spring package, as contrasted w ith the analysis of 
one, m ust proceed w ithout initial knowledge of values for the param eters k 0 
and r, since these cannot be known until the springs are designed. There
fore equations (1.5.4) and (1.5.6) cannot be used directly. F or design p u r
poses they  are transform ed to  the following set of formulas:

These formulas have been converted to  design curves which are given in 
Figs. 1.8.1 to 1.8.5. The curves are for use in connection w ith the following 
routine procedure which has been found useful in  designing the springs for 
tension spring packages. Reference should be m ade to  Table I.

(1.7.17)

/ //Xq — Xq — — / —

and

L  =  d k  = \ ] / W N +  +  8)’ +  |  (1.8.2)

(1.8.3)

t t /  n -  T  __________

M 2 =  N  =  I g * - « ! 1 + B ) ( ‘H  +  V l M »  (1-8.4)

(1.8.5)
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1. E n te r, on Line 1, Table I, the  w eight (fE2) in pounds, of the  sus
pended item . T his includes the w eight of the  cradle or o ther holding 
arrangem ent and one-third the estim ated  w eight of the  springs.

0  0 .1  0 .2  0 .3  0 .4  0 .5  0  6  0 .7  0 .8  0  9  1.0

X o

J
Fig. 1.8.1—Tension spring package design curve. Equation (1.8.1).

2. E n ter, on Line 2, the height of drop (h) in inches.
3. E n ter, on Line 3, the m axim um  allowable acceleration (Gm) in  units 

of “num ber of tim es g rav ity .” This should be determ ined before
hand  from  tests  on the item  to  be packaged.

4. E n te r, on Line 4, the dim ension xo (inches).
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5. E n ter, on Line 5, the dimension I  (inches). F or a package to  have 
the same spring ra te  in all directions, I  = x0\ / 2  is a necessary con
dition.

6. E n ter, on Line 6, the value chosen for b. As b becomes greater than  
zero, the stiffness of the whole suspension increases for a  given stiff
ness of individual springs. The reverse happens for b less than  zero.

0  0 .1  0 .2  0 .3  0 .4  0 .5

L
Fig. 1.8.2— Tension spring package design curve. Equation (1.8.2).

7. Calculate Xa/L
8. E n te r Fig. 1.8.1 w ith x Q/1  and find \ / c .
9. Calculate L  =  h / { y / c  tGm).

10. E n te r Fig. 1.8.2 w ith L  and find N .
11. Calculate K  = (W^Gm)/ (2hN ). This is the initial spring ra te  of the 

suspension in the direction of x 0 .
12. C a lc u la te / =  3.13 (K / W 2)*. This is the na tu ra l frequency of vibra

tion (cycles per second) of the suspension for small am plitudes in the 
x0 direction. This should no t be close to  the na tu ra l frequency of
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vibration of any  elem ent in the packaged item , which should be 
determ ined by  test beforehand (see, also, Section 4.2). I n  any case 
it is advisable to provide dam ping fo r  the suspension.

Xo_

X.

Fig. 1.8.3—Tension spring package design curve. Equation (1.7.10).

13. E n te r Fig. 1.8.3 w ith x$/1  and  find k /K .  If  a four-spring package is 
desired, instead of an  eight-spring package, (see Section 1.7) the 
value of k / K  found on Fig. 1.8.3 should be m ultiplied by  two before 
entering it on F ine 13 in Table I. This is the only change required 
in the procedure.

14. Calculate k =  T h is is the spring ra te  of each of the springs in 

pounds per inch.
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15. Calculate B  =  ( I W ^ / i K c F 1).
16. E n te r Fig. 1.8.4(a) or (b) w ith B  and find dm/{-\/ c l) .
17. Calculate dm/ 1  =  V c  ■ dm/-\/~cl.
18. Calculate dm =  l- d m/ l .
19. Calculate { d j I )  +  {xa/ l ) .

0  0 .2  0 .4  0 .6  0 .8  1 .0 1.2 1 .4  1 .6  1 .8  2 .0

B
Fig. 1.8.4(a)—Tension spring package design curve. Equations (1.8.3) and (1.8.4).

20. E n te r Fig. 1.8.5 w ith (dm/ l )  +  (x0/ l )  and find (e/1 ) b. e is the 
stretch  of each spring (in inches) when the displacem ent is dm inches.

21. Calculate Fm = k ■ (e /l)  ■ I. This is the maximum load (in pounds) 
on each spring.

22. 23, 24, 25, 26. These are the coil diam eter, wire diam eter, num ber of 
turns, fiber stress and length of coils. These quantities are calculated 
from the ordinary formulas, charts or slide rules for helical springs, 
using the values of k and Fm from Lines 14 and 21.

27. The length inside hooks is entered on Line 27 to group all of the spring 
specifications.



Fig. 1.8.4(b)—Tension spring package design curve. Equations (1.8.3) and. (1.8.4).

O 0 .2  0 .4  0 .6  0 .8  l .o  1 .2  1 .4  1 .6  1 .8  2 .0

dm+Xo
I

Fig. 1.8.5—Tension spring package design curve. Equation (1.8.5).
380
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: As an  example of the calculations, Table I  contains the entries for the 
design of springs for a  21 pound article (including |  the estim ated spring 
weight) which is to  be packaged so as no t to  exceed 35g in a  five-foot drop.

TABLE I
Computation Form for Tension Spring Packages

1 . W 2 (lbs.)......................................................................................................................... 21
2 . h (ins.)............................................................................................................................  60
3. Gm....................................................................................................................................  35
4. *o (ins.)........................................................................................................................... 5
5. I  (ins.).............................................................................................................................  7.07
6. b........................................................................................................... 0
7. Calc. Xb/l.......................................................................................................................  0.707
8 . F ind y / c  from Fig. 1.8.1..........................................................................................  0.91
9. Calc. h / V c l G m = L ...............................................................................................  0.269

10. Find .V from Fig. 1.8.2..............................................................................................  1.265
11. Calc. W iGm2/2 h N  = K  (lbs/in .)..............................................................................  169.0
12. C a lc ./  =  3.13 i'AVWps (cyc./sec.)........................................................................  8 .9
13. F ind k /K  from Fig. 1.8.3..........................................................................................  0.274
14. Calc, k = K  ■ k /K  (lbs/in .)......................................................................................  46.5
15. Calc. B =  IW J i/K c P ................................................................................................  0.368
16. Find d m ls /c  I  from Fig. 1.8.4..................................................................... 0.575
17. Calc. i m/1  =  y /c  ■ d m /y /c l ...................................................................... 0.518
18. Calc, dm = I  • dm/1 ( in s .) ...........................................................................  3.68
19. Calc, dm/1 +  *»/£.................................................................................................  1.220
20. Find e/1 from Fig. 1.8.5 and line 6 .........................................................................  0.580
21. Calc. Fm — k ■ e / l  ■ I  (lbs).......................................................................................  191.0
22. Coil diameter (ins.)..................................................................................................... 1.40
23. Wire diameter (ins.)...................................................................................................  0.207
24. Num ber of tu rns.......................................................................................................... 19
25. Fiber Stress (lbs./sq. in.) ■ 10~3...............................................................................  80
26. Length of Coils (ins.).................................................................................................  3.93
27. Length inside hooks (ins.)......................................................................................... 7.07

1.9 Cushioning with Tangent Elasticity (Class C)

This is one of the m ost frequently  encountered classes of cushioning since 
i t  includes a  very common type of bottom ing (Figs. 1.4.3 and 1.4.7). The 
load-displacem ent function (equation (1.4.3)) takes in to  account the fact 
th a t the cushioning can be compressed only to a  definite am ount <4 .

To find formulas for maxim um  acceleration and displacement, we p ro 
ceed as follows. Substitu te equation (1.4.3) in (1.2.15) and perform  the 
integration, obtaining

m  lo s cos =  ~ w *h > a - 9 -1)7T 2db

which m ay be w ritten  as

irdm /  (  it2 W% h \  ~
*"■ 2 5 =  r 11’ ! « ) “ 1 '

(1.9.2)
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E quation  (1.9.2) can then be substitu ted  into (1.4.3) to  ob ta in  the  m axim um  
force P m in accordance w ith (1.2.17):

do
Fig. 1.9.1—Curve for finding maximum acceleration for cushioning with tangent elasticity.

See equation (1.9.4).

The m axim um  acceleration is then  obtained from  (1.2.16) and  m ay be 
w ritten  in the form

Gm ^ ¿ 6  /  /  TrdoV  7  Q  . . . .

a - - 2* ) - ‘ - (LM>

where do and G0 are defined ju s t as in (1.5.2) and  (1.5.5). G0 is the maxi
m um  acceleration th a t would obtain  if the cushioning did no t bo ttom , th a t
is, if the spring ra te  rem ained constan t a t  its in itial value k 0 . do is the 
m axim um  displacem ent th a t would be reached under the same linear con
ditions. Hence Gm/G 0 is a m ultiplying factor to  be applied to  a hypothetical 
linear cushioning to  take into account the effect of bottom ing. T he m ulti
plying factor depends only on the ratio  (db/ d 0) of the  am ount of space 
actually  available to the am ount of space th a t would be used under linear 
conditions.
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The ratio  Gm/G 0 is p lo tted  against the ratio  db/do in Fig. 1.9.1. I t  m ay 
be seen th a t the m ultiplying factor increases very rapidly as the displace
m ent ratio  (db/do) falls below unity . F or example, if the cushioning, w ith 
tangent elasticity, reaches hard  bottom ing (d/) when only 80%  of the 
required displacem ent (do) is a ttained , the acceleration is m ultiplied by 
3.5; if only 60%  of the required displacem ent is available, the acceleration 
is multiplied by 11.5.

Example: To illustrate w ith a num erical example, consider the case already 
discussed in Section 1.3, where we found th a t a spring ra te  of 694 lbs/in  
and a displacem ent of 1.44 inches were required to  lim it a 20-pound article

O .2 .4  .6 .8  1.0 1.2 1 .4  1.6 1 .8 2 .0  2 .2  2 .4  2 .6  2 .8  3 .0

%m
Fig. 1.9.2— Curve for finding maximum displacement for cushioning with tangent elasticity.

See equation (1.9.5).

to an acceleration of 50g in a 3-foot drop w ith linear cushioning. L et us 
suppose th a t only 1.15 inches are available, instead of 1.44 inches, and th a t 
the cushioning has tangent elasticity starting  w ith a spring rate of 694 
lbs./in. E ntering the curve of Fig. 1.9.1 a t db/do =  1.15/1.44 we find 
Gm/G 0 = 3.5. Hence the m axim um  acceleration will be 175g instead of the 
required 50g. This illustrates the wide variations in acceleration th a t m ay 
occur as a result of m inor variations of dimensions in high G packages.

I t  is no t necessarily true th a t the 175g test is 3.5 tim es as severe as the 
50g test for all elements of the supported structure, since the severity de
pends also on the shape and scale of the acceleration-tim e relation. The 
factor m ay be more or less than  3.5 b u t i t  will be very close to  th is value for
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all high-frequency elem ents of the structure . This subject is trea ted  in 
detail in P a rts  I I  and  I I I .

The m axim um  displacem ent dm , in the case of tangen t elasticity , m ay  be 
calculated from  equation  (1.9.2) or, in term s of db/ d o , from

2 *4=  -  cos exp
7r

- y  ( d x ~  
8 W  I

(1.9.5)

T he ratio  dm/ d b is p lo tted  against db/ d 0 in Fig. 1.9.2.
T he use of Fig. 1.9.2 can be illustrated  w ith the exam ple already  calcu

lated , in  which db/ d u = 1.15/1.44 =  0.8. E n tering  the  abscissa of Fig.
1.9.2 w ith db/ d 0 =  0.8 we find dm/ d b =  0.915. Hence the m axim um  dis
placem ent will be 0.915 X  1.15 =  1.05 inches.

1.10 O p t im u m  Sh a p e  o f  L o a d - D is p l a c e m e n t  C u r v e  f o r  T a n g e n t

E l a s t ic it y

I t  is possible to  choose the  best shape for the load-displacem ent curve 
of the  cushioning from  those represented in Fig. 1.4.7. This will be, of 
course, no t the best of all possible curves, b u t only the  best am ong “ tangent 
elasticity” curves. The best shape is defined as the  one th a t  yields the 
sm allest m axim um  acceleration (Gm) for a given w eight (IF2), heigh t of drop 
( h )  and available space (db). T his leaves the  in itial spring ra te  (k 0) as the 
only rem aining variable. To find its optim um  value (say k 0), se t equal to 
zero the derivative of Gm (equation (1.9.4)) w ith  respect to  k0 , rem em bering 
th a t  Go and d0 are functions of k0. The resu lt is

/  W 2 W 2 h \  f  7T2 W 2 h \

V  1  A M )  “ P °- (L10'1)

from  which
? > . \ W 2 h

k 0 — ,2  • (1.10.2)
a-b

S ubstitu ting  (1.10.2) in (1.9.4) we find the m inim um  value (G'm) of maxi
m um  acceleration to  be

, 3.9 h
G m = —^  ■ (1.10.3)

To illustrate the application of equations (1.10.2) and  (1.10.3), consider 
again the case of the 20-pound article dropped from  a  heigh t of three feet. 
We found th a t a  linear spring, w ith  a  spring constan t of 694 lb s /in , would 
lim it the m axim um  acceleration to  50g if 1.44 inches of displacem ent were 
available. If  only 1.15 inches of displacem ent are available, and  the  initial 
spring ra te  is kep t a t  694 lbs/in , we found the  m axim um  acceleration to  be
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175g if the  cushioning bottom s w ith  tangen t elasticity. Now, according to  
equation (1.10.2), the best initial spring ra te  for cushioning w ith  tangent 
elasticity  would be

3 . 1 X 2 0 X 3 6  
ko • -  ̂ . .  . =  1690 lb s/m .(l.lo)2

In  th is case, equation  (1.10.3) gives, for the  m axim um  acceleration,

3.9 X  36
1.15

=  122-

Hence, confronted w ith a space lim itation less th an  th a t  required for a  50g 
linear spring, i t  is b e tte r  to  use an  in itial spring ra te  higher th an  th a t  for the 
50 g linear spring in order to  strike an  economical balance between displace
m ent and bottom ing. The best balance, am ong cushionings having tangen t 
elasticity, is obtained by  using equation (1.10.2).

If  no factor of safety is considered, i t  would be still b e tte r  no t to  use a 
bottom ing type of cushion a t  all. F rom  equations (1.3.5) and (1.3.3) 
i t  can be seen th a t a linear spring w ith  a  constan t of 1090 lb s/in  will give 
only 63g w ith  a displacem ent of 1.15 inches. Such a spring, though, would 
bottom  very sharply a t  a  drop slightly higher th an  3 ft. and  would give 
an acceleration m uch greater th an  cushioning w ith tangen t elasticity  which 
bottom s m ore gradually. T his m ay be im portan t if there are high-fre
quency, b rittle  elem ents in  the  packaged article (see P a r t H I) .

1.11 P r o c e d u r e  f o r  F in d in g  M axemlai A c c e l e r a t io n  a n d  
D is p l a c e m e n t  p o r  C u s h io n in g  w it h  T a n g e n t  E l a s t ic it y  

(C l a s s  C )

To illustrate the  use of the  equations and  curves for Class C cushioning, 
the same example used for Class B will be used, as i t  was observed th a t the 
experim ental load-displacem ent curve in  th a t  example (Fig. 1.6.1) is a 
border line one which can be trea ted  as either B or C.

B y laying a straigh t edge along th e  first p a r t  of the  curve (Fig. 1.6.1), 
the average in itial spring ra te  is found to  be 305 lbs/in . T his value is taken 
as ko in  the  present case.

The next step is to  find a  value of ty  such th a t a  graph of P /db  vs x%/db 
will fall slightly above the  curve ko =  30(0) in  Fig. 1.4.7; ty m ust be greater 
than  2 inches, since th a t displacem ent was obtained in  th e  experiment. 
As a  tr ia l take db — 2.25 inches and  te s t i t  a t  one point, say the  experi
m ental po in t P  — 300 lbs., x% d p  in . T hen  P  db =  133 and  x%/db =  
0.39. The po in t (0.39, 133) falls below the  curve k0 =  30(0) in  Fig. 1.4.7. 
N ext try  db =  2.5 inches. In  th is case, for the  experim ental po in t P  =
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300, *2 =  £, we find P /d b =  120, x 2/ d b == .35. T his falls slightly  above the
kg =  30(0) curve as required. T he whole experim ental curve is then
p lo tted  to  the coordinates P /2 .5  vs x 2/2 .5  and  is found to  fit as closely as 
necessary. Hence the param eters are adopted  as ko =  305, db =  2.0.

W e can now calculate the m axim um  acceleration th a t  the  tube will 
receive in, say, a three-foot drop test. F irs t calculate, from  equations (1) 
and (2),

. /2 h W 2 . / 2  X  36 X 22.5 _  0 31
<k = V ~ k C  = V  3 0 5 ------------------ - 3h

[ 2 hko , ¡2  X  36 X  305 _  .
Gl ■  V i c  ~ V --------ITS------ : “  3 U -

Then db/d 0 =  1.08. E n tering  Fig. 4 w ith  th is value we find Gm/G 0 =  1.82.
Hence the m axim um  acceleration is:

Gm =  31.3 X  1.82 =  57g.

Finally, entering Fig. 5 w ith db/do =  1.08 we find dm/ d b — 0.8. Hence the 
m axim um  displacem ent is dm =  0.8 X 2.5 =  2.0 inches. T his indicates 
th a t  the load-displacem ent te s t was carried far enough to  cover the range 
up to  a  three-foot drop.

I t  m ay be observed th a t  the results obtained, by  trea tin g  the same data  
as Class B or Class C cushioning, agree w ithin a  few per cent. T his is 
because, in the example chosen, bo th  B and  C curves can be m ade to  fit the 
experim ental load-displacem ent curve.

1.12 C o n s e q u e n c e s  o e  A b r u p t  B o t t o m in g  (C l a s s  D)
I t  is useful to  examine cushioning system s th a t  can bo ttom  m ore ab rup tly  

th an  Class C cushioning. A brupt bottom ing is possible, for example, in a 
tension spring package lacking a  snubbing device. An estim ate of the 
increase in acceleration can be m ade by  studying the  case of bilinear elasticity  
(Fig. 1.4.4). H ere we have a spring ra te  k 0 up  to  a displacem ent ds, follow
ing which the cushioning has a different spring ra te  kb. k 0 represents the 
average spring ra te  before bottom ing and  k b can represent the m uch greater 
stiffness of the wall of the container.

If d0 >  ds, th a t is, if

j / n ? > d s ’ I-12-1)
the suspended article will bo ttom  and the m axim um  displacem ent and 
acceleration are obtained by  using bo th  of the equations (1.4.4) in evaluating  
the integral in (1.2.15). Thus,

nds rdm.
/ k0x 2 dx2 +  / [¿6x2 — (h  — ¿0)ds] dx2 =  W 2h. (1 1? 2)

Jo Jd3
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The rem ainder of the procedure for finding Gm is the same as before. 
The value of dm found from (1.12.2) is substitu ted  for x 2 in the second of

Fig.

(1.4.4) and the value of P m , thus obtained, is used, in (1.2.16), w ith the 
resu lt:

( m -3)

where Go is the acceleration th a t would be reached if a displacem ent do 
were available:

G, -  .̂ ( 1 . 1 2 . 4 )

The ratio  Gm/G 0 is p lo tted  against ds/ d 0 in Fig. 1.12.1 for several values 
of kb/ko . Since, in practice, k b m ight be thousands of tim es as great as k 0 ■ 
it m ay be seen th a t the increase in m aximum acceleration can be very large 
even when ds is only slightly less than  do ■ I t  is apparen t th a t a snubbing 
device is desirable in a tension spring suspension. This is especially true 
when considering high-frequency elements of the packaged article. I t  will 
be shown, in P a r t I I I ,  th a t low-frequency elements are no t affected as much 
as m ight be expected from consideration of m aximum acceleration alone.

ds 
do

1 .12 .1— Curves for finding maximum acceleration as a result of abrupt bottoming. 
See equation (1.12.3).
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1.13 C u s h io n in g  w it h  H y p e r b o l ic  T a n g e n t  E l a s t ic it y  (C l a s s  E )

In  the preceding sections, there have been considered four types of elas
tic ity  (linear, cubic, tangen t and bilinear) th a t fit the load-displacem ent 
characteristics of the  more com mon cushioning m aterials and  devices. 
There now rem ains the problem  of finding m ore nearly  ideal shapes of 
elasticity. B y “more nearly  ideal” is m eant a  shape which will resu lt in a 
smaller m axim um  displacem ent for a  given m axim um  acceleration. T his is 
im portan t in the packaging of very  delicate articles if shipping space is 
lim ited.

I t  m ay be observed (equation (1.2.15)) th a t  the  to ta l area under the 
load-displacem ent curve is equal to  the m axim um  energy of the  system. 
The m axim um  ordinate of the  enclosed area is p roportional to  the  maxi
m um  acceleration. Hence, if we wish to  (1) lim it the m axim um  acceleration 
(2) accom odate a given k inetic energy and  (3) have as sm all a  displace
m ent as possible, the best shape for the load displacem ent function is P  = 
constant, where the constant is the p roduct of the supported  m ass and  the 
m axim um  allowable acceleration.

I t  is no t practical to  obtain  th is ideal shape exactly, for there will always 
be a  finite initial spring ra te  and a  rounding off of the  load-displacem ent 
curve to  the lim iting m axim um  load. A function which represents this 
practical condition (and also includes the ideal case) is the  hyperbolic 
tangen t function m entioned in Section 1.4:

The form ulas for m axim um  acceleration and  displacem ent are found in 
the same w ay as for the o ther classes of cushioning w ith the  re su lts :

P  =  Po tanh
Po

(1.13.1)

(1.13.2)

or

(1.13.3)

and

(1.13.4)

or

(1.13.5)



D Y N A M I C S  OF P AC K A G E  CUSHIONING 389

where, as before

rf =  i / %hW2 r  _  /2hka
0 V  h ’ 0 y  w2 '

E quations (1.13.3) and (1.13.5) are p lo tted , in Figs. 1.13.1 and 1.13.2, 
against the dimensionless param eter P 0/ W 2G0 . The la tte r  is the ratio of 
the maxim um  force, th a t the hyperbolic tangent cushioning will transm it,

0  -5 1 .0  1.5 2 .0  2 .5  3 .0

Pp
w2g 0

Fig. 1.13.1—Maximum displacement for cushioning with hyperbolic tangent elasticity.
See equation (1.13.3).

to the force th a t linear cushioning would transm it under the conditions 
specified.

To find the value of k0 which yields the m inim um  value of acceleration 
for a given maxim um  displacem ent, differentiate (1.13.4) w ith respect to k a 
and set the result equal to  zero:

Sech2 ^  =  0. (1.13.6)
Po

This is satisfied by  ko —■► 00, which represents the rectangular load dis
placem ent curve and confirms the conclusion reached from energy 
considerations.



T aking the lim it  of (1.13.4) as k 0 ->  ” ,w e  find the  optim um  acceleration 

to  be

G' = II (1.13.7)
¡¡¡T

T he corresponding m axim um  displacem ent is found, from  (1.13.2) to  be

W ,h  h (1.13.8)
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Po G,

Po
WgGo

Fig. 1.13.2—Maximum acceleration for cushioning w ith hyperbolic tangent elasticity.
See equation (1.13.5).

1.14 M ix n n jM  Sp a c e  R e q u ir e m e n t s  e o r  V a r io u s  C l a s s e s  o e

C u s h io n in g

I t  is interesting to  com pare the  m inim um  am ount of space for displace
m ent th a t  can be a tta ined  w ith  the  various k inds of cushioning th a t  have 
been discussed.

H yperbolic T angen t E la stic ity  d'm

L inear E lastic ity  dm

T angen t E la stic ity  d'm
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Cubic elasticity  will give a dm somewhat more or less than  2h/G m depending 
upon w hether the param eter r is positive or negative.

I t  is seen th a t a factor of alm ost four can be gained, in the linear dimensions 
of the cushioning space required, by replacing the tangent type of cushioning 
w ith the  hyperbolic tangen t type.

There are several ways of obtaining a load-displacem ent curve w ith a 
shape similar to  the hyperbolic tangent curve. One of the m ost interesting 
is suggested by  the fact th a t the load-displacem ent curve of a  s tru t has 
approxim ately th is shape. Hence a bristle brush has the proper 
characteristics.

TABLE II

1 2 3 4 5 6 7 8

n Afe)n <(**)» Pn AAn = iA (xi)n 
X (Pn +  Pn-l)

An — An-1 
T  AAn

II

4
KII

0 — 0 0 0 0 0 0
1 0.500 0.500 120 30 30 1 . 6 6.5
2 0 .1 0 0 0.600 150 13.5 43.5 2.4 8 . 1
3 0 .1 0 0 0.700 205 17.0 61.3 3.3 1 1 .1
4 0 .1 0 0 0.800 290 24.8 86.1 4.7 15.7
5 0 . 1 0 0 0.900 410 35.0 1 2 1 .1 6 . 6 22.2
6 0 .1 0 0 1.000 585 49.8 170.9 9.2 31.6
7 0.050 1.050 730 32.9 203.8 1 1 .1 39.5
8 0.050 1.10 0 950 42.0 245.8 13.3 51.4
9 0.050 1.150 1370 58.0 303.8 16.4 74.0

10 0.025 1.175 1680 38.1 341.9 18.5 91.0
11 0.025 1.200 2240 49.0 390.9 2 1 . 1 12 1 .0
12 0.0125 1.2125 2620 30.4 421.3 22.8 141.5
13 0.0125 1.225 3200 36.4 457.7 24.7 173.0

1.15 N u m e r ic a l  M e t h o d  f o r  A n a l y z in g  C la ss  F C u s h io n in g  

The num erical m ethod to  be described is one th a t has been adapted  from 
a graphical one used by  the Com m ittee on Packing and H andling of Radio 
Valves of the B ritish R adio Board. The m ethod has advantages of sim
plicity in concept and ease of application, especially when the load-displace
m ent curve of the cushioning does no t resemble closely one of the Classes A 
to E  described above. I t  has the disadvantage th a t it does no t yield, 
directly, num erical factors by which the spring ra te  or depth  of cushioning 
should be changed in the event th a t the analysis reveals inadequate or more 
than  adequate protection.

The m ethod is based on the fact th a t the area under the load-displace
m ent curve of the cushioning represents the energy stored in, or absorbed 
by, the cushion. The to ta l am ount of energy th a t m ust be transferred is 
equal to  the product of the weight (W 2) of the suspended item  and the 
height (h ) of drop. By finding the abscissa (x2) and its ordinate (P) which
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include an  area W 2h, the m axim um  displacem ent is im m ediately x 2 and  the 
m axim um  acceleration is the quotient P /W 2 , in accordance w ith  equations 
(1.2:15) and  (1.2.16).

As actually  applied in the presen t instance, the  B ritish  m ethod was 
modified slightly to  m ake the procedure a  routine num erical one. The

DISPLACEMENT (INCHES)

Fig. 1.15.1—Experimental load-displacement curve for Table II.

com puting form  is given in detail in T able I I , in w hich the d a ta  are taken 
from  an  experim ental load-displacem ent curve (Fig. 1.15.1) for the  end spring 
pads of a vacuum  tube package. The load-displacem ent d a ta  are fisted in 
Columns 3 and  4 of Table I I .  The m eaning of each colum n in the  tab le  is as 
follows.
Column 1. n (=  1, 2, 3- ■ •) is the num ber th a t  identifies the  displacem ent 

(and corresponding load) up  to  which the area under the  load- 
displacem ent curve is to  be calculated.
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Column 2. A(x2)n is the increm ent of displacem ent between (£2)71-1 and 
(*»)» • A(x2)n =  (x2)n — (£2)71—1 j see Fig. 1.15.2. N ote tha t, 
as the curve becomes steeper, A(x2)n is taken smaller for better 
accuracy.

Column 3. (x2)„ is the displacem ent associated with the n th point (see Fig. 
1.15.2).

Column 4. P n is the load th a t produces displacement (x2)n .

Fig. 1.15.2— Graphical illustration of numerical method of calculating area under load- 
displacement curve. See Table II.

Column 5. AA n =  %A(x2)n(Pn- i  +  P„) is the area of the trapezoid w ith 
altitude A(x2)„ and bases P n_i and P n . I t  is approxim ately the 
energy absorbed by the cushioning in displacing from (x2)«-i 
to  (x2)K .

Column 6. A n is the sum of all the trapezoidal areas from x2 =  0 to x2 =  
(x2)n . I t  is approxim ately the to ta l energy the cushioning can 
absorb in displacing an am ount (x2)„ beginning a t  zero dis
placem ent. N ote th a t A 0 is always equal to  zero.

Column 7. hn = A n/ W 2 is the height of fall th a t will cause the cushioning 
to displace an am ount (x2)n . In  Table I I , W 2 =  18.5 pounds.

Column 8. Gn = P J W 2 is the maxim um  acceleration experienced by the 
suspended mass when dropped from a height hn .
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HEIGHT OF DROP (INCHES)

Fig. 1.15.3 —Maximum acceleration vs. height ol drop for an 18.5 pound article supported 
on cushioning with the load-displacement curve of Fig. 1.15.1. See Table II.

F rom  the last two columns of the table a curve of height of drop vs. the 
corresponding acceleration m ay be p lo tted  as in Fig. 1.15,3.

P A R T  II  

A C C E L E R A T IO N -T IM E  R ELA TIO N S

2.1 I n t r o d u c t io n

In  P a rt I  we were concerned prim arily  w ith the m axi mum  acceleration of 
the packaged item . In  th is p a r t  we shall study  the  details of the varia tion  
of acceleration w ith tim e in order to  have this inform ation available for our
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study, in  P a r t I I I .  of its influence on the response of elem ents of the packaged 
item .

The first case to  be considered will be the simple single mass and linear 
spring example described in Sections 1.2 and  1.3. Following th is the 
phenom enon of rebound of the package will be considered. The influence 
of velocity dam ping and  d ry  friction will be studied: and, finally, the effects 
of non-linearity of the cushion elasticity  on the acceleration-tim e relation 
will be investigated.

2.2 Acceleration-time R elation tor Linear Elasticity

R eturn ing  to  the elem entary example studied in  Sections 1.2 and 1.3, we 
first w rite the equation  of m otion for the mass nu  , on its  linear spring of 
spring ra te  k-2 (see Fig. 1.2.1.). E quation  (1.2.3) becomes

m-2x* +  ksx-i =  ffhg- (2-2.1)

Using th e  in itial conditions

=  °> (2.2.2)

[a-Jfc=o =  y/2gJi, (2.2.3)

the  solution of (2.2.1) is

or

c  =  V  ga 1 Aregft sin ^  -  a )  - i l l  (2.2.4)

=. =  +  J  Sin f a t  J  Eg +  ^ , (2.2.5)

where

and

(2.2.6)

“ "  *“ ■ ' =  c t  (2'u >
&j is the circular frequency*. J \  is the frequency and T« is the period of vibra
tion of the  m ass nu  on its spring; <Lm has the same definition as in Section 1.3 
(equation (1.3.1)).

Xow, TTj h  is the sta tic  displacem ent of the m ass m-2 on its  spring. This 
is u s u a lly  verv  small in comparison w ith the m aximum displacement (dm) 
during im pact. Hence TT » k -2 will be neglected, and (2.2.5) becomes

.v3 =  sin a d . (2.2.8)



D ifferentiating 2.2.S' twice w ith  respect to  t, we find, for th e  acceleration 

,rs =  —ta li»  sin igai =  - a - ;  \  2gh sin ccy. (2.2.9

H ence the  absolute m agnitude of the m axim um  acceleration is

396 B E L L  S T S T E M  T E C E X I C A L  J O U E X A L

Q _  . jfe .max _  taj d» _  f l k k »  2̂ 2 10)
g ? r ^

as before.

K g. 2.2.1 Kg. 2 2 2
Kg. 22.1—Haii-siae-wave pulse acceleration. See ecuatio“ 22.9 '.

Kg. 2 2 2 —Oscillogram of a halr-sne-wave pulse obtained with a pieso-crystal
accelerometer.

E quation  (2.2.91 shows th a t the  acceleration varies sinusoidally w ith  time. 
I t  rises from  its in itial zero value to  its  m axim um  in a tim e -  2_u . a t  which 
tim e the  displacem ent also reaches its  m axim um  value. The acceleration 
re tu rn s to  zero again a t  tim e -  an . A t th is tim e th e  displacem ent is also 
zero. This is th e  end of the range of app licab ility  of equation  (2.2.9): for 
when t becomes slightly greater th an  -  . a tension in  the  spring is required .
Since no m echanism , such as a large m ass w , (Tig. 0.2.21. has been supplied, 
to  show  a tension in the  spring to  develop, th e  system  will rebound from  the 
floor a t  th e  end of the  half period a* »■» . The acceleration is th u s a half- 
sinusoidal pulse of duration  -  a» =  T-: 2 and  am plitude G -g as illu strated  
in  Fig. 2.2.1. A n oscillogram of such a pulse ob ta ined  w ith  a p iezo-crystal 
accelerom eter is shown in  F ig. 2.2.2.

2.3 P acka ge R e b o u n d .

The presence of the  m ass of an  ou ter container will afreet th e  acceleration 
a fte r th e  first half cycle of displacem ent. The ou ter container is represented  
by  the  m ass m* in the  general idealized system  illustrated  in  Fig. 0.2.2 and  in 
the sim pler system  (Tig. 2.3.11 th a t we shall consider now.
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Two pairs of equations are necessary to  describe the action of the system ; 
one pair applies during the  tim e of contact of m 3 w ith  the  floor and the  
second pair applies if rebound occurs.

The m ass tn3 is assum ed to  be inelastic (see Section 0.2) so th a t, during the 
in terval of its  con tact w ith the floor, the  equation of m otion for m-i will be 
the same as before (2.2.1). In  addition, there will be an  equation of equili
b rium  for the  m ass m 3 :

R  — ¿ 2 * 2  +  m g , 

where R  is the  upw ard force exerted by  the  floor on m%.

(2.3.1)

m2

1
Xx2

m 3

/  /  / / / /V /V /V /V 7
Ty

/ / / / /  •

Fig. 2.3.1—Two-mass system representing packaged article, linear cushioning and
outer container.

Equations (2.3.1) and  (2.2.1) w illhold as long as R  is positive. T ofind  out 
when R  >  0, solve (2.2.1) for ¿ 2 * 2  and  substitu te  in  (2.3.1):

R  =  W 2 +  W 3 — m-Ait (2.3.2)

T h a t is, a  necessary condition for rebound is th a t the mass of the cushioned 
article, m ultiplied by  its  m aximum, acceleration, exceeds the to ta l weight 
of the package. The condition for rebound m ay be w ritten

Gm >
IV2 T" W 3 

W 2 '
(2.3.3)

This is a  necessary, b u t n o t a sufficient, condition for rebound because there 
will be energy losses as a  resu lt of dam ping and  perm anent deformation. 
Gm will generally have to  be considerably greater th an  the right hand  side 
of (2.3.3) for rebound to  occur.

If  rebound does n o t occur, equation (2.2.9) continues to  apply, except for 
dam ping which will be considered in Section 2,5.



2.4 M o t io n  A f t e r  R e b o u n d

I f  rebound occurs, the equations of m otion for the two masses, m 2 and  m 3 , 
are

m 2x 2 +  fa(x2 — X3) = m 2g, (2.4.1)

m %%3 — k 2{x2 — xs) =  m 3g. (2.4.2)

M ultiplying (2.4.1) by  m 3 and (2.4.2) by  m 2 and  sub tracting , we find

m y  +  k 2y  =  0, (2.4.3)

where
y = x2 — x3 , (2.4.4)
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m 2 m 3 

*2 +  m
(2.4.5)

Fig. 2.4.1—Oscillogram illustrating the half-sine pulse followed by the higher frequency, 
lower amplitude vibration of the packaged article in a rebounding package.

E quation  (2.4.3) is the equation  governing the  v ib ration  of the  two-mass 
system  as a  simple oscillator. The circular frequency of the  v ib ration  is

(2.4.6)

and it m ay be noticed th a t th is frequency is always g reater th an  co2 (equation
(2.2.6)). T his fact is im portan t in estim ating the  effect of v ibrations on 
elem ents of the packaged item  (Section 3.5).

to is also the frequency of v ibration  of the  packaged article during the 
in terval of free fall. This v ibration  (usually of sm all am plitude) is in itia ted  
by the sudden release of the dead load displacem ent of the  packaged article.

As an  interm ediate step in obtaining the acceleration afte r rebound we 
shall find the m agnitude of the relative displacem ent (y) of the tw o masses. 
To do th is it is necessary to  solve equation  (2.4.3) w ith  the  appropriate  
boundary  conditions. Calling tT the  tim e a t  which m% leaves the floor, we
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m u st find y  and  y a t  1 = . Since m% is motionless a t ; =  . th e  relative
displacem ent and  velocity a t  th a t  tim e are identical vfith a* and i s  respec
tively. T ie  form er is sim ply the  stre tch  of the spring necessary to  ju s t 
pa ll th e  m ass mt  off th e  floor, Le..

H A  — feJ»=j, =  —- p -  ''2.4.7;

To find the  velocity a t ; =  ;. . substitu te  2.4.7 in  (2 .2 .4 1 and  also substi
tu te  i. for i in the  la tte r. T his gives an  equation for determ ining ir . Then, 
returning to  : 2.2.4. . differentiate i t  once to  ob ta in  x . and substitu te for t  the 
value U ju s t found. T he result is

w J  -  m J  -  - 1 / 2 Si  -  * “ ■ ’“ . v 11* ■ ' j a *

T he solution of (2.4.3 vu th  initial conditions (2.4.7 and 2.4.5, is

7 i t - 1  | / 2gh t in  (d -  f  j, (2.4.9 -

w h a s  J =  a t r , —  t a n - '  .
W w r

We are a o v  in  a  position to  find th e  acceleration of the packaged item  
a fte r rebound. S ubstitu te  y  of ;2 A 3 )  for x* — ar* in  (2.4.1 j to  obtain

— | | / 2 g &  — - k ?  t in  (a# — i ) .  (2.4.10)

To obtain  a  simple f ormula for the  ra tio  of the  maximum accelerations 
a lte r  and  before rebound, le t us assume th a t  bo th  are m uch greater th a n  
gravitational acceleration. Then if

Gr =  m axim um  num ber of g’s  a f te r  rebound, (maxmmim of (2.4.10))
• ■ _

Gjr. =  A /  — ~ =  maximum- num ber of gb  before rebound,
|/ 11 2

v e  find, from  (2.4.10), neglecting th e  term  g outside th e  radical.

f H  LJ W s  i / i  -  (7 A  11)
Grr. W i 4 - W 3 f  2M T  '

Hence, th e  m axim um . acceleration afte r rebound is alw ays less th a n  the  
TnanTmim acceleration before rebound. Therefore, conditions afte r re
bound need only be examined vrhen th e  frequency afte r rebound bee equa
tion  ''2.4.6): is near th e  n a tu ra l frequency of v ibration  of a  critical elem ent 
of th e  packaged item  see Section 3.5 .
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The com plete acceleration h istory  of a rebounding package w ith  un
dam ped linear cushioning is thus a half sine wave pulse of am plitude Gm — 
■\/2hk2/ W 2 and  duration  tv/ w2 followed by  an  oscillating acceleration of 
am plitude given by  (2.4.11) and  frequency given by  (2.4.6). Such a  wave 
shape is shown in Fig. 2.4.1.

2.5 I n f l u e n c e  o f  D a m p in g  o n  A c c e l e r a t io n

The presence of dam ping in cushioning is always desirable to  p reven t the 
building up of large am plitudes as a result of periodic disturbances. How
ever, dam ping also has an  effect on the m axim um  acceleration th a t  is a t 
ta ined in a drop test. F rom  the la tte r  po in t of view there is an  optim um  
am ount of dam ping and  an  am ount th a t  should n o t be exceeded if the  m axi
m um  undam ped acceleration is no t to  be exceeded.

We shall consider the case of a  linear cushion w ith  dam ping proportional 
to  velocity. The system  is represented in  Fig. 2.5.1. W ith  the  addition

,1, §  k:
Ï

Fig. 2.5.1—Idealization of linear cushioning with velocity damping.

of the dam ping te rm  the equation of m otion of m 2 , during contact of the 
package w ith the floor, is

m 2x  2 +  c2x  2 +  k 2x 2 — 0, (2.5.1)

in which c2 is the dam ping coefficient of the  cushioning. E quation  (2.5.1) 
is more conveniently expressed as

x 2 -j- 2/32o)2x 2 -f- oi2x2 =  0, (2.5.2)

where

(2-5 -3)

<2-S'4>

oi2 is the undam ped circular frequency of v ib ration  of m 2 on its  spring and  
is the fraction  of critical dam ping. /32 =  0 m eans no dam ping and  /32 =  1 
m eans ju s t enough dam ping so th a t there will be no oscillation if the  pack
aged article is displaced and released.



T he acceleration solution of (2.5.2), w ith the initial conditions of the drop 
test (see (2.2.2) and (2.2.3)) is

cos (o)2 i \ / l  — /3l +  7 ) (2.5.5)
V  1 -  p\

where

2 / 3 1  -  1  ......................

t a n T - i S v r r 7 r  <2 -5 - 6 >
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.25

Fig. 2.5.2—Acceleration-time curves for linear cushioning with various amounts of 
damping (no rebound). See equation (2.5.5).

The acceleration is thus a  dam ped sinusoid w ith an  abruptly  reached 
initial value whose m agnitude depends upon the am ount of damping. For 
small dam ping, the initial acceleration is small and then the acceleration 
increases, b u t never reaches the value th a t would be reached w ithout any 
dam ping. F or high dam ping (J32 >  0.5) the initial value is greater than  
w ithout any dam ping and falls off thereafter. Figure 2.5.2 shows the shapes 
of the acceleration tim e curves for several values of /32 . All of the curves 
are for no rebound. I t  m ay be seen, from equation (2.5.5) and Fig. 2.5.2 
th a t the addition of dam ping changes the shape of the acceleration-time 
relation in three ways. F irst, a dam ped sinusoid replaces the pure sinusoid; 
second, the frequency is reduced; and, third, the initial phase is changed.

I t  is useful to  consider in detail the effect of dam ping on m axim um  accel
eration. L et

Gm =  m aximum num ber of g’s w ith dam ping

Go =  / l / v F r 2 =  m axim um  num ber of g’s w ithout dam ping. 
\  IV 2
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(FRACTION OF CRITICAL DAMPING)

Fig. 2.5.3—Influence of velocity damping on maximum acceleration. See equation (2.5.5).

Then, from  (2.5.5), a t  / =  0

Gm
Go

2ßi

and, afte r t =  0 ,
Gm
Go

  0 2 “ 2

where tm , the tim e a t  which the m axim um  occurs, is given by

( i -  M )  v m i
ta n  C02 t-m V 71 — ßl —

(2.5.7)

(2.5.8)

(2.5.9)
f t ( 3  -  4/31)

The largest value of Gm/G 0 from  (2.5.7) and (2.5.8) is p lo tted  against /32 
in Fig. 2.5.3. I t  is shown there th a t, as the dam ping is increased from  zero, 
the m axim um  acceleration first decreases to  a m inim um  of 80% of G0 and 
then increases to  G0 a t  50% of critical dam ping. In  th is in te rval the  m axi
m um  acceleration occurs after / =  0. F or dam ping greater th a n  /32 =
0.5 the m axim um  acceleration occurs a t the in stan t of contact and  increases 
in d irect proportion to  0 2  .

2.6 Influence of Damping on Rebound 
In  considering rebound w ithout dam ping, it was found th a t  rebound does 

no t occur unless the p roduct of the m axim um  acceleration and  th e  sus
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pended mass exceeds the  to ta l weight of the package. I t  was not necessary 
to  distinguish between m axim um  acceleration on the first downstroke and 
first upstroke, since these are the same when there is no dam ping. W ith 
dam ping, however, the  m axim um  acceleration on the first downstroke is

Fig. 2.6.1—Influence of velocity damping on maximum upstroke acceleration. See
equation (2.5.5).

greater th an  th a t on the  first upstroke (Fig. 2.5.2) and it is the la tte r  th a t 
controls rebound. Hence dam ping inhibits rebound.

F or example, w ith 50Cf of critical dam ping Q32 =  0.5), equations (2.5.8) 
and (2.5.9) and  Fig. 2.5.2 show th a t for the first downstroke Gm/G a =  1 
while for the first upstroke Gm, G0 =  0.164. Hence the tendency to  rebound 
is reduced by  a factor of six when dam ping to  the  extent of 50°c of critical 
is added to  an  undam ped package.

The ratio  of the  m a x i m u m  acceleration on the  first upstroke to the maxi
m um  undam ped acceleration is p lo tted  in Fig. 2.6.1 for various values of ffo .
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2.7 I n f l u e n c e  o f  D r y  F r ic t io n  o n  A c c e l e r a t io n  a n d  D is p l a c e m e n t

B y “ d ry  friction” is m eant friction th a t is independent of velocity  except 
for sign. D uring contact of the package w ith  the  floor the  m otion of 
m ight be opposed by  a  constan t friction force F. Such a  force is developed, 
for example, in a  package w ith corrugated spring pad  cushioning by  rubbing 
against the side and  end pads in a  top  or bo ttom  drop. A typ ical idealized

load-displacem ent curve is shown in Fig. 2.7.1. F or the first downstroke 
of n i i , the equation  of m otion of m 2 is

p

2

Fig. 2.7.1—Load vs. displacement for cushioning with dry friction.

m 2x  2 +  k 2x 2 =  — F. (2.7.1)

W ith  initial conditions

[*î ] î= o =  0, fe ]i= o  =  y / 2  gh (2.7.2)

the solution of (2.7.1) is

(2.7.3)

where

ta n  a —
F  F

k2da W 2 Go
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do and Go are the  m axim um  displacem ent and acceleration th a t would obtain 
if no friction were present. F rom  (2.7.2) the maximum displacem ent w ith 
friction is

Hence, the  presence of friction decreases the maxim um  displacement since 
<  do.

F rom  (2.7.3) the acceleration is

which is greater th a n  the m axim um  acceleration w ithout friction.
I t  would appear, a t  first glance, th a t  cushioning w ith friction always 

gives a  greater acceleration th a n  the  corresponding cushioning w ithout 
friction. However, the reverse is actually  true provided we allow the same 
displacement in b o th  cases. This m ay be done, as m ay be seen from (2.7.4), 
by decreasing the spring ra te  in  the cushioning w ith friction to

The m a x i m u m  acceleration in  the cushioning w ith friction is then, from

T h at is, for the same m aximum displacement, the m aximum acceleration 
is reduced by  the addition  of d ry  friction.

2.8 A c c e l e r a t i o n - T i m e  R e l a t i o n  f o r  C u b i c  E l a s t i c i t y

As an  example of the effect of nonlinearity  of the cushioning on the shape 
of the  acceleration-tim e function, the  case of cubic elasticity (Class B) 
will be a n a l y z e d .  The system  to  be considered is illustrated  in  Fig. 1.2.1, 
and the  load-displacem ent relation for the  cushioning is given by

(2.7.4)

(2.7.5)

so th a t the  m aximum acceleration is

(2.7.6)

kp — ko — —  .
do

(2.7.7)

(2.7.6)

(2.7.8)

3
P  =  kaX2 +  rx  2 . (2.8.1)



Substitu ting  (2.8.1) in (1.2.13) and  perform ing the ind icated  in tegration, 
we find

x\ =  2gh — —  I -  x \ .  (2.8.2)
m 2 2ni2
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Rem em bering th a t i 2 =  dx2/d t,  we solve (2.8.2) for dt:

dx2

A/  2gh  — — x l  
\  m 2 '

§  =  /  ,  — (2-8. 3)

2?k2 2

B

Fig. 2.8.1—Duration of acceleration pulse for cushioning w ith cubic elasticity. See
equation (2 .8 .10).

Then, w ith the in itial condition x 2 = 0 when t =  0, the in tegral of (2.8.3) is

f 12 dx2 rx* dx2
1 = ~ r  =  / — j  h (2.8.4)J o Jo ' h

To in tegrate (2.8.4), let

V k \ x \  -  d my  +  d V
7  -  X%   ■

~~ A / b K ^  _  A I M  > (2.8.5)

where

* ' =  » I 1 -  V T T ? }  (2.8.6)
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II

0  .5  1 .0  1.5 2 .0  2 .5  3 .0

(Do t
Fig. 2.8.2—Acceleration-time curves for cushioning with cubic elasticity. See 

equation (2.8.14).

and B  and dm are as given in P a r t I :

a , , )

dm = do ^ - g ( —1 +  ' s / i  +  -B) • (1.5.4)
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T hen (2.8.4) becomes

1 =  I  V ( i  -  z 2)(i -  wz*j ’ (2'8'7)
in which the in tegral is the elliptic in tegral of the first k ind  (see Hancock 
“ E llip tic In teg rals ,” John  W iley and  Sons, N ew Y ork, 1917). In  (2.8.7),

Wc =  coo (1  +  B)u\  (2 .8 .8 )

where co0 =  \ / ko/m 2 is the rad ian  frequency th a t  would obtain  if the cushion
ing were linear w ith  spring ra te  k o . T he m otion for the linear case has a 
half period, or pulse duration  r 0 =  ir/coo. T he half-period ( r2) of the motion 
w ith cubic elasticity  is twice the  tim e required for to  increase from  0 
to  dm .

F rom  2.8.5

[Z]x2=0 =  0;
(2 .8 .9 )

=  1-

Hence, from  (2.8.7), the half-period is

2 r 1 d Z  2 K
72 03c Jo V ( 1  -  Z 2) (  1 -  k 2 Z 2)  COc

where K  is the com plete elliptic in tegral of the first kind. T he duration  of 
the acceleration pulse is therefore 2 K /u c . We can define a  rad ian  frequency 
of the  acceleration by

■k iro3c iru0(l +  B ) V i  

■  7, =  2K  =   2K  • (2 '8' U )

T he ra tio  wo/co2 (i.e., r 2/ r 0) is p lo tted  in Fig. 2.8.1 which illustrates how the 
pulse duration  decreases as the param ete r B  increases. Hence, for a  given 
cushioning w ith cubic elasticity, the pulse duration  decreases as the  height 
of drop increases. T his is in con trast to  the  linear case in which the dura
tion  is independent of the height of drop.

To find the acceleration x 2 , we re tu rn  to  (2.8.7) and w rite it  in the form 
of an  elliptic function:

sncoci =  Z. (2.8.12)

S ubstitu ting  the expression for Z  given in (2.8.5) and  solving for x 2 , we find

% 2 — dmcn(uct — K ) .  (2.8.13)
Finally , differentiating (2.8.13) twice w ith  respect to  t, we find the  accelera
tion to  be

x 2 =  o32cdm[2k2sn2(o3j -  K ) -  l\cn(o3ct I  K ). (2.8.14)
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The ra tio  x-i/G^g is p lo tted  in Fig. 2.8.2 against a  radian coordinate 
tyo?) for several values of B . I t  m ay be seen th a t, as B  increases, the maxi
m um  acceleration increases, the duration  of the pulse decreases (see Fig. 
2.8.1) and the acceleration-tim e curve becomes bell shaped. F or reference, 
the sinusoid for the linear case (B =  0) is p lo tted  in the figure.

F igure 2.8.2 is p lo tted  for perfect rebound. If rebound does no t occur, 
the curves continue, m irrored in the tim e axis, so as to form  a periodic 
v ibration of period 2 r2 .

2.9 A c c e l e r a t i o n - T i m e  R e l a t i o n  f o r  T a n g e n t  E l a s t i c i t y

In  th is section the ettect of tangent elasticity on the shape of the accelera
tion-time relation will be studied. The shape of the load displacement 
curve is given by

2kodb TTX-2 , .
P  = ------- t a n - - .  (1.4.3)

IT M i

The system  considered is again th a t shown in Fig. 1.2.1. Referring to the
energy equation (1.2.13):

.2 /*-3'2
+  / Pdx -2 p  m«gli, (1.2.13)

1 J o

we substitu te  the  above value of P  and perform  the indicated integration to 
obtain, for the  velocity,

*  -  / j A *  +  log cos §  • <2-M>

Then, as in Section 2.8,

rx- dx2 rx- dx-o
i =  /  —  =  / /  oj, J A  • (2-9.2)

Jo x-i J o /  r. , , Sk0 dit> i ,l -̂ 2
V 2g i +  ^ l 0 s m 2A

and the half-period (to) of the m otion is again twice the tim e required 
for x-t to  increase from  0 to  dm . Hence

rdm dx2
r2 =  2 /  ~ h „  ^  (2-9.3)

•M) . /  ^  ^ . OKQ U j, , TTXo
' '  2gh +  F p p  log cos ¡ I f77U 7T~ M i] / 2i

where, from  Section 1.9,



T he rad ian  frequency of the acceleration is

7r
0)2  —  —

T2

and this is to  be com pared w ith  the  frequency

jr / k 0
o)o — — — A /  —  to V m

th a t  would obtain  if the cushioning were linear w ith  spring ra te  k 0 . The 
ratio  o)o/o)2 (i.e., t 2/ t c) was obtained by  num erical in tegration  of (2.9.3)

410 B E L L  S Y S T E M  T E C H N IC A L  J O U R N A L

d° ^

Fig. 2.9.1—Duration of acceleration pulse for cushioning w ith tangent elasticity. See
equation (2.9.3).

and is p lo tted  in Fig. 2.9.1 against the  ratio  db/d0 . The figure shows that 
for db/do <  1, the pulse duration  varies alm ost linearly  w ith  db/d0 . As the 
bottom ing distance becomes larger th an  th a t  required  for linear cushioning 
w ith spring ra te  k 0 , the pulse duration  approaches asym ptotically  the 
duration  tt/coo for the linear case.

As db/do decreases, the  pulse duration  becomes shorter, b u t the  maximum 
acceleration increases, in  accordance w ith  equation  (1.9.4) and  Fig. 1.9.1. 
The shapes of the  acceleration-tim e curves for several values of db/do are 
illustrated  in Fig. 2.9.2. T hey  are m ore sharply  peaked th a n  the  corre
sponding curves for cubic elasticity  (Fig. 2.8.2) as m ight be expected from
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the fact th a t the load-displacem ent curve for tangent elasticity rises more 
rapidly than  th a t for cubic elasticity; th a t is, the bottom ing is harder.

The curves of Fig. 2.9.2 were obtained by num erical integration of equa
tion (2.9.2), to  obtain  x 2 as a  function of t, following which these values 
were substitu ted  in the equation

l
¡1

il
ii .. . 2k0db r x 2 •

m^ x-i +  ------  tan  —— — U
j 7T ¿ do

to obtain x2 . I t  m ay be observed th a t the maximum values of the curves 
are the values d ic tated  by  equation (1.9.4).

ClJqX

Fig. 2.9.2—Acceleration-time curves for cushioning with tangent elasticity.
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In  perform ing the num erical in tegrations of equations (2.9.2) and  (2.9.3), 
it is found th a t the in tegrand becomes infinite when x 2 =  dm since a t  this 
po in t the velocity is zero. In  order to  avoid th is difficulty, i t  was assum ed1 
th a t, for a small distance in the  neighborhood of dm , the acceleration is 
constan t w ith m agnitude Gmg as obtained from  equation  (1.9.4). The 
procedure is described in fu rth er detail in Section 2.12.

Figure 2.9.2 gives the acceleration-tim e curve for perfect rebound. If 
rebound does no t occur, the acceleration is a  periodic v ibration , each suc
cessive half period having the shape shown, w ith  a lte rna ting  sign.

2.10 Acceleration-Time Relation por Abrupt Bottoming

B y ab ru p t bottom ing, we m ean bilinear cushioning (Class D ) as treated  
in Section 1.12. T he load-displacem ent relation  is (see equation  (1.4.4) 
and Fig. 1.4.4)

P  =  k Qx 2 0 ^  x 2 ̂  d s
=  • d .4 .4)

P  =  h x 2 — (kb — k 0)db x 2 > d s}

Considering, again, the system  illustrated  in Fig. 1.2.1, the equation of 
m otion of m 2 , before bottom ing, is

m 2 x 2 +  k 0x 2 = 0 d s (2.10.1)

w ith in itial conditions

N w  =  o, f e j J  =  V  2 gh. (2.10.2)

T he solution of (2.10.1) is then

x 2 — sjn  W(|̂  o ^  x 2 ^  ds , (2.10.3)
Wo

where

coo = (2.10.4)
m 2

The tim e (t s) a t  which x 2 reaches d s is found from  (2.10.3):

1 . - i  “ o i  1 . d„
t, =  — sin / — =-■ =  — sin m ,  (2.10.5)

co o V  2  gh coo d0

where

Á I i f l
1 See Timoshenko, “Vibration problems in Engineering,” D. Van N ostrand Co.. New 

Y ork, Second Edition (1937) page 123.
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i.e., do is the displacem ent th a t would have been reached if the spring rate 
remained constant.

The velocity of m 2 a t  tim e t ,  is

■ J t - t .  =  y / l g h  cos w0ts =  ^ 2 g h ( l  -  (2.10.6)

If V / 2gh >  coo d s , the displacem ent will exceed d s and the equation of 
motion becomes

m 2x2 +  kbX2 — (kb — k0)d s =  0, x 2 ^  d s . 

The solution of (2.10.7), w ith initial conditions

=  d8

[x

IS

x2

**]<-** ^ 2 g h ( l  

kodo / k b  . d 2s (  ¿ A  . . . .
~h V  ko + d\ V1 “ ko) Sm {Ub + a ~  “ bQ

(2.10.7)

(2.10.8)

(2.10.9)
dg x 2 dg

where

ta n  a  =
k0

(10 (2.10.10)

By differentiating (2.10.3) and (2.10.9) twice w ith respect to t, the 
accelerations for the two regions are found to  be

x2 =  — Gog sin w0/, 0 S  x 2 d g , (2.10.11)

x 2 =  - G o g / j / ^  +  ^ l  -  sin (Ubt +  a  ~  Ubtg),

x2 dg ,
(2 .10.12)

where

Go — (2.10.13)

Typical shapes of the acceleration pulse represented by equations (2.10.11) 
and (2.10.12) are shown in Fig. 2.10.1. The curves are draw n for d s/d 0 =
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0.5 and  for several values of k b/ k 0 . The peak values of the  curves are the 
same as given by  equation  (1.12.3). The curve m arked k b/ k o =  1 is the 
sinusoid of the  linear case w ith  duration

ro =  M  (2.10.14)
Wo

420 *
Fig. 2.10.1—Acceleration-time curves for cushioning w ith bi-linear elasticity. 

dg/do = 0.5. See equations (2.10.11) and (2.10.12).

As before, if the package does no t rebound, the acceleration shown is m ir
rored in the tim e axis a fte r each half cycle, to  form  a  v ib ra tion  of period 2r 2.

I t  is useful to  know the duration  of the com plete pulse (aa' in Fig. 2.10.1) 
and  also the duration  of bo ttom ing (W  in Fig. 2.10.1). Calling the  former 
t 2 and the la tte r  t b , we have, from  equations (2 .1 0 .1 1 )  and  ( 2 .1 0 .1 2 )
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A
A

\

¿ B

r 2

TO

do
Fig. 2.10.2—Pulse durations for cushioning with bi-linear elasticity. See equations

(2.10.15) and (2.10.16).

These two equations are p lo tted  in Fig. 2.10.2 for several values of k b/ k 0 .

2.11 A c c e l e r a t io n - T i m e  R e l a t io n  f o r  H y p e r b o l i c  T a n g e n t

E l a s t ic it y

The relation between acceleration and tim e for hyperbolic tangent 
elasticity is found by  the same procedure th a t  was used for tangent elasticity
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in Section 2.9. T he system  considered is th a t  shown in Fig. 1.2.1 and  the 
load displacem ent curve of the  cushioning is given by

Substitu ting  the above expression for P  in the  energy equation  (1.2.13), we 
find the velocity to  be

and  the half period ( r 2) of the m otion is twice the tim e required for x 2 to 
increase from  0 to  dm , or

th a t would obtain  if the cushioning had  a  constan t spring ra te  equal to  the 
in itial spring ra te  (k0) of the  hyperbolic tan g en t cushioning. The ratio 
«o/ « 2  (or t 2/to )  is p lo tted , in Fig. 2.11.1, against the dim ensionless param 
eter P 0/ W 2G0 (see Section 1.13). I t  m ay be observed th a t  the  pulse 
duration  becomes very  long when P q /W 2Ga is small, i.e., w hen the  horizontal 
portion  of the load displacem ent curve (Fig. 1.4.5) comes in to  play. The 
influence on the shape of the  acceleration-tim e curve is illu stra ted  in Fig. 
2.11.2. T he curve m arked P o /W 2G0 —> °° is the  sinusoid for the linear 
case. F or small values of P o /W 2G0 the curve approaches a  square wave.

(2.11.1)

Then, as before,

rX2 dx2 

'o x 2
(2 .11.2 )

(2.11.3)

where, from  Section 1.13,

(1.13.3)

The radian  frequency of the acceleration is defined as

7T
W2 =  — 

T2

and th is is to  be com pared w ith the frequency



D Y N A M I C S  OF P AC K A G E  CUSHIONING 417

w2°g0

Fig. 2.11.1—Duration of acceleration pulse for cushioning with hyperbolic 
tangent elasticity.

2.12 N u m e r ic a l  P r o c e d u r e  p o r  F i n d i n g  A c c e l e r a t io n - T im e  R e l a t io n  

p o r  C l a s s  F  C u s h io n in g

When the load-displacem ent curve does no t resemble one of Classes A to 
E, the acceleration-tim e relation m ay be found by  num erical integration. 
Combining the energy equation,

nhxl f X2
—  h / P  dx2 =  m 2gh,l  Jo (1.2.13)
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w ith the equation relating tim e and  velocity,

r 2 dx2
t

we find

, =  ■ ^

= \ —, (2.12.1)
Jo X 2

x- dx 2
Ö | 2 )

P  d x2

As an  example, consider the  problem  of a  15-pound article supported  on 
cushioning w ith the  load-displacem ent curve shown in Fig. 2.12.1. The 
package is to  be dropped from  a height of 3 feet. T he com putations are

Fig. 2.11.2—Acceleration-time curves for cushioning w ith hyperbolic tangent elasticity.

given in detail in  Tables I I I  and  F\ . T he headings of Columns (1) to  (8) 
of Table I I I  are the same as in T able I I ,  Section 1.15. A n is the  integral 
under the radical of equation  (2.12.2). Colum n (10) of T able I I I  is the 
in tegrand  of E quation  (2.12.2), i.e., i t  is p roportional to  the  reciprocal 
of the velocity expressed as a  function of displacem ent. T he function 
is p lo tted  in Fig. 2.12.2 and its in tegration  is perform ed in  T able IV . In  
columns (11), (12) and  (13), in tervals of x 2 are chosen to  su it th e  shape of 
the  curve. The values for column (14) are taken  from  colum n (10). Col
um ns (15) and (16) perform  the  same operations on the  integrand 
(W 2h — A n)~* th a t  are perform ed in Columns (5) and  (6) of T able I I I  on 
the in teg rand |P .
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X2 (INCHES)

Fig. 2.12.1—A load displacement curve for Class F cushioning.

TABLE n i

(1) (2) (4) (5) (6) (7) (S) (9) (10)

n (12)11 Pn +P„-1)
-in =  

f (.V2)n p d  
J 0

. -in 
= Fa

Pn
Gn = IF Will  -  .-l„

1
VH'V» -  -i„

0 0 0 0 0 0 0 0 0 540 0.0431
1 .20 0 7 105 10.5 10.5 0.7 7.0 529.5 0.0435
? .20 0 4 155 26.0 36.5 2.4 10.3 503.5 0.0446
3 .20 0 6 197 34.7 71.2 4 .8 1 2 .8 468.8 0.0462
4 .20 0 8 717 40.9 1 1 2 .1 7.5 14.5 427.9 0.0483
5 .20 1 0 257 45.4 157.5 10.5 15.8 382.5 0.0511
6 .20 1 2 757 49.4 206.9 13.9 17.1 333.1 0.0547
7 .20 1 4 777 52.9 259.8 17.3 18.5 280.2 0.0597
8 .20 1 6 305 58.2 318.0 2 1 .2 20.3 2 22 .0 0.0671
9 .20 1 8 547 64.7 382.7 25.5 2 2 .8 157.3 0.0798

10 .20 7 0 597 73.4 456.1 30.4 26.1 83.9 0.109
11 .05 7 05 405 19.9 476.0 31.8 27.0 64.0 0.125
17 .05 2 10 477 20.7 496.7 33.2 28.1 43.3 0.152
13 .05 7 15 440 2 1 .6 518.3 34.6 29.4 21.7 0.215
14 .01 2 16 445 4.42 522 . 7 34. S 29.7

1 7  - 2
0.240

15 .01 2 17 450 4.48 527.2 35.2 30.0 12.8 0.279
16 .01 2 18 455 4.52 531.7 35.5 30.3

H
0.347

17 .01 .7 19 457 4.56 536.3 35.8 30.5 0.521
18 .01 2 .2 0 4621 4.60 540.9 36.1 30.8

u
00
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TABLE IV

(11) (12) (13)

n A(*2)a (*2)n

0 0 0
i 0 .4 0 .4
2 0 .4 0 .8
3 0 .4 1 .2
4 0 .4 1 .6
5 0 .2 1 .8
6 0 .2 2 .0
7 0 .1 2 .1
8 0.05 2.15
9 0.03 2.18

10 0 .0 1 2.19
11 0 .0 1 2 .2 0

(14)

f n  — 1
Y W J  -  A„

0.0431
0.0446
0.0483
0.0S47
0.0671
0.0798
0.109
0.152
0.215
0.347
0.521

(15)

A(*g)n
2 U n  Y  f n - 1)

0
0.0175
0.0185
0.0206
0.0243
0.0149
0.0189
0.0131
0.0092
0.0083
0.0043

(16)

L
(*2)n i x  2

Y W i h - A n

o
0.0175
0.0360
0.0566
0.0809
0.0958
0.1147
0.1278
0.1370
0.1453
0.1496

(17)

2g

O
0.0024
0.0050
0.0079
0.0112
0.0133
0.0160
0.0178
0.0190
0.0202
0.0208
0.0221

0 .5

O .2  .4  .8  1 .2  1 .6  2 .0  2 .4

Fig. 2.12.2—Plot of Column (3) vs. Column (10) of Table III .

A difficulty arises because the in tegrand  ( W 2h  — A n)~*  becomes infinite 
for the m axim um  displacem ent (see Colum n (14)). This is avoided by 
assum ing th a t the acceleration is constan t in the  last in te rval2 and  has the

2 Timoshenko, “Vibration Problems in Engineering,” D. Van N ostrand Co. New York 
Second Edition (1937) page 123.



value given in Column (8), Table I I I ,  for the  maximum heigh t of drop.
Then,

A fe)»  =  iGmgAF (2.12.3)
or

A* =  (2.12.4)
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t
Fig. 2.12.3—Acceleration-time curve (for the cushioning shown in Fig. 2.12.1' obtained

by numerical integration.

In  the  present instance,

(A£2)n =  0.01 inches

Gmg =  30.8 X  386 =  11900 in/sec.2

Hence, from  (2.12.4), At =  0.0013 sec. and the last en try  in  Column (17) 
is obtained by  adding th is value of At to  the preceding entry.

The final curve of acceleration vs. tim e is obtained by  p lotting  the entries 
of Column (17) against the  entries of Column (8), Table H I , for correspond
ing values of . The result is shown in Fig. 2.12.3.
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P A R T  II I  

A M P L IF IC A T IO N  FA C T O R

3.1 Introduction

If the m axim um  acceleration, of the packaged article as a  whole, is 
reached very slowly, the severity  of the disturbance experienced by  a 
s truc tu ra l elem ent of the packaged article is very nearly  proportional to  the 
m axim um  acceleration. Roughly speaking, “ very  slowly” m eans th a t the 
time, during which the acceleration undergoes a m ajor change in m agnitude, 
is long in com parison w ith the n a tu ra l period of v ibration  of the  element 
under consideration. W hen th is is so, no transien t v ib ration  is excited in 
the element. The displacem ent response of an  elem ent under very  slowly 
varying conditions is called the “ sta tic  response” . U nder more rapidly 
varying conditions the dynam ic response to  the same m axim um  acceleration 
m ay be greater or less th an  the sta tic  response. The ra tio  (A) of the  maxi
m um  dynam ic response to  the sta tic  response is called the  am plification 
factor. In  general, for a given acceleration d isturbance, very  low-frequency 
elem ents have am plification factors less th a n  un ity , while the amplification 
factors are greater than  un ity  for elem ents whose n a tu ra l frequencies are 
near or above the d isturbing frequencies. The num erical value of the 
am plification factor depends no t only on the m anner in which the disturbing 
acceleration varies w ith tim e, b u t also on the “ reference acceleration” , i.e., 
the value of acceleration for which the sta tic  response is calculated. Usually 
the reference acceleration chosen for calculating the sta tic  response is the 
m axim um  value (Gm) of the disturbing acceleration. However, when 
special circum stances are being investigated, such as the effect of dam ping 
or ab rup t bottom ing, the reference acceleration is taken  to  be G0 , which is 
the acceleration th a t would be reached if the dam ping or bo ttom ing were 
absent. In  such cases the am plification factor includes bo th  the effect of 
rate  of change of acceleration and  the effect of the special conditions.

W hen the reference acceleration is Gm the am plification factor will be 
denoted by  A m and when the reference acceleration is Go the amplification 
factor will be denoted by  A 0 . The symbol Ge will be used to  designate the 
slowly applied acceleration th a t would produce the same m axim um  dis
placem ent as the transien t acceleration, i.e., Ge = A mGm or Ge = AoG0 . 
The symbol G s will be used to denote the safe value of Ge , for an  element 
of the packaged article, as determ ined by  a strength  te s t or by  calculation. 
In  specifying G s some judgem ent is required to  take in to  account the effects 
of p lastic deform ation in com paring tests m ade on greatly  different time 
scales. Good judgem ent is also necessary in deciding w hether or no t the
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assum ptions listed in Section 0.2 are valid in each application. The general 
procedure for using amplification factors is as follows. We first find the 
value of the reference acceleration (in units of number of times gravity) from 
P a r t I. F rom  P a r t I I  we find the properties of the acceleration-time -rela
tion which give us the inform ation required for entering one of the curves 
of P a r t I I I  and finding the amplification factor. Then, the product of the 
reference acceleration and the am plification factor (A mGm or A 0G0) is a 
num ber (Ge) by  which the weight of the structure is to be multiplied when 
calculating its deflection or stress by  the usual sta tic  m ethods of elem entary 
strength of m aterials. A lternatively, G„ m ust be found no t to  exceed G s .

ml

o rr j | i ,

m2

(a)
/ / / / S A / / / / / /

(b)
Fig. 3.2.1—Idealized system used in calculating amplification factors for linear undamped 

cushioning with perfect rebound, (a) initial position, (b) first contact with floor.

In  the following sections the amplification factors for typical transient 
accelerations encountered in package drop tests are calculated. The am pli
fication factor curves th a t are p lotted  are entirely analogous to the familiar 
“ resonance curves” for steady sinusoidal vibration, except th a t in this 
case the disturbing forces are transients of various shapes. I t  will be seen 
from the curves th a t the maxim um  acceleration, as calculated by the 
methods of P a r t I  or as m easured by an  accelerometer, is not always a true 
measure of the severity of the disturbance.

3.2 A m p l if ic a t io n  F a c to r s  f o r  a  H a l f -S in e -W a v e  P u l s e  
A c c e l e r a t io n

The first case to be treated  is the response of an element of the packaged 
item  to the transien t acceleration th a t would occur in a package w ith linear
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undam ped cushioning and  perfect rebound. F igure 3.2.1 illustrates the
idealized system , and  it  m ay be no ted  th a t  the m ass m 3 is om itted , as is 
required for perfect rebound (Section 2.3). A t first we shall consider th a t 
th e  m ass m i is undam ped and  la ter we shall consider the  effect of dam ping 
in th is element.

T he m ass m i is taken  to  be sm all in  com parison w ith  m 2, so th a t  the  m otion 
of the  la tte r  is the  same as we found it to  be in Section 2.2 where m i was not 
considered. Hence the  acceleration of m 2 is a half-sine wave pulse:

x  is proportional to  the  force in the  spring (k\x) and  to  the  acceleration 
of m i  and hence is p roportional to  the deflection, s tra in  and  stress in the 
elem ent which the system  m i , k i  represents.

Substitu ting  (3.2.3) in (3.2.2), we find:

This equation holds for the duration  ir/u2 of the pulse x2 . T he initial 
conditions for x  are

I t  m ay be seen th a t  x  is composed of a  forced displacem ent a t  the  accelera
tion  frequency co2 , on w hich is superposed a  free v ib ration  a t  the  na tu ra l 
frequency, w i, of the elem ent. T he m axim um  value of the  relative displace
m ent is

in  which n  is a  positive in teger chosen so as to  m ake th e  sine te rm  as large 
as possible while the  argum ent rem ains less th a n  x.

(3.2.7) gives the m axim um  dynam ic response of the  elem ent m i during 
th e  in terval of im pact. T o  find the am plification fac to r we m ust com pare

x 2 — — « 2  y /2 g h  sin w2t, (0 <  t <  x/to2).

The equation  of m otion of m i is

m ix i +  k i{ x i — x2) — 0.

L et x  be the relative displacem ent of m x w ith  respect to  m 2 , i.e.,

X  =  X I  —  X i  .

(3.2.2)

(3.2.1)

(3.2.3)

m ix  +  k ix  =  —miXi (3.2.4)

Mi=o =  [*]_o =  0 (3.2.5)

so th a t  the solution of (3.2.4) is

x (3.2.7)



■r™  'with, the sta tic  response Le. with, the  value (xTC 1 th a t x  would have 
if the acceleration x* reached the  same maximum value \  in  a verv 
long rime. The resulting value m ay be found from  i 3.2.4 b y  om itting 
the transien t term  mCc. Then

f x ~ r m  i -r«  =  \  2gn —
«1

D Y X A M I C S  OF P A C K A G E  C U SH IO X IX G  425

or

x*t =  i  \  2gh. 3.2.8(Cl

The amplification, factor for the  in terval 0 5  : 5  r  _ j is then

(Cl
. -T.re.rr CsT2 . 2jlTX .      . .

-4M — —— — —  s m ---------- , iO <  r <  x  a»). (3c2.9)
xst . «1 , ^

idj ids ‘

I t  should be observed th a t depends only on the frecuencv ratio  « l *•;.
T hat is. since up =  r* r x . the am plification factor depends only on the 
ratio of the  pulse duration  to  the half period of v ibration  of the  element.

Thus far we have studied only the  m otion in the  in terval 0 5  : 5  t  „p . 
W e m ust not. however, overlook the possibility of larger displacements of mx 
with respect to  m* occurring afte r rebound. In  fact, exam ination of ¡3,2.6' 
reveals th a t x  has no m aximum  in the  in te rval 0 5  5  r  _ ; when an <  a n .
I t  is very  likely, then, th a t  larger values will occur a t  la ter times.

A fter rebound. mx executes free vibrations w ith  respect to m: . We have 
to  compare the  m agnitude of . in  th e  in terval 0  5  ; 5  t  . w ith the 
am plitude of the free vibration. Calling the relative displacement during 
free vibration, x ' and m easuring a tim e coordinate from  the  instan t the 
package leaves the  floor, we haxre

m ix  -f- k ix ' — 0, 3.2.10)

with rnitia.l conditions

M r= a  =  l & l r f e : ,

_X L-c]i=T *

The solution of (3.2.10) w ith  in itial conditions ¡3.2.11 is

3.2.11

x ’
3.2.12

*  =  *4 >  H i£¿5



T hen
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W l  7TC0,
, 2 — COS -  / \

i  % m a x 0J2 2 i0 2  (  , =  |  /  2  O 1 "2 \=  --  2 ~ , l f  >  - ) •
1 _  C 0 | \  C 0 2 /

/■ «2

We find, on com paring (3.2.13) w ith (3.2.9) th a t for an <  an equation
(3.2.13) gives the larger value of A m, while for an >  an equation  (3.2.9)

Fig. 3.2.2—Amplification factors for linear undamped cushioning w ith perfect rebound.
See Fig. 3.2.1 and equations (3.2.9) and (3.2.13).

gives the larger value of A m . T h a t is, when the  duration  of im pact is 
shorter th an  the half-period of v ibration  of the  elem ent, the  m axim um  
displacem ent (and stress) in the elem ent occurs afte r the im pact is over.

The curve m arked /3i =  0 in Fig. 3.2.2 is a p lo t of the largest value of A m 
from  (3.2.9) and (3.2.13) w ith the  frequency ratio  on/on as abscissa. (3.2.13) 
was used for on/on S  1 and (3.2.9) for on/on ^  1. T he m axim um  value 
of A m is 1.76 and occurs a t  an/an =  1-6. Hence, a t  th is frequency ratio , the 
deform ation of the elem ent is 1.76 tim es as great as would be expected from  
a calculation using the  m axim um  value of acceleration alone as in P a r t I.



On the other hand, for frequency ratios « i /« 2 <7 0.5 the severity of the 
shock can be very m uch less than  m ight be expected from  the calculations 
of P a rt I . F or very small values of wi/w2 the am plification factor m ay be seen 
from (3.2.13) to be equal to  2coi/ w2 . F or large values of wj/w2 (stiff elements) 
Fig. 3.2.2 shows th a t the am plification factor is very nearly un ity  and the 
methods of P a r t I  can be used w ithout additional calculation.

W hen dam ping of the element of the packaged article is considered, the 
amplification factors are less th an  w ithout dam ping. The applicable 
equations of m otion during and afte r im pact are obtained by  inserting 
velocity dam ping term s in (3.2.4) and (3.2.10):

m%x +  Cix +  h x  =  —m xx2 , 0 ^  t ^  — (3.2.14)
0)2

m xx ' +  cxx ' +  h x '  = 0 ,  t ^  — . (3.2.15)
C02

If we express the dam ping of the element m i as the fraction of critical 
damping

*  '  m X ’
(as in Section 2.5) equations (3.2.14) and (3.2.15) become

x  +  2/3iwix +  coxx  =  —x2 , 0 < t <  — , (3.2.17)
002

x ' +  281 co] x \ +  ooixf =  0, t 5  — . (3.2.18)
0)2

The amplification factors for equations (3.2.17) and (3.2.18), w ith boundary 
conditions (3.2.5) and (3.2.11), respectively, were obtained on the Westing- 
house M echanical T ransients Analyzer3 for /3i =  0.005, 0.01, 0.05, 0.10, 0.30, 
0.50 and 1.00. The curves are shown in Fig. 3.2.2.

3.3 A p p l ic a t io n  o p  H a l f -S i n e -W a v e  Am p l if ic a t io n  F a c to r s

As an  example of the use of the amplification factor curves of Fig. 3.2.2, 
let us consider the following.problem:

3 Arrangements for performing these calculations were made through the courtesy of 
Mr. A. C. M onteith, Manager of Industry Engineering, and Mr. C. F_. Wagner, Manager 
of Central Station Engineering, Westinghouse Electric and M anufacturing Co. Dr. G. D. 
McCann, Transmission Engineer, was in immediate charge of the project. For a descrip
tion of the analyzer see “A New Device for the Solution of Transient-Vibration Problems 
by the M ethod of Electrical-Mechanical Analogy” by H. E. Criner, G. D. McCann and 
C. E. W arren, Journal of Applied Mechanics, Vol. 12, No. 3 (1945) pp. A-135 to A-141.
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I t  is required to  judge the suitab ility  of a proposed package for a  large 
vacuum  tube weighing 10 pounds. S trength  tests have been m ade on the 
tube in a  shock testing  m achine which produces a  half-sine-wave acceleration 
p u l s e  of 25 milliseconds duration . T he w eakest elem ent of the  tube is 
found to  be the  cathode s tructu re , for which the safe m axim um  acceleration 
in the drop testing m achine is 200g. T he cathode structu re  has a na tu ra l 
v ibration  frequency of 120 cycles per second and  has 1%  of critical dam ping. 
The proposed package has essentially linear, undam ped cushioning w ith  a 
spring ra te  of 3300 pounds per inch and an  available d isplacem ent of f  inch. 
T he outer container weighs m uch less th a n  the  tube so th a t  the package m ay 
be expected to  rebound. Is  the  cushioning suitable for p ro tecting  the 
cathode in a  drop of 5 feet?

F irs t find the  m axim um  G th a t  the tube will experience in a 5 ft. drop of 
the package (equation 1.3.3):

„  . / m 2 _  , / 2  X  60 X  3300 _  100
Gm~ V m  ~  V  io “ 1 •

The accom panying m axim um  displacem ent is, from  equation  (1.3.4),

, 2h  2 X  60 ,  .
=  G .  =  - ¡ 9 9 “  “  ° '6 m '

The available displacem ent (f  inches) is therefore sufficient and  the maxi
m um  acceleration (199g) is slightly less th an  the  safe m axim um  acceleration 
(200g) found w ith  the shock testing  m achine. However, before the cush
ioning is approved it  is necessary to  investigate the  frequency effects. The 
duration  of acceleration in  bo th  the  shock m achine and  in the package 
m ust be considered.

The am plification factor for the elem ent tested  in the  shock m achine is 
found as follows. F irs t find the frequency corresponding to  the  25 milli
second pulse:

f i  =  ^ =  20 c.p.s.
j  2 X  .025 p

T he ratio  of the elem ent frequency to  the  shock m achine frequency is

i l  =  — =  =  6
f i  C02 20

E ntering  Fig. 3.2.2 w ith wi/co2 =  6, we read, from  the curve /3i =  0.01, A m =  
1.14. T he 200g te st in the  shock m achine is, therefore, equ ivalen t to  a 
slowly applied acceleration of G s = 200 X 1.14 =  228g.
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To find the  corresponding q u an tity  for the package drop, first find the 
cushion frequency:

t  -  1 . f h  1 /3 3 0 0  X  386 „
m m y — ¡o a 7 c -p s -

The ratio  of the  elem ent frequency to  the package frequency is therefore

=  2 .i.
J 2 57

E ntering Fig. 3.22  w ith  « j/u s  =  2.1 we read, from  the curve y9i =  0.01, 
A m =  1.59. The 199g acceleration pulse in  the package drop is therefore 
equivalent to  a  slowly applied acceleration of Ge =  199 X  1.59 =  316g. 
This is a lm ost 40%  in excess of the value (228g) found to  be safe from  the 
shock m achine data . The cushioning is therefore judged to  be inadequate, 
l l i e  procedure for finding the  correct spring ra te  for the cushioning is as 
follows. I t  is know n th a t  we m ust have

Ge <  G s ,

Therefore, take

Ge =  A mGm —- 228.

Now

Therefore

A mwn j= 409 rad /sec.

Also

b i =  2 r  X  120 =  754 rad/sec.

Then, w ith successive tria l values of u 2, we calculate w i/«2 , en ter Fig. 3.2.2, 
read the corresponding value of A m from  curve 3i =  0.01 and te st to  see if 
the p roduct A mv 2 =  409. The com bination which satisfies the te s t is found 
to  be

a>2 =  280 rad/sec. 

wi/«2 =  2.69

A m =  1.47.
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Then

2 (280)2 X  10 ., ,
¿ 2  =  CO2 W2 =  •----- — ------ =  2030 lb s ./m .

dm = f r  -  -77 in.
{jm

Hence the spring ra te  of the cushioning should be reduced from  3300 lbs./in , 
to  2030 lbs./in . and the available space should be increased to  accom odate 
the  0.77 inch m axim um  displacem ent before bottom ing.

3.4 Special Treatment of Strong, Low Frequency Elements 
The product of the am plification factor (A m) and  the m axim um  accelera

tion (Gm) m ust be equal to  or less th an  the m axim um  allowable slowly 
applied acceleration (G s):

for 8 1 <  0.10. W hen th is is so, we m ay combine (3.4.1) and  (3.4.3) to 
ob ta in  the criterion

(3.4.1)

O  9C02 Z

Figure 3.2.2 shows th a t, approxim ately,

A m -  2 —

(3.4.2)

(3.4.3)

(3.4.4)

Now,

(3.4.5)

H ence the criterion (3.4.4) m ay be w ritten  as

(3.4.6)

or

_  1.1 Gs

h < m (3 .4 .7)

where h is in inches and f i  is in cycles per second.
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I t  m ay be observed th a t (3.4.7) is  independent of the properties of the 
cushioning. Hence, as long as (3.4.2) is satisfied, any cushioning a t  all 
may be used for an  elem ent th a t satisfies (3.4.7) regardless of the m agnitude 
of the maxim um  acceleration Gm . In  particular, rigid m ounting is suitable 
for such an  element. The only precaution to  be observed is th a t the maxi
mum acceleration and duration m ust no t be unfavorable for other elements 
of the packaged article.

Example: A 9-pound vacuum  tube has an anode structure for which the 
safe maxim um  acceleration is 200g as determ ined in a centrifuge test. 
The na tu ra l v ibration  frequency of the anode is 35 cycles per second and the 
damping is 1%  of critical. W hat cushioning around the tube is required to 
protect the anode from  dam age in a package drop of 3 feet?

Calculate

1.1G. 1.1 X 200
V h  r  V 3 6  r 36-7 c -p -s-

This is greater than  f \  — 35 c.p.s and hence any cushioning is safe for the 
anode. The results of calculations for cushioning w ith spring rates of 50, 
500, 5000, 5 X  10° and 5 X  10' pounds per inch are given in the following 
tab le :

¿2 (lbs. /in.) Gm 631

632
Am AmGm

50 20 4 .74 1 .1 2  22
500 63 1.47 1.65 106

5 X 10= 200 .474 0 .9  180
5 X IV 2,0 00 .0474 0.09 180
5 X 107 2 0,000 .0047 0.009 180

In  each case the product of A mGm is less than  the allowable 200 and, as long 
as the com bination of Gm and the amplification factors for other elements 
does no t exceed the  allowable A mGm for those elements, the cushioning is 
suitable. The precaution to  observe is th a t higher-frequency elements 
shall n o t have am plification factors such th a t A mGm m ay be excessive for 
them.

3.5 A m p l i f i c a t i o n  F a c t o r s  t o r  D a m p e d  S in t js o id a l  A c c e l e r a t io x

If the outer container of the package is heavy enough (see Section 2.3) 
there will be no rebound and the packaged item  will v ibrate  in  the cushion
ing after im pact. F or linear cushioning w ith velocity damping, the accelera
tion produced by  the  v ibration  will be a  dam ped sinusoid (equation (2.5.5) 
and Fig. 2.5.2). The system  to  be considered is shown in Fig. 3.5.1. 
To determ ine the effect of the dam ped vibration of m% on the mass ni\ ,
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/ / / / / / / / /  / / / / / / / /
(a)

Fig. 3.S.1—Idealized system for linear damped cushioning w ith no rebound, 
(a) initial position, (b) first contact w ith floor.

Fig. 3.5.2—Amplification factors for linear damped cushioning w ith no rebound. 
02 =  0.005. See equations (3.5.1) and (3.5.2).

we note th a t  the equation  of m otion and  in itial conditions are identical 
w ith (3.2.17) except th a t  for the acceleration x 2 we use the  dam ped sinusoid, 
equation  (2.5.5), instead of the  half-sine pulse (3.2.1). T he solution of
(3.2.17), i.e. the  relative displacem ent ( # 1  — x 2) of m r w ith  respect to  tn2 , 
is



*  l j  r) /—f~  xe 1 1‘ 1-4 sin (&>i t +  7  — 8) +  B  sin (wi t — y  — f)]
— COo COj

[-4 sin ((dot +  y  — 5 )— B  sin (co2i +  7  +  f)]} (3.5.1.)

where
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COi

02

. hC02 =  A /  —
V m2

u 'l =  Q)l\ / 1 —

0?2 — Ct>2 'S/ 1 p#

1 /  4  =  s/ifSotdi — /3i«i)2 -{- (co( — W2)2 

1 B =  a /  (/S2C02 — ftwi)2 +  (wi +  W2)2

2 f t  -  1
ta n  7

ta n  f  =

2 f t  V l  -  $

COj co2
So 0)2 — f t  Wl

' I 'Wj - r  W2
2 &J2 f to u

The relative displacem ent of m x w ith  respect to m-2 is seen to  consist of a 
forced, dam ped vibration (w2 , f t )  on which is superposed the free dam ped 
oscillations (coi, f t )  of n i t .

T he am plification factor
„ 2 * .COi Xmax

A° = — I  (3-5-2)xsi w2 V  2gh

is p lo tted  in Figs. 3.5.2 to  3.5.7 for six values of f t  and six values of f t . 
These curves were obtained by  direct solution of the differential equation 
on the W estinghouse M echanical T ransients Analyzer.4 The amplifica
tion factor in  th is case includes the  effect of dam ping; i.e., the reference 
acceleration is no t the  maximum acceleration of ith  , b u t is the maximum 
acceleration th a t nu  would reach if the dam ping $ 2  were zero. Conse
quently, the am plification factors for large values of &n/w2 do no t approach

4 See footnote, Section 3.2. Only enough data were obtained w ith the analyzer to  find 
the general shapes of the curves, so th a t t i e  fine structure is not revealed. Checks on 
the analyzer results were made by computing An from equations (3.5.1) and (3.5.2) for
“ l/i*>2 =  1, 01 — 02", O>l/o)o —  0 ;  —* 0°  .
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Fig. 3.5.3—Amplification factors for linear damped cushioning with no rebound. 
/32 =  0.01. See equations (3.5.1) and (3.5.2).

o  I 2  3  4  5  6

Fig. 3.5.4—Amplification factors for linear damped cushioning with no rebound.
/32 =  0.05. See equations (3.5.1) and (3.5.2).

unity . F or example, the  curve for f t  -  0.005, /32 =  1 (Fig. 3.5.7) approaches 
a value of nearly  four as wi/co2 —» . The factor four is composed of two
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Fig. 3.5.5—Amplification factors for linear damped cushioning with no rebound. 
02 =  0.1. See equations (3.5.1) and (3.5.2).

Fig. 3.5.6—Amplification factors for linear damped cushioning with no rebound. 
02 =  0.5. See equations (3.5.1) and (3.5.2).

factors of two. The first arises from the fact th a t the m aximum value of 
acceleration, for f t  =  1, is twice the value th a t would be reached if f t
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were equal to  zero (see Fig. 2.5.3). T he second factor (of nearly  two) is 
due to  the  fac t th a t  the  m axim um  acceleration is reached a t  tim e t =  0 
when j82 =  1 (see Fig. 2.5.2) and  the  response of an  alm ost undam ped sys
tem  (Si =  0.005) to  a  suddenly applied and  subsequently  m aintained 
acceleration is double the  response to  a  slowly applied acceleration (see 
curve (a) Fig. 3.8.1). F o r S i >  0 and  S 2 <  1 the  am plification factor is 
less th an  four, as « i/w 2 —» °° , in  accordance w ith  the curves p lo tted  in Fig. 
3.5.8.

Example: A 1.5-pound vacuum  tube is to  be packed in  a container whose 
estim ated w eight will be a t  least 50 pounds. T he cathode structu re  of the 
tube has a n a tu ra l frequency of 25 c.p.s. w ith  dam ping 0 .5%  of critical

Fig. 3.S.7—Amplification factors for linear damped cushioning with no rebound, 
f t  =  1.0. See equations (3.5.1) and (3.5.2).

and  its  safe acceleration, as determ ined in a centrifuge, is 90g. W hat 
spring ra te  of cushioning is suitable for p ro tecting  the  cathode in a drop of 
five feet? I t  is specified th a t  the  cushioning shall have dam ping 50%  of 
critical.

Assuming linear cushioning, the spring ra te  th a t  would be prescribed, by 
considering m axim um  acceleration alone, is

W 2G l  1.5 X  (90)2 tAt 1U /t 
“  " I F  2 X 6 0  =  101 B m ’

Considering dam ping, Fig. 2.5.3 shows th a t 50%  of critical dam ping does
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not change Gm . To find the  am plification factor we m ust first decide if the 
package will rebound. W ith 50%  of critical dam ping, the maximum ac-

Fig. 3.5.8—Limiting values of amplification factors for linear damped cushioning with no 
rebound. w i/u 2 —► » .  See equations (3.5.1) and (3.5.2).

celeration on the first upstroke is 0.164 Gm (see Section 2.6 and Fig. 2.6.1). 
Then, 0.164 X 90 X 1.5 =  22 lbs. which is less th an  the estim ated weight 
of the outer container. The package will no t rebound and Fig. 3.5.6 
should be used for the am plification factor.
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H ie  frequency of v ibration  of th e  tube in  its  cushion w ill be

, / %  , / l O l  X  386 . -n , -m  =  A /  —  =  A /  ----- , _ - =  lo9  rad . sec.
V m i y  1 . 0

Hence on « 2  =  2w X  25 159 =  0.99 and, from  Fig. 3.5.6, -1 a =  1-4. H ence 
Ge =  90 X  1.4 =  126, w hich is g reater th a n  th e  allow able G s =  90, so 
th a t  th e  101 lb. in. cushion is unsatisfactory .

To ob ta in  sa tisfactory  cushioning, set

-4oGo =  90,

th a t  is

90
He a« =  — 7N =  159 rad  sec.

'  1/ ?
N oting  thatw x =  2 r  X  25 =  15/, we find from  Fig. 3.5.6 th a t  there  are two 
values of (90 and  600 rad /sec .) th a t  sa tisfy  th e  criterion  A  ows =  159 
rad  sec. T he first gives

« 2  =  90 rad /sec .

_40 =  1.8

k 2 =  31.5 lbs.; in.

Go =  50 

Ge =  90 

dm =  2.4 in.

T he second gives

=  600 rad  sec.

Ho =  0.27

=  1400 lbs. in.

Go =  335 

Ge =  90 

=  0.36 in.

The second solution requires less space for cushioning th a n  th e  first b u t 
should be used only if th e  rem ainder of th e  tu b e  can endure th e  h igh  ac
celeration of 335g. Otherwise the  50g package should be u s e d .
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3.6 A m p l i f i c a t i o n  F a c t o r s  f o r  t h e  P c l s e  A c c e l e r a t i o n  o f  

C u b ic  C u s h io n in g

In  a rebounding package with undam ped Class B cushioning, the pack
aged article (nu) will undergo a  pulse acceleration of duration  ir/a>2 as given 
by equation (2.8.11). The shape of the pulse is illustrated in Fig. 2.8.2 
and its  functional form is

- K ) -  -  . (2.8.14J

To determine the influence of the shape and duration  of th is pulse on the 
amplification factor, we proceed as before by substitu ting  (2.8.14) in the

[ W ]

r
*1

\
X2

m2

/ / / / / / / / / / 7 7 7 7 7 V / / / / /

(a)

/ / / / / / 7 f 7 ? / / / / / / /

Vo)
Fig. 3.6.1—Idealized system used in calculating amplification factors for non-linear, 

undamped cushioning with perfect refxmnd.

differential equation governing the relative displacem ent (x  = x i  — x%) 
between m-i and m 2 (see Fig. 3.6.1):

x  +  o ilx  =  — ¿ 2  - (3.6.1)

W ith boundary conditions x(0) — x(0) =  0, the solution of (3.6.1) m ay be 
w ritten  as

1 f fx  — — / Xi (X) sin c<3i (X — t) dX 
tor Jo

and the  maxim um  value of x  m ay be expressed by

i  r tmx mzI =  — / xzfX) sin wj(X — tm) dX, 
on Jo

where tm is the tim e a t  which the largest value of x  occurs.

(3.6.2)

13.6 .3)



The am plification factor, in this case, will be taken  as the  ra tio  of x max 
to  the relative displacem ent (x st) resulting from  a slow application  of the 
maxim um  value of x 2 . F rom  (3.6.1),

Xst — I 1 max . Gmg  ̂ (3.6.4)
COl ' Wl

where Gm is given by  equation (1.5.6). Then

A m =  XmaK =  XmaxC01 (3.6.5)
X$t Gm &
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Fig. 3.6.2—Amplification factors for undamped cushioning with cubic elasticity. Perfect 
rebound. See equation (3.6.6).

or

A m = 7 —  / z 2(X) sin coi(X ■  tm) d \ .  (3.6.6)
vJm & JO

A m was evaluated, m ostly by  graphical m ethods, for four values of B  
(0, 2, 20 and oo) and the results are p lo tted  in Fig. 3.6.2. O bserving th a t 
B  = 0 corresponds to  linear cushioning, it m ay be no ted  th a t  cubic non- 
linearity  in the cushioning does no t change the am plification factor by  
more than  35%  even in the m ost extrem e case (B  —» oo). T he severity  
of the shock, however, m ay be m uch greater for the  cubic cushioning th an  
for linear cushioning w ith a  spring ra te  equal to  the initial spring ra te  (k0) 
of the cubic cushioning. This is because A m is m ultiplied by  Gm to  ob ta in  
Ge and, for large values of B , Gm m ay be m uch larger th a n  the  m axim um  
acceleration for the linear case. In  other words, in com paring Class B
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w ith Class A cushioning the difference in maximum acceleration, rather than 
the difference in am plification factors, is usually more im portant.

Example: Consider the example given in Section 1.6 and let it be required 
to  determ ine the efFect of pulse duration on a cathode structure w ith a 2 0 0  

c.p.s. na tu ra l frequency of vibration. In  Section 1.6 we found th a t

B  g  5.4 k0 =  255

Go *  28.6 r =  108.

Gm 5d

W ith B  =  5.4, en ter Fig. 2.8.2 and find

—  =  0 .88 .
Ct>2

Now

, A > *  , /2 5 5  X 386 ^
" "  V  w l  f  V  22.5 -  “ -1 rad '/se c '

Hence

661  L  A /“ 2 =  Qgg =  rad./sec.

Then, w ith u i/œ 2 =  2x X 200/75 =  16.7, enter Fig. 3.6.2 and find A m = 
approxim ately 1.0. Hence Ge is about the same as Gm and the conclusions 
reached for this problem  in Section 1.6 are no t altered.

3.7 A m p l i f ic a t io n  F a c t o r s  f o r  A b r u p t  B o t t o m in g

The amplification factors for bilinear elasticity have not been com puted 
in complete detail. T hey  can be obtained approxim ately by using the dura
tion curves (Fig. 2.10.2) and the amplification curves for the linear case 
(Figs. 3.2.2 and 3.5.2 to  3.5.7). I t  is useful, however, to calculate the am 
plification factors for extremely abrup t bottom ing (kb —» =°) to obtain a 
general understanding of the accompanying phenomena.

T he system  to be considered is illustrated in Fig. 3.7.1. I t  is assumed 
th a t the im pact between m 2 and the base (occurring a t t = t3 , x 2 = d 3) 
has a  coefficient of restitu tion  of unity. Hence m 2 will strike the base w ith 
velocity

w , . , .  =  4 / 2 ** ( 1 - 1 )

(see equation (2 .1 0 .8 )) and leave it  a t  a velocity of the same m agnitude b u t 
opposite sign. Perfect rebound of the whole package is also assumed.
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The acceleration pulse will then look like the curve m arked k i / k o —* 00 
in Fig. 2.10.1.

There will be three regions in which to consider the relative displacem ent x : 

Region 1 0 <  t <  t .

Region 2 t s <  t < 2 ts

Region 3 t >  2 ts

The relative displacem ent (x = x x -  x 2) of nti w ith  respect to  m 2 will have

Fig. 3.7.1—Idealized system representing abrupt bottoming.

the same functional form  for Region 1 as in the linear case (see equation
(3.2.6)), and the am plification factor is, by  analogy w ith (3.2.9),

Ao —

£01
030 sin

2mr

í* 7 ¡
0 <  t <  t. , (3.7.1)

COo wo

where

COo : ko/1^2 •

F or Region 2, we use the differential equation

x  +  cojX =  coo y / 2gh sin coo(i — 2ts) (3.7.2)

and, as initial conditions a t  / =  t s , we use the term inal conditions for 
Region 1 w ith the sign of [x2]i=t„ reversed. T he am plification factor for 
th is region is found to  be (by the same m ethod as in Section 3.2):
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«1
A ° =  w0\ / 2 ~gh ^ A2 +  B2 sin p H  +  lï ~  I l 4 |

7  sin^w0im — w0ts — sin”"1 -̂sV  -7.3)
1 -  ( “ °j  \  d o / ’

t s  <  t  <  2 1 ,

where

W0
.2

COo

COo

J ü l  ,  _  301  . / « !  . i  ¿A

Wo

^ 3  = r %  [ 2 5  Z 1 ~ I _ cos p sin_: t)]
. —1 A  V = tan -  

D

and tm is the root of

COi ,.------------

wo y/2~gh C0S ^Wl ^ ^  # * )

1 /

1
2 cos I w0im — wo t, — sin'

th a t yields the largest value of A 0 in equation (3.7.3). Region 3 is gov
erned by

x  +  wïæ =  0 (3.7.4)

and the initial conditions are the term inal conditions of Region 2. By 
the same m ethod as was used in Section 3.2, we find

(3.7.5)

t >  2 t s

The largest value of 4̂o from equations (3.7.1), (3.7.3) and (3.7.5) is 
plo tted  against wi/w0 in Fig. 3.7.2 for several values of d s/d 0 .
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N otice th a t  the am plification factor is A 0 ra th e r th a n  A m . T h a t is, 
the reference acceleration is G0 ra the r th an  Gm . T his is necessary because 
Gm is infinite in the present instance. Hence Fig. 3.7.2 cannot be com
pared directly  w ith Figs. 3.2.2 and 3.6.2. However, it is in teresting  to 
observe th a t, for wi/w2 <  0.5, (low frequency elements) ab ru p t bo ttom ing 
has no harm ful effect. F or high-frequency elements, the  severity  of bo tto m 
ing is very great even when very  nearly  all of the required space (do) is 
available. F or example, if 90%  of the  required space is available (d s/ d 0 =
0.9) and the frequency of the elem ent is ten  tim es the package frequency,

Fig. 3.7.2—Amplification factors for abrupt bottoming. See equations (3.7.1), (3.7.3)
and (3.7.5).

the severity  of the shock is alm ost ten  tim es as g reat as it would be if the 
additional 10%  of space were available.

3 .8  G e n e r a l  I n f l u e n c e  o f  Sh a p e  o f  A c c e l e r a t io n - T im e  C u r v e  
o n  A m p l if ic a t io n  F a c t o r

W hen am plification factor curves are no t available for a special shape of 
acceleration-tim e curve, an  approxim ate value of A m m ay be obtained by 
interpolation between or extrapolation from  the curves of the preceding 
sections. The shape of the acceleration-tim e curve and  its du ration  ( r 2) 
or frequency (co2) should be found, first, by  the m ethods described in P a r t II. 
The shape found should then be com pared w ith the standard  shapes shown 
in P a r t I I , for which am plification factors are given in P a r t I I I .

The am plification factor found in this way will generally be w ith in  25%



of the true value because amplification curves for pulse accelerations do not 
differ greatly even for very different acceleration-time curves as long as the
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Ml

Fig. 3.8.1—Dependence of amplification factor on shape of symmetrical acceleration pulse.

Fp
Tt

Fig. 3.8.2—Effect of asymmetry of an acceleration pulse on amplification factor.

am plitudes and frequencies are adjusted to the same scales. This is illus
tra ted  in Fig. 3.8.1 where the amplification factor curves are drawn for 
square wave, half-sine wave, triangular and cubic pulses.
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Am plification factors for small values of wi/w2 m ay be calculated very  
accurately  if it is observed th a t  the in itial slope of the am plification factor 
curve for a pulse acceleration is proportional to  the  area under the  accelera- 
tion-tim e curve. F or example, noting th a t the in itial slope of the  am plifica
tion factor curve for the half-sine wave pulse is 2, we assign the  value 2 to 
the  area under the half-sine wave. On the same scale, the area under a 
square wave pulse is ir and under a triangular pulse is -r/2. Accordingly, 
the initial slopes of the am plification factor curves for the la tte r  two pulses 
are x  and tt/2  respectively.

As an additional aid in finding am plification factors for unusual cases, 
Fig. 3.8.2 is given to  show the  effect of asym m etry  of an  acceleration pulse. 
The pulse is triangular in shape b u t the tim e (r.p) taken  to  reach the  peak 
value of acceleration m ay have any  value from  zero to  the  to ta l duration  
( r 2) of the pulse.

P A R T  IV

D IS T R IB U T E D  MASS AN D  E L A S T IC IT Y

4 .1  I n t r o d u c t io n

I t  is im portan t to  be aw are of the  conditions under w hich the  assum ption 
of lum ped param eters is permissible. In  P a r ts  I  and  I I  the  cushioning 
m edium  was assum ed to  be massless, so th a t  w ave propagation  (or surges) 
through it  was ignored. Such surges will con tribu te to  the  acceleration 
imposed on the packaged article and  we should be able to  p red ic t bo th  the 
m agnitudes and frequencies of the additional disturbances. I f  th is is done, 
the inform ation in P a r t  I I I  m ay be used to  ob ta in  a t  least a  rough estim ate 
of the resulting effects. In  P a r t I I I  itself the  effects of accelerations were 
determ ined by  studying the response of a  system  having only one degree of 
freedom ; th a t is, an  elem ent of the  packaged article was assum ed to  be a 
single m ass supported by  a  massless spring. E very  real elem ent, of course, 
has an infinite num ber of degrees of freedom, so th a t  i t  is im portan t to 
discover the contribution, of the higher m odes of v ib ration  of an  element, 
to  the overall response.

B oth  of these problem s (d istribu ted  param eters of m ass and  elasticity  in 
the cushioning m edium  and in an  elem ent of th e  packaged article) are 
studied in th is p art. One example of each type is considered, and  the  choice 
of the example in each case was influenced by  considerations of expediency, 
nam ely th a t the  m athem atical derivations be relatively  sim ple and  lead to 
solutions for which n o t too lengthy com putations are necessary to  yield 
results th a t can be applied practically . A t the  same tim e, the  examples 
chosen are believed to  give some insight in to  several of the physical phe-
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nomena involved. The trea tm en t is by  no m eans complete, b u t a more 
detailed investigation is beyond the scope of this paper.

4.2 E f f e c t  o f  D i s t r i b u t e d  M a s s  a n d  E l a s t ic it y  o f  C u s h io n in g  

o y  A c c e l e r a t io y  o f  P a c k a g e d  A r t ic l e

Referring to  Fig. 4.2.1. we consider the packaged article, of mass m* . 
to  be supported by  d istribu ted  cushioning of mass m. and dep th  1. The 
cushioning m ay be a pad. say of rubber, in which case I  is the  pad  thickness, 
or it m ay be a helical m etal spring, in which case f is the coil length. The 
package is dropped vertically  from  a height h and  has a tta ined  a  velocirv v 
a t  the  in stan t of contact tJ  =  0) of the  outer container and  the  floor. The 
outer container is assum ed to  be heavy enough so th a t there is no rebound. 
A horizontal plane in  th e  cushioning is located by  a coordinate ar m easured 
from the end of th e  cushioning a ttached  to  th e  outer container. The vertical

-V
I  (cushion)

- Floor
/ / / / / / / / / / / / A / / /

Fig. 4.2.1— P ackaged article of mass rn±. supported on. tfistrib uted cushioning of depth '  
and mass m... depicted a t  the  instant of first contact of the outer container m, mid 
the floor.

displacem ent of the  plane x  is designated by  it. The undam ped m otion of 
the  cushioning afte r contact is governed by  the  one-dimensional wave 
equation:

=> d~ ud~ u _
~df ~  ®

(4.2.1

in which a is th e  velocity  of propagation of longitudinal waves in the cushion
ing. If  the  cushioning is continuous.

,  E  
a = P 4.2 .2 '

where E  is the  m odulus of elasticity- and  p is the  density  of the cushioning. 
I f  the  cushioning is a helical spring,

k f
a =

mL-
(4 .2.31

where k is the spring rate .
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The in itial conditions of the system  are

[w]i=o =  0, (4 .2.4)

|_ dt Ji=o
(4.2.5)

T he boundary  conditions are

[ll]x=0 0, (4.2.6)

(4.2.7)

E quation  (4.2.7) expresses the requirem ent th a t  the  force on the upper end 
of the cushioning m ust balance the inertia force of the  packaged article. 
F or continuous cushioning k i  should be replaced by  E A ,  where A  is the 
cross-sectional area of the cushioning.

A solution of (4.2.1) satisfying conditions (4.2.4) and  (4.2.6) is

where co» is the 11th root of a transcendental equation  to  be obtained from
(4.2.7) and A n is a constant to  be determ ined by  (4.2.5). Substitu ting
(4.2.8) in (4.2.7) and equating coefficients of like term s of the series, we 
obtain the transcendental equation

S ubstitu ting  (4.2.8) in (4.2.5) we obtain, by  the  usual m ethods of expansion 
into trigonom etric series,

O ur chief in terest is in the acceleration of m 2 . M aking use of (4.2.7) 
and (4.2.9) we find, from (4.2.11), th a t  th is acceleration is

Z ĆOyj OC ,
An  s i n  sin u n t,

Ti-i a
(4.2.8)

a
COn ^   m c

a
(4.2.9)

A (4.2.10)

Hence the complete solution of the problem  is

V
oo

- . COn % • ,2v s i n   sin w„ t
a (4.2.11)u  — —

(4 .2 .12)
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where

and

2 r> ,. m
=  j—  (4.2.13)

2 i / m ° ( m ‘ I UnC2\  
V m 2 \m \  a2 /Bn = _ r v2 2 2 (4-2.14)

m2 m | <r2

The acceleration of m 2 is, therefore, a  sum of sinusoids of frequency u n 
and am plitude vu0B n . Now, i>co0 is the m aximum acceleration th a t m 2 
would a tta in  if the mass of the cushioning were negligible. Calling Gn 
the maxim um  acceleration in the wth mode and Go the maximum accelera
tion neglecting the  mass of the cushioning, as in P a r t I, we have

^  =  B n . (4.2.15)

B ut B n depends only on the ratio m „/m 2 , as m ay be seen from equations
(4.2.9) and (4.2.14). Similarly the ratio  of the frequency (core) of any mode 
to the frequency (w0) w ith massless cushioning depends only on m c/m 2 ,
as m ay be seen from  equations (4.2.3), (4.2.9) and (4.2.13). Hence, both
the amplitude and frequency ratios for the acceleration in  any mode depend 
only on the ratio of the mass of the cushioning to the mass of the packaged article. 
The ratios Gn/G 0 andcon/co0 are plo tted  against mc/m 2 in Figs. 4.2.2 and 4.2.3 
for the first five modes. I t  may be seen from  these figures that the accelerations 
in  the higher modes can be very important. For example, if the cushioning 
weighs half as m uch as the packaged article the maximum acceleration in 
the second mode is about 40%  of the acceleration in the first mode and the 
la tte r is about the same as found by the elem entary method of P a rt I. 
This could have a disastrous effect on an element of the packaged article if 
the la tte r  had a fundam ental frequency near th a t of the second mode of the 
cushioning, the la tte r  being found, from Fig. 4.2.3, to be about five times 
the fundam ental frequency of the package.

I t  m ust be remembered th a t dam ping has been neglected in the above 
investigation and dam ping in the cushioning will serve to m itigate the se
verity  of the higher mode accelerations to a great extent. However, the 
danger is always present a t the s ta rt of a design and the possibilities of un
favorable com binations should be studied in every case.
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m  C

m2

Fig. 4.2.2—Influence of ratio of mass of cushioning (m c) to  mass of packaged article 
(ml) on acceleration ratio. The num erator of the acceleration ratio is the maximum 
acceleration (G„) in the n th mode of vibration transm itted through the cushioning. The 
denominator of the acceleration ratio is the maximum acceleration (Go =  \ / 2hk2/m 2g) that 
the mass m 2 would experience if the mass of the cushioning were negligible. See equations 
(4.2.15), (4.2.14), (4.2.9).

0  0 .2  0 .4  0 .6  0 .8  1 .0  1 .2 1 .4  1 .6  1 .8  2 .0

mc

Fig. 4.2.3—Influence of ratio of mass of cushioning (»«„) to mass of packaged article 
on frequency ratio. The num erator of the frequency ratio is the frequency (&>„) of the 
nth mode of vibration transm itted through the cushioning. The denominator of the 
frequency ratio is the frequency («„ =  a / k i/m f)  of vibration of the mass m 2 neglecting 
the effect of the mass of the cushioning. See equations (4.2.9), (4.2.13), and (4.2.3).
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4.3 E f f e c t  o f  D i s t r i b u t e d  M a s s  a n d  E l a s t ic it y , o f  a n  E l e m e n t  

o f  t h e  P a c k a g e d  A r t i c l e , o n  t h e  A m p l i f ic a t io n  F a c t o r  f o r  

a  H a l f -S i n e -W a v e  P u l s e  A c c e l e r a t io n

In  th is section we shall determ ine the contribution of the higher modes of 
vibration of a structural elem ent to its to ta l response to a half-sine-wave 
pulse acceleration. F or the shape of the element, we choose a prism atic 
bar because this leads to the simplest m athem atical form ulation of the 
problem and such a bar is also a common structural element. O ther con
siderations influence the choice of direction of acceleration with respect to 
the axis of the bar. The transverse direction (cantilever) is the most 
practical from a physical standpoint, bu t, for purposes of comparison with 
the one-degree-of-freedom system , the parallel (axial) direction of accelera
tion is the more logical. B oth problems lead to solutions in the form of 
infinite series, bu t, in the la tte r  case, the expression for the strain  a t a fixed

/

iP
/ / / / / / / 7 T / / / / / 7 7 -

Fig. 4.3.1—The system studied in Section 4.3 depicted a t the instant of contact with
the floor.

end can be summ ed in term s of elem entary functions w ithout difficulty. 
Since it  is necessary to determ ine maximum values of strain over a wide 
range of frequency ratios for the p lo tting  of an amplification factor curve, an 
enormous reduction in the tim e required for accurate com putations is 
obtained by  choosing the axial case. Furtherm ore, the axial case appears to 
contain the essential features which m ight result in differences between the 
response of a one-degree-of-freedom system and a continuous one.

The complete system  to be studied is illustrated in Fig. 4.3.1. To the 
mass m i , supported on massless cushioning of constant spring rate k2 , 
is attached  one end of an elastic prism atic bar, of length I, cross sectional 
area A ,  modulus of elasticity E, and density p, with its axis oriented verti
cally. The system  is dropped from a height h so th a t its velocity is v 
a t the instan t of contact of the cushioning with the floor. The mass of the 
bar is supposed to  be small in comparison w ith m 2 and perfect rebound is 
assumed, so th a t the m otion of m 2 during contact is a half-sine wave of 
frequency
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to2 — A /  . (4 .3 .1)

T he m axim um  acceleration of m 2 is th u s %o2 . If th is m agnitude of ac
celeration were reached very slowly, so as no t to  excite transien t longitudinal 
waves in the bar, the m axim um  force between the b a r and would be the 
p roduct of the acceleration and the m ass of the bar:

F  =  vwipAl. (4.3.2)

H ence the strain  a t  the end of the b a r a ttached  to  m 2 would be

VU-2 pi
eo = (4.3.3)

O ur problem  is to  find the ratio  of the m axim um  transien t strain  to  €o ■

LA _ £a_
CJZ 2 u2i

Fig. 4.3.2—Amplification factors for an element of the packaged article having dis
tributed mass and elasticity. The package has linear undamped cushioning and perfect 
rebound. See equations (4.3.15), and (4.3.14).

L et u  be the displacem ent of a transverse plane section of the b a r d is tan t x 
from  the end a ttached  to  m 2 . Then, the equation  of m otion of the bar is

3 u 2 d u  
dfi ~  a 3¡T2’

(4.3.4)

where a is the velocity of propagation of longitudinal waves in the bar:

(4.3.5)2 E  a — — ..

T aking the in stan t of first con tact of the cushioning w ith the floor to  be 
t =  0, we know, from  P a r t I I , th a t the system  will leave the floor when t =
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tt/ co2 • We shall therefore tre a t separately, as in P a r t I I I ,  the motion 
during contact

0 ? R -

and after rebound

, : 7Tt >  —.
C02

D uring the first interval, the initial and boundary conditions are

H ,.o  =  0, (4.3.6)

du
~dl (4.3.7)

M L o =  —- sin 0 )2 1, (4.3.8)
0)2

Dr“L  = (4;3-9)
The first and second conditions state tha t, a t the instan t of contact, all 
points in the bar are moving w ith the approach velocity v, w ithout relative 
displacement. The th ird  condition prescribes the half-sine wave motion
of the end of the bar th a t is attached  to m 2 . The fourth condition states
th a t the strain  a t  the free end of the bar is always zero.

By the usual m ethods, a solution of (4.3.4) satisfying conditions (4.3.6) 
to (4.3.9) is found to be

cos,, . . n-KX . mrat
v cos — {I — x)  sm o)21 n „  oo sin sin

a 1 Sl'f sr-\ 21 21 , .  -
U -  ¡1  ——— m u — p -  H a l f  2-i —P 7 v i---- =. (4.3.10)

t t  c l 7i=i,3,5 ■ ■ • 2 r / « x a y

"  L \ W /  ~

0J2 1
CO2 COS ------  f i "

a

—  ^  i ) .\  C02 Zù)2v /

The displacem ent is seen to be a forced vibration a t the frequency (w2) 
of the applied acceleration, on which are superposed the free vibrations of 
the bar given by the series expression. The frequency of the fundam ental 
mode of v ibration of the bar is -n-a/21 and the frequencies of the higher modes 
are the odd integral m ultiples of the fundam ental.
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T he stra in  a t  th e  a ttach ed  end of the b a r is

_ \ d u \  
|_d# Jx=o

. mrat 
sin

ni co2¿ , 4 y»
=  — > ta n  —  sm w2 /  2Li

a a

(
it mra \

(4.3.11)

I t  m ay be verified th a t  the sum of the  series in (4.3.11) is given by  

mrat

-  -  _  =  ta n  —  sin u 2t +  cos cc2t — 1, (4.3.12)
tt „=i.3,5 -•• T(  m r a \  a

K
m r a \

( ° « < ^
I t  should be observed th a t the sum m ation is valid only in the  in terval 0 <  
t <  21 /a. However, the series is periodic w ith half period 21 /a and  includes 
only the odd term s, so th a t the function repeats itself w ith  reversed sign 
afte r each in terval 21 /a. Hence the sum m ation, valid for all t, can be 
w ritten

mrat

4 sm ~2t
7r „ = i , 3 , 6 - •• I- /  n ira \2 1

W| _ \ W /  ~  J

=  ( — 1)* |^tan —  sin co2 ^ t  — +  cos co2 (4.3.13)

, , 2 m l 2(m  +
k = m  when ----- <  t < ---------------

a a

m  =  0, 1, 2, 3, • • • . 

We m ay, therefore, rew rite (4.3.11) in the form
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r , 2 m l 2 (m +  IVk =  m  when —  < t <  v ^  '
a  a

m =  0, 1, 2, 3 - • •

The expression (4.3.14) is simple enough so th a t the maximum value (e™) 
of the strain  a t  the attached  end can be obtained w ithout difficulty for any 
ratio of the fundam ental frequency (an =  iva/21) of the bar to the frequency 
(co2) o f  the disturbing acceleration. The amplification factor

m ay then be calculated. The results of these calculations are plo tted  in 
Fig. 4.3.2. The im portant feature of this curve is th a t the amplification 
factor is everywhere Jess than  the corresponding amplification factor for the 
one-degree-of-freedom system  (Fig. 3.2.2, /3i =  0). Hence the assumption 
of lumped parameters is on the side of safety as regards amplification factor.

I t  is interesting to observe th a t the curve of A m vs. a n /W , for this case, 
is a straight line between o>i/w2 =  0 and coi/to2 =  1. This arises from the 
fact tha t, for coi/a>2 5  1, equation (4.3.14) reduces to

Hence, when the duration of shock is less than  the half period of the funda
m ental mode of vibration, the maximum value of strain  occurs a t the end of 
im pact and is equal to twice the ratio  of the approach velocity to the velocity 
of wave propagation in the bar.

The whole solution of the problem  is not yet completed; for, although it is 
fairly evident from the fact th a t there is a t least one maximum in the in ter
val 0 ^  t <! ir/ui for all values of o)i/a>2 , it m ust be verified th a t the maxi
m um strain (and, therefore, the amplification factor) is never greater after 
t = t / u 2 than  before. Defining a new time coordinate

— — COS C021 —  1 
V

(4.3.16)

(4.3.17)

we have, for the initial and boundary conditions of equation (4.3.4) for 
t >  ir/w2 ,
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na.Tr2 nirx 
« sin 1— * sin —

ovZ v ' '  2.002

TV -a 71=1,3,5-

r ^ i
[_âf Jí'=o

u  nair2 . n-irx
V cos -  -  *) 4ï) Jg  cos ^  sm

+
C02̂  ^  n—1>S|S-

cos —  
a

/  WTraV 1
L \ w /  _  Lj

(4.3.19)

[m]®=o =  (4.3.20)

C S l  = 0 .  (4.3.21)
|_3xji=z

The first and second conditions s ta te  th a t the displacem ent and  velocity of 
every po in t in the b a r m ust be the same a t  the beginning of the second in te r
val as a t  the end of the first in terval; the expressions in (4.3.18) and  (4.3.19) 
are obtained from  (4.3.10). The th ird  condition prescribes the constant 
velocity of departure from  the floor of the m ass w 2 and, therefore, of the
end of the b a r a ttached  to  it. The last condition states, again, th a t the
strain  a t the free end of the bar is zero.

I t  m ay be verified th a t a solution of (4.3.4) satisfying conditions (4.3.18) 
to  (4.3.21) is

U =  vt' T
71=1,3 ,5

where

"  m rx (  mrat' \
Cn sin sin +  Tn j

(t' 5  0, Í ^  tt/co2),

(4.3.22)

n a r  
Sv( sin -— - 

2cú2
Cn sin 7 „ =  ----- p -T------ r~2---------------------------- (4.3.23)

2  2 
7r an

Cn COS ‘Y n
2  2 

7r an

[ ( S H
( nair2\

1 +  C0S2 ¡ ^ )

K nira Y  "1
M . )  -  (4.3.24)

nira 
2coo  ̂ ^



Hence, the strain  a t the a ttached  end of the bar is

nirat
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Ydu~] =  4^ j ,
|_ d x jx =0 71= 1,3,5 ■ ■ -

Sm 21

(nira \ 2 

2^ I I
+  4t; g  Sm 21

ira 71=

nirat’ (4.3.25)

I - H
The two series m ay be summed, as before, w ith the result

k T l m t .  ( t I a I  /  2 * A  ,1I tan  “  sm w2l t — — - 1 +  cos w2 U  J — 1

, 7  L y f .  2 £ ' A ,  / .  H 'A  1
+  ( r 1) tan  —  sm o>2 ( t -  —-  1 +  cos w2 U -  —  ) -  1 (4.3.26)

t >  7t/ w2 , t' — t ™ 5r/w2

, 2m<? 2(*» +  1)1k — m  when -------- <  t <  - ——- ' . ,
a a

v  / i 2mT ^  . 2(m ' +  1)£k  =  m when -------- <  t <
a a

m  =  0, 1, 2, 3 ■ ■ • i»' =  0, 1, 2, 3 ■ • • .

Once more, the expression for the strain  a t the attached end of the bar is 
in a form suitable for rapid calculation and it can be shown the e in equation 
(4.3.26) for t >  irfw2 is never greater than  the e in equation (4.3.14) for 0 T  
t rg x/w2 for the same o>i/w2 . Hence, Fig. 4.3.2 and the conclusions follow
ing equations (4.3.15) and (4.3.16) need no t be modified.

N o t a t io n s

A  Cross sectional area of a bar element of the packaged article. Also, a
constant of integration.

Ao Amplification factor when the reference acceleration is Go. Ratio of
maximum dynamic response to the response to a slowly applied ac
celeration of magnitude Gog.

A m Amplification factor when the reference acceleration is Gm. Ratio of
maximum dynamic response to the response to a slowly applied accelera
tion of magnitude Gmg.

A n In  Section 1.15, the sum of all the trapezoidal areas from *2 =  0 to x2 =
(x2)n- Also, in Section 4.2, the coefficient of the nth term of a series.

A A n The area of a trapezoid with altitude ¿ (* 2)71 and sides Pn- 1 and Pn.

a xo/l in the tension spring package. Also, in P a rt IV, the velocity of
propagation of longitudinal waves.



A param eter of cushioning with cubic elasticity defined in equation 
(1.5.3). Also, a constant of integration.

Coefficient in the nth term  of a series.

f / l  in the tension spring package.

A constant of integration.

Coefficient of the nth term  of a series.

A constant defined in equation (1.7.11)

Damping coefficient of an element of a packaged article.

Damping coefficient of linear cushioning.

The elliptic cosine function.

H ypothetical displacement th a t would result if initial spring ra te  were 
maintained.

Maximum possible displacement of packaged article in cushioning with 
tangent elasticity.

Maximum displacement of packaged article.

Value of dm when k0 =  k'o.

Displacement of bi-linear cushioning a t  which the spring ra te  changes 
from k0 to kb.

M odulus of elasticity.

In  the tension spring package the stretch of a spring when the displace
m ent is dm.

e ( where e is the Naperian base 2.718- • •

In  section 2.7, a frictional force.

In  the tension spring package, the maximum force on a spring.

In  the tension spring package, the difference between I and the distance 
between hooks of an unstretched spring.

Frequency of vibration of an element of the packaged article. 

Frequency of vibration of the packaged article on its cushioning.

H ypothetical maximum acceleration (in num ber of times g) th a t would 
result if initial spring rate were m aintained.

A mGm or A (¡Go, i.e. the slowly applied acceleration (in num ber of times g) 
th a t -will produce the same maximum response as a transient acceleration 
of maximum value Gm or Go-

Maximum acceleration (in number of times g) in cushioning w ith fric
tion and spring rate  kF.

Absolute value of maximum acceleration of packaged article in units of 
“num ber of times gravitational acceleration.”

Value of Gm when ko — k'0.
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Gn In  section 1.15, the maximum acceleration (in number of times g) ex
perienced by the suspended mass when dropped from a height hn. In 
P art IV, the maximum acceleration (in number of times g) of the nth 
mode of vibration.

Gr Maximum acceleration (in number of times g) after rebound.

Gs Safe value of Ge.

g Gravitational acceleration.

h Height of drop.

hn In  Section 1.15, the height of fall th a t will cause the cushioning to dis
place an amount (»2)7.-

K  In  the tension spring package, the initial spring rate  of the suspension.
In Section 2.8, the complete elliptic integral of the first kind.

K\, K 2, Kz The initial spring rates in the three mutually perpendicular directions 
normal to the faces of the package frame.

k In  the tension spring package, the spring rate of a spring. In  Section
2.8, the modulus of an elliptic integral.

k, k' In  Section 4.3, 0, 1, 2, 3, • • ■ .

ko Initial spring ra te  of non-linear cushioning.

k'o Optimum value of initial spring rate ko.

ki Spring rate  of lumped elasticity of element of packaged article.

k2 Spring rate of linear cushioning.

kb Spring rate of bilinear cushioning after bottoming.

k? Spring rate defined in equation (2.7.7).

L  Constant defined in equation (1.8.2).

I In  the tension spring, the projection of U on a horizontal plane. In
Section 4.2, length of cushioning. In  Section 4.3, length of element of 
packaged article.

k  In  the tension spring package, the distance between the two support
points of a spring when the suspended article is in the equilibrium 
position.

M  Constant defined in equation (1.8.4), equal to Gm/Go-

m Reduced mass defined in equation (2.4.5).

m, m ' In  Section 4.3, 0, 1, 2, 3, • • • . 

nii Lumped mass of element of packaged article.

»12 Lumped mass of packaged article.

m2 Lumped mass of outer container.

m.; Mass of cushioning.

N  M \
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n 0, 1, 2, 3, ■ - • .

P  Force transmitted through cushioning.

P0 Asymptotic value of force transmissible through cushioning with hyper
bolic tangent elasticity.

p m Maximum force exerted on packaged article by cushioning.

P„ In Section 1.15. the load that produces displacement (xy

R  Force between package and floor.

r Coefficient of cubic term in load-displacement function for cushioning
with cubic elasticity'.

s, t, u The direction cosines of the acceleration direction with respect to the
normals to the faces of the package frame.

stt The elliptic sine function.

Ti The period of vibration of the packaged article on its cushioning.

t Time coordinate.

f  t -  -{=>2
to Tim e of first contact of package with floor.

tm Time at which maximum displacement or acceleration occurs.

fT Tim e at which package leaves floor on rebound.

t ,  Time at which the displacement reaches d s.

u  Displacement in x  direction.

v Approach velocity.

W t Weight of packaged article.

JF3 Weight of outer container.

x .Ti — xr. relative displacement of nti with respect to m±.

x  -ti — *t-

x *i — Xt,

p  Relative displacement of ml with respect to at time

xo In the tension spring package, the perpendicular distance from an inner
spring support point to the nearest plane, perpendicular to the displace
ment direction and containing four outer spring support points.

Xi Displacement of m i-

X\ Velocity of mi.

x. Acceleration of m-L.

x* Displacement of me-

Xi Velocity of m2.
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*2 Acceleration of m2.

Maximum value of .t.

( » 2) » In  Section 1.15, the displacement associated with the nth point.

X s l The value x  would have if the acceleration reached its maximum value 
in a very long time.

(A.t 2) „ In  Section 1.15, equals (.r?)„ — (**)«-1.

y .r-2_X3.

2 x2/ /  (tension spring package).

“ » 7, S> I, V Phase angles.

01 Fraction of critical damping of an element of the packaged article.

02 Fraction of critical damping of package cushioning.

7n Phase angle of wth term  of series (equation (4.3.22)).

€ Strain a t attached end of element under transient conditions.

€0 Strain a t  attached end of element under non-transient conditions.

€m Maximum strain a t  attached end of element under transient conditions.

e Angle between the displacement direction and the acceleration di
rection.

7r 3 . 1 4 1 5 9 - .

P Density (mass per unit of volume)

TO Pulse duration of a half-sine-wave acceleration.

T  2 Pulse duration associated with non-linear cushioning.

TB Duration of bottoming of cushioning with bi-linear elasticity.

r P Time required to reach peak value of a triangular acceleration pulse.

CO Radian frequency defined in equation (2.4.6).

COl Radian frequency of vibration of an element of the packaged article.

« l' Radian frequency of vibration of damped element of packaged article.

C02 Radian frequency of vibration of the packaged article on its cushioning.

LOo Radian frequency of vibration of the packaged article on damped 
cushioning.

COb A frequency defined in equation (2.10.10).

COc A frequency defined in equation (2.8.8).

COn Radian frequency of n th  mode.



Abstracts of Technical Articles by Bell System Authors

Dimensional S tability of Plastics.1 R o b e r t  B u r n s . Because of inherent 
insulating  properties, rigid p lastics p lay  an  im p o rtan t p a r t  in  the design and 
m anufacture of precision electrical apparatus. A lm ost invariably, practical 
design considerations require th a t  the p lastics have reasonable struc tu ra l 
possibilities since it  is rarely  practicable to  disassociate com pletely electrical 
and  s tru c tu ra l functions.

This paper discusses one of the im p o rtan t factors in  the successful use of 
plastics in precision devices, nam ely, dim ensional s tab ility . Since plastics 
are organic com pounds, one m u st be prepared  to  accept a  degree of in sta 
b ility  n o t usually encountered in  m etals. The m easurem ent of th is p roperty  
is therefore of prim e im portance to the user of plastics since the d a ta  provide 
a  basis for design ad ju stm en t w hich frequently  is the difference between 
failure and  success.

The various types of dim ensional change are reviewed. D a ta  illustrating  
the separate effects of hum idity , drying, and  cycling procedures are sub
m itted . The influence of fabricating  processes such as com pression or 
injection molding, and  sheeting, is included.

Some Numerical Methods fo r  Locating Roots of Polynom ials? T h o r n t o n  

C. F r y . I t  is the  purpose of th is paper to  discuss the location of the roots 
of polynom ials of high degree, w ith  p articu la r reference to  the case of com
plex roots. T his is a problem  w ith  w hich the L aboratories has been m uch 
concerned in recent years because of the fac t th a t  the problem  arises ra ther 
frequently  in  the  design of electrical netw orks. A tten tio n  is n o t given to 
s tric tly  theoretical m ethods, such as the  exact solution by  elliptic or auto- 
m orphic fu nctions: nor to  the developm ent of roots in  series or in  continued 
fractions, though such m ethods exist and  one a t  least— developm ent of the 
coefficients of a quadra tic  factor—is of great value in  im proving the accuracy 
of roots once th ey  are know n w ith  reasonable approxim ation.

Instead , the paper deals w ith  ju s t two categories of solutions: one, the 
solution of the equations by  a succession of ra tional operations, having for 
their purpose the dispersion of the roo ts; the other, a m ethod  depending on 
C auchy’s theorem  regarding the num ber of roots w ith in  a closed contour.

Thermistor Technics? J .  C. J o h n s o n . T his paper is confined to  a  study  
of how the three basic types of therm istors, nam ely, ex ternally-heated  or 
am bient tem perature type, the d irectly -heated  type, and  also the indirectly-

1A .S .T .M . Bulletin, M ay 1945.
2 Quarterly Applied Mathematics, July 1945.
3 Electronic Industries, August 1945.
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heated  type, are used in simple feedback amplifiers as regulation and control 
devices to  effect the economies inherent in  an  entirely  electrical system by 
elim inating such m echanical devices as m otor-driven condensers, sliding 
contacts and ro tary  switches.

Dynamic Measurements on Electromagnetic DevicesA E. L. N o r t o n .  A 
m ethod is presented by which m easurem ents of flux m ay be made a t any 
desired tim e during the operate cycle of an  electrom agnet. A pparatus is 
described which operates the m agnet cyclically a t an  accurately held rate, 
and provides a m eans for m easuring flux either by  the use of a search coil 
or by  the operating winding of the m agnet itself. W hen using a search coil, 
i t  is connected to  a  direct-current milliam m eter a t  the time in the cycle a t 
which the value of the flux is desired and disconnected a t the end of the 
cycle or ju s t before the m agnet is energized for the next pulse. If proper 
precautions are taken, the steady reading of the instrum ent is an accurate 
measure of the difference in  the flux in  the coil between the time it is con
nected to  the m eter and the tim e i t  is removed, or, since the la tte r is zero 
except for residual flux, the reading is a direct measure of flux.

T he same apparatus m ay be used for the m easurem ent of instantaneous 
current by  the addition  of an  air core m utual inductance, and its use is 
extended to  the m easurem ent of arm ature position and velocity by the 
addition of a photoelectric cell and the proper amplifiers.

A form of vacuum  tube filter is described which effectively filters the 
pulses from the indicating instrum ent w ithout affecting the accuracy of the 
measurem ents.

Coaxial Cables and Television Transmission.5 H a r o l d  S. O s b o r n e . 

Com m unication techniques and facilities useful to  the entertainm ent 
industry  have evolved naturally  from the Telephone Companies’ main 
objective— the transm ission of speech. The development of carrier sys
tems for long-distance transm ission and technical features involved in the 
la test carrier m edium — the coaxial cable—are reviewed. The television 
tra nsmission capabilities of this medium, bo th  now and w hat m ay be 
expected shortly  afte r the war, are m entioned. The extensive system of 
such cables p lanned for the next five years, supplem ented by radio relay 
systems to  the ex ten t th a t  these prove themselves as a p a r t of a communica
tions network, will provide an  excellent beginning for a nation-wide tele
vision transm ission network. P lanned prim arily  to meet telephone 
requirem ents, this netw ork of cables will be suitable to m eet the transmission 
needs of the television industry.

The Performance and Measurement of M ixers in  Terms of Linear-Network 
Theory,6 L. C. P e t e r s o n  a n d  F. B. L l e w e l l y n . This paper discusses

4 Elec. Engg., Transactions Section, April 1945.
5 Jour. S .M .P .E ., June 1945.
6 Proc. I.R .E ., July 1945.



the properties of mixers in term s of linear-netw ork theory . In  P a r t I  the 
netw ork equations are derived from  the fundam ental properties of nonlinear 
resistive elem ents. P a r t I I  contains a  resum e of the appropriate  form ulas 
of linear-netw ork theory. In  P a r t  I I I  the netw ork theory  is applied, first 
to  the case of simple nonlinear resistances, and  next to  the  m ore general 
case where the nonlinear resistance is em bedded in a netw ork of parasitic  
resistive and  reactive passive-im pedance elem ents. In  P a r t  IV  application 
of the previous results is m ade to  the m easurem ent of perform ance properties. 
The “ im pedance” and the “ increm ental” m ethods of m easuring loss are 
contrasted, and it  is shown th a t  the ac tua l loss is given by  the increm ental 
m ethod  when certain  special precautions are taken, while the im pedance 
m ethod is in itself incomplete.

A  Figure o f M erit fo r  Electron-Concentrating System s.' J . R. P ie r c e . 
E lectron-concentrating system s are subject to  certain  lim ita tions because 
of the therm al velocities of electrons leaving the cathode. A  figure of m erit 
is proposed for m easuring the goodness of a device in th is respect. This 
figure of m erit is the ra tio  of the area of the aperture which, in  an  ideal 
system  w ith  the same im portan t param eters as the ac tua l system , would 
pass a given fraction  of the cathode cu rren t to  the area of the apertu re  which 
in the actual system  does pass th is fraction  of the cathode curren t. E x
pressions are given for evaluating  th is figure of m erit.

A 60-Kilowatt High-Frequency Transoceanic-Radiotelephone A m plifier .8 
C . F. P . R o s e . H ere is described a high-frequency radio am plifier recently  
developed for the transoceanic-telephone facilities of the Bell System  at 
Lawrenceville, New Jersey. In  general, the amplifier is capable of delivering 
60 kilow atts of peak envelope power when excited from a 2-kilow att radio
frequency source. I t  is designed to  operate as a  “ class B ” am plifier for 
transm itting  either single-channel double-sideband or tw in-channel single
sideband types of transm ission. Features are described which perm it 
rap id  frequency-changing technique from any  preassigned frequency to 
another lying anywhere w ithin the spectrum  of 4.5 to  22 megacycles.

Some Notes on the Design of Electron G uns.9 A. L. S a m u e l .  A m ethod  is 
outlined for the design of electron guns based on the simple theory  first 
published by  J . R . Pierce. This m ethod assumes th a t the electrons are 
moving in a beam  according to a  know n solution of the space-charge equa
tion, and  requires th a t electrodes exterior to  the region of space charge be 
shaped so as to  m atch  the boundary  conditions a t  the edge of the beam. 
An electrolytic tan k  m ethod is used to ob ta in  solutions for cases which are 
n o t am enable to  direct calculation. A tten tion  is given to  some of the

7Proc. I.R .E ., July 1945.
8 Proc. I .R .E ., October 1945.

I.R .E ., April 1945.
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com plications ignored by  the simple theory  and to some of the practical 
difficulties which are encountered in constructing guns according to these 
principles. An experim ental check on the theory is described, together 
w ith some inform ation as to  the actual current d istribution in abeam  
produced by  a gun based on th is design procedure.

Microwave Radiation from  the Sun .10 G. C. S o u t h w o r t h . D uring the 
sum m er m onths of 1942 and 1943, a small b u t m easurable am ount of micro
wave rad ia tion  was observed coming from the sun. This appeared as ran 
dom noise in the ou tpu ts of sensitive receivers designed to  work a t wave
lengths between one and ten centim eters. Over a considerable portion of 
the range, the energy was of the same order of m agnitude as th a t predicted 
by black-body rad ia tion  theory.

A ttem pts were m ade to  determ ine the effect of the ea rth ’s atm osphere on 
this radiation. M easurem ents m ade near sunrise or sunset, when the 
p a th  through the e a r th ’s atm osphere was relatively long, differed only 
slightly from those made a t  noon. This suggested th a t any absorption 
th a t m ay have been present was small. In  this connection it is of interest 
th a t small tem perature differences could be noted between points below the 
horizon and the sky im m ediately above. This also suggested th a t the 
ea r th ’s atm osphere was relatively transparent.

In  another k ind of m easurem ent the parabolic receiver was centered on 
the sun and its ou tp u t was observed as the sun’s disc moved out of the aper
ture of the receiver. The directional p a tte rn  so obtained indicated th a t 
a t  the shorter wave-lengths the sun’s apparen t diam eter was considerably 
larger th an  th a t m easured by ordinary optical means. This suggested th a t 
there m ay have been some refraction or perhaps scattering by the ea rth ’s 
atm osphere.

Resistive Attenuators, Pads and Networks— A n  Analysis of their Applica
tions in  M ixer and Fader Systems (Part Eight of a Series).11 P a u l  B. 
W r i g h t . In  last m on th ’s discussion, the series-connected fader and the 
parallel-connected fader system s were considered, together w ith an analysis 
of their perform ance expressed bo th  algebraically and in term s of the 
hyperbolic functions of a real variable. In  this installm ent, the series- 
parallel-connected fader system  discussion is continued and equations 
describing the complete behavior of this type network system  are developed. 
This is followed by  fu rther analytical work dealing w ith the parallel-series- 
connected fader and mixer system  and several lesser known systems which 
are quite useful to  use. These are the midtiple bridge and the lattice network 
systems which m ay be utilized to advantage for some applications. All of

10 Jour. Franklin Institute, April 1945.
11 Communications, September 1945. (Preceding parts of this Series appeared in earlier 

issues of Communications.)



the equations which are derived are shown in the algebraical, hyperbolical 
and  sym bolical forms. The key ch a rt w hich was presen ted  earlier in th is 
series m ay be used to  great advantage w hen checking the definitions of the 
symbols used which are n o t specifically defined in the tex t. T his procedure 
also m ay be d irectly  applied to  the hyperbolic equations shown. I t  is of 
course necessary to  take in to  account th a t, in  general, subscrip ts are used 
in m ost of the equations in the tex t while the key ch a rt does n o t have any 
subscripts. T his does not, however, a lter the fundam ental form s nor their 
definitions in term s of the propagation  function, the ta . T o  avoid the neces
s ity  for extensive in terpolation  of the hyperbolic function  tables to  find the 
correct num erical values for the various functions used th roughou t the text, 
a  series of tables providing all of the functions required  is presented.
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